Large Graph Mining – Patterns, Tools and Cascade analysis

Christos Faloutsos
CMU

Thank you!

• Xuewen Chen

• Dennis Schwartz

Roadmap

- Introduction Motivation
 - Why 'big data'
 - Why (big) graphs?
 - Problem#1: Patterns in graphs
 - Problem#2: Tools
 - Problem#3: Scalability
 - Conclusions

Why 'big data'

- Why?
- What is the problem definition?
- What are the major research challenges?

Main message:

Big data: often > experts

• 'Super Crunchers' Why Thinking-By-Numbers is the

New Way To Be Smart by Ian Ayres, 2008

- Google won the machine translation competition 2005
- http://www.itl.nist.gov/iad/mig//tests/mt/2005/doc/ mt05eval official results release 20050801 v3.html

Problem definition – big picture

Tera/Peta-byte data

Analytics

Insights, outliers

Problem definition – big picture

Tera/Peta-byte data

Analytics Insights, outliers

Main emphasis in this talk

Wayne State, Feb. 2013

C. Faloutsos (CMU)

7

Problem definition – big picture

Tera/Peta-byte data

(my personal) rules of thumb: if data

- fits in memory -> R, matlab, scipy
- single disk -> RDBMS (sqlite3, mysql, postgres)
- multiple (<100-1000) disks: parallel RDBMS (Vertica, TeraData)
- multiple (>1000) disks: hadoop, pig

C. Faloutsos (CMU)

(Free) Resource for graphs

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

- www.cs.cmu.edu/~pegasus
- Apache license for s/w
- code and papers

Research challenges

- The usual ones from data mining
 - Data cleansing
 - Feature engineering

— ...

PLUS

- Scalability (<O(N**2))
- Real data *disobey* textbook assumptions
 (uniformity, independence, Gaussian, Poisson)
 with huge performance implications

Roadmap

- Introduction Motivation
 - Why 'big data'
- Why (big) graphs?
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

Graphs - why should we care?

- >\$10B revenue
- >0.5B users

Food Web [Martinez '91]

Internet Map [lumeta.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

web: hyper-text graph

• ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- •
- Subject-verb-object -> graph
- Many-to-many db relationship -> graph

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Tools
 - Problem#3: Scalability
 - Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns
 - Large datasets reveal patterns/anomalies that may be invisible otherwise...

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Graph mining

• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.2: Eigen Exponent *E*

Exponent = slope

$$E = -0.48$$

May 2001

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Solution# S.2: Eigen Exponent *E*

Exponent = slope

E = -0.48

May 2001

Rank of decreasing eigenvalue

• [Mihail, Papadimitriou '02]: slope is ½ of rank exponent

Wayne State, Feb. 2013

C. Faloutsos (CMU)

But:

How about graphs from other domains?

More power laws:

• web hit counts [w/ A. Montgomery]

Wayne State, Feb. 2013

epinions.com

 who-trusts-whom [Richardson + Domingos, KDD 2001]

trusts-2000-people user

(out) degree

And numerous more

- # of sexual contacts
- Income [Pareto] –'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle 'Laws'

Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

32

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: #S.4 [Tsourakakis ICDM 2008]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques

- Weighted graphs
- Time evolving graphs
- Problem#2: Tools

Observations on weighted graphs?

A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': 1.01 < iw < 1.26

More donors, even more \$

Wayne State, Feb. 2013

In-weights (\$)

e.g. John Kerry, \$10M received, from 1K donors

Orgs-Candidates

C. Faloutsos (CMU)

46

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs

- Time evolving graphs
- Problem#2: Tools

•

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter \sim O(log N)
 - diameter \sim O(log log N)

What is happening in real data?

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:

 - diameter ~ (log N)diameter ~ O(log log N)

- What is happening in real data?
- Diameter shrinks over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - -2.9 M nodes
 - 16.5 M edges

Wayne State, Feb. 2013

C. Faloutsos (CMU)

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for $E(t+1) = (2)^* E(t)$

- A: over-doubled!
 - But obeying the ``Densification Power Law''

T.2 Densification – Patent Citations

- Citations among patents granted
- (a) 1999
 - -2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs

- Time evolving graphs
- Problem#2: Tools

•

T.3: popularity over time

in links

Post popularity drops-off – exponentially?

T.3: popularity over time

in links (log)

days after post (log)

Post popularity drops-off – exportentally? POWER LAW!

Exponent?

T.3: popularity over time

in links (log)

days after post (log)

Post popularity drops-off – exported ally? POWER LAW!

Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk
 Wayne State, Feb. 2013

 C. Faloutsos (CMU)

DFT of Brown Noise

-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. *Nature* **437**, 1251 (2005) . [PDF]

Figure 1 | The correspondence patterns of Darwin and Einstein.

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs

• Problem#2: Tools

- Belief Propagation
- Tensors
- Spike analysis
- Problem#3: Scalability
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

Wayne State, Feb. 2013

C. Faloutsos (CMU)

E-bay Fraud detection - NetProbe

Compatibility matrix

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Belief Propagation

- Tensors
- Spike analysis
- Problem#3: Scalability
- Conclusions

GigaTensor: Scaling Tensor Analysis Up By 100 Times – Algorithms and Discoveries

Kang

Evangelos Papalexakis Harpale Faloutsos

Abhay

Christos

KDD'12

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
 - Hyperlinks & anchor text [Kolda+,05]

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
 - Sensor stream (time, location, type)
 - Predicates (subject, verb, object) in knowledge base

```
"Eric Clapton plays guitar"

"Barrack Obama is the president of U.S."
```

Wayne State, Feb. 2013

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
 - Sensor stream (time, location, type)
 - Predicates (subject, verb, object) in knowledge base

Anomaly
Detection in
Computer
networks

Wayne State, Feb. 2013

Problem Definition

- How to decompose a billion-scale tensor?
 - Corresponds to SVD in 2D case

Problem Definition

- Q1: Dominant concepts/topics?
- Q2: Find synonyms to a given noun phrase?
- \square (and how to scale up: |data| > RAM)

Experiments

• GigaTensor solves 100x larger problem

A1: Concept Discovery

Concept Discovery in Knowledge Base

Noun Phrase 1	Noun Phrase 2	Context	
Concept 1: "Web Protocol"			
internet	protocol	'np1' 'stream' 'np2'	
file	software	'np1' 'marketing' 'np2'	
data	suite	'np1' 'dating' 'np2'	
Concept 2: "Credit Cards"			
credit	information	'np1' 'card' 'np2'	
Credit	debt	'np1' 'report' 'np2'	
library	number	'np1' 'cards' 'np2'	
Concept 3: "	Health System	<u>''</u>	
health	provider	'np1' 'care' 'np2'	
child	providers	'np' 'insurance' 'np2'	
home	system	'np1' 'service' 'np2'	
Concept 4: "Family Life"			
life	rest	'np2' 'of' 'my' 'np1'	
family	part	'np2' 'of' 'his' 'np1"	
body	years	'np2' 'of' 'her' 'np1'	

A1: Concept Discovery

Noun Phrase 1	Noun Phrase 2	Context	
Concept 1: "Web Protocol"			
internet	protocol	'np1' 'stream' 'np2'	
file	software	'np1' 'marketing' 'np2'	
data	suite	'np1' 'dating' 'np2'	
Concept 2: "Credit Cards"			
credit	information	'np1' 'card' 'np2'	
Credit	debt	'np1' 'report' 'np2'	
library	number	'np1' 'cards' 'np2'	
Concept 3: "Health System"			
health	provider	'np1' 'care' 'np2'	
child	providers	'np' 'insurance' 'np2'	
home	system	'np1' 'service' 'np2'	

A2: Synonym Discovery

(Given) Noun Phrase	(Discovered) Potential Synonyms	
pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nıtrogen oxide, air pollutants, cholesterol	
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries	
vodafone	verizon, comcast	
Christian history	European history, American history, Islamic history, history	
disbelief	dismay, disgust, astonishment	

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs

- Problem#2: Tools
 - Belief propagation
 - Tensors

- Problem#3: Scalability -PEGASUS
- Conclusions

Rise and fall patterns in social media

- Meme (# of mentions in blogs)
 - short phrases Sourced from U.S. politics in 2008

"you can put lipstick on a pig"

Rise and fall patterns in social media

- Can we find a unifying model, which includes these patterns?
 - four classes on YouTube [Crane et al. '08]
 - six classes on Meme [Yang et al. '11]

Rise and fall patterns in social media

Answer: YES!

• We can represent all patterns by single model

In Matsubara+ SIGKDD 2012

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Infectiveness of a blog-post at age n:

 β - Strength of infection (quality of news)

f(n) – Decay function

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Infectiveness of a blog-post at age n:

 β - Strength of infection (quality of news)

f(n) - Decay function $f(n) = \beta * n^{-1.5}$

SpikeM - with periodicity

Full equation of SpikeM

$$\Delta B(n+1) = p(n+1) \cdot \left[U(n) \cdot \sum_{t=n_b}^{n} (\Delta B(t) + S(t)) \cdot f(n+1-t) + \varepsilon \right]$$
Periodicity

Bloggers change their activity over time (e.g., daily, weekly, yearly)

Details

Analysis – exponential rise and power-raw fall

Details

Analysis – exponential rise and power-raw fall

Tail-part forecasts

• SpikeM can capture tail part

"What-if" forecasting

- e.g., given (1) first spike,
 - (2) release date of two sequel movies
 - (3) access volume before the release date

Wayne State, Feb. 2013

C. Faloutsos (CMU)

"What-if" forecasting

SpikeM can forecast upcoming spikes

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs

- Problem#2: Tools
- Problem#3: Scalability –PEGASUS

- Diameter
- Connected components
- Conclusions

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce hadoop (open-source clone)
 http://hadoop.apache.org/

Roadmap – Algorithms & results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	HERE
Conn. Comp	old	HERE
Triangles	done	HERE
Visualization	started	

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale
 Graphs U Kang, Charalampos Tsourakakis,
 Ana Paula Appel, Christos Faloutsos, Jure
 Leskovec, SDM'10
- Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

YahooWeb graph (120Gb, 1.4B hodes, 6.6 B edges)

Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

Largest publicly available graph ever studied.

- •7 degrees of separation (!)
- Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

- effective diameter: surprisingly small.
- Multi-modality (?!)

Radius Plot of GCC of YahooWeb.

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

Conjecture:

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs

- Problem#2: Tools
- Problem#3: Scalability –PEGASUS
 - Diameter
- Connected components
- Conclusions

Generalized Iterated Matrix Vector Multiplication (GIMV)

<u>PEGASUS: A Peta-Scale Graph Mining</u> System - Implementation and Observations.

U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.

(ICDM) 2009, Miami, Florida, USA.

Best Application Paper (runner-up).

Generalized Iterated Matrix Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix – vector Multiplication (iterated)

• Connected Components – 4 observations:

Connected Components

Connected Components

Connected Components

Connected Components

Connected Components

113 Wayne State, Feb. 2013 C. Faloutsos (CMU)

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

OVERALL CONCLUSIONS – low level:

- Several new **patterns** (fortification, triangle-laws, conn. components, etc)
- New tools:
 - belief propagation, gigaTensor, etc
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS – high level

• **BIG DATA:** Large datasets reveal patterns/ outliers that are invisible otherwise

Carnegie Mellon

Wayne State, Feb. 2013

C. Faloutsos (CMU)

• Leman Akoglu, Christos Faloutsos: *RTG: A Recursive Realistic Graph Generator Using Random Typing*. ECML/PKDD (1) 2009: 13-28

• Deepayan Chakrabarti, Christos Faloutsos: *Graph mining: Laws, generators, and algorithms*. ACM Comput. Surv. 38(1): (2006)

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: *Epidemic thresholds in real networks*. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: *Information Survival Threshold in Sensor and P2P Networks*. INFOCOM 2007: 1316-1324

• Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: *Mining large graphs and streams using matrix and tensor tools*. Tutorial, SIGMOD Conference 2007: 1174

• T. G. Kolda and J. Sun. *Scalable Tensor Decompositions for Multi-aspect Data Mining*. In: ICDM 2008, pp. 363-372, December 2008.

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication*. PKDD 2005: 133-145

 Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, Christos Faloutsos, "Rise and Fall Patterns of Information Diffusion: Model and Implications", KDD'12, pp. 6-14, Beijing, China, August 2012

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameter-free Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

• Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, *Fast Random Walk with Restart and Its Applications*, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos,
 Center-Piece Subgraphs: Problem
 Definition and Fast Solutions, KDD 2006,
 Philadelphia, PA

• Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: *Fast best-effort pattern matching in large attributed graphs*. KDD 2007: 737-746

Project info & 'thanks'

www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Beutel, Alex

Chau, Polo

Kang, U

Koutra, Danae

McGlohon, Mary

Prakash, Aditya

Papalexakis, Vagelis

Tong, Hanghang

Take-home message

Big data reveal **insights** that would be invisible otherwise (even to **experts**)