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Speed up of Data-Driven State Estimation
Using Low-Complexity Indexing Method

~——— Data-Driven State Estimation
- } ® Historical Similar « Time
Data Measurements, States Consuming

Observation:
® Redundancies & correlations

Average Hourly Load, PJM Mid-Atlantic Region
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Problem dfn

3yrs, every 5——

Measurement 1 *

Measurement M

Voltage 1 >

Voltage N ——

Average Hourly Load, PJIIv 'vMiid-Atlantic Region

Hour of week

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Problem dfn
Measurement 1 B
Measurement M 7 .
Voltage 1 > | H
Voltage N ——> o
> time

Direct solution:
Slow (Kirchoff’s eq.)

CMU, Feb 2014 (c) 2014, C. Faloutsos 5
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Problem din
Measurement 1 4N
Measurement M 7 .
Voltage 1 > | -,
Voltage N ——> o
> time

Look for near-neighbors
And use *their* voltages

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Problem dfn
Measurement 1 vV v 2
Measurement M > Tt s
Voltage 1 > | =l
Voltage N —— | =i
> time

But sequential scan
Is slow, too (MxT) Look for near-neighbors

Can we do better? And use *their* voltages

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Problem din
Measurement 1 7 N
Measurement M 7 -
Voltage 1 > ! .
Voltage N —— | -
< T >
> time
But sequential scan A: yes!
s slow, too (MxT) V'\I{eaiijn reduce both

Can we do better? \

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Simulation Results
« Same accuracy, 100x — 100K x faster
Relative —
Search | E
Time: 5 | lh".l“ﬁ',"lr‘\r&'a' o fl Nﬁﬂm A !JM’MM [l
G Il WM > 'M“v'v”,‘"w.."N'Jp il
1000 x - | |1/l INIH » I
1 sec 10_5; | Many
vs 15° i» simulations
vs 1day | /
° > 160 testi:uéocase nztf)rgber ie2§?400] 360 3;50 0




Stepl: Reducing dimensionality M

Measurement 1

Measurement M

]
]
.)/\\/<

> time
i A: yes!
But sequential scan
s slow, too (MxT) V_\I{eai%” reduce both
C do better? °h
an we do better Y VD

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Step2: Faster than T timeticks

Measurement 1

Measurement M

]
]
.)/\\/<

> time
But sequential scan Al yes!
Is slow, too (MxT) We can reduce both
Can we do better? *T, and K-d trees
‘M SVD

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Faster than seq. scan: K-d trees

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Thanks to SVD: VISUALIZATION!
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feature with 1% largest eigenvalue
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with 2" |argest eigenvalue

® Projection of measurements on to singular vectors of
measurement matrix
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Thanks to SVD: VISUALIZATION!
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feature with 15¢ largest eigenvalue of behavior!

® Projection of measurements on to singular vectors of
measurement matrix
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Thanks to SVD: VISUALIZATION!

with 39 largest eigenvalue

with 51" largest eigenvalue

with 27 |argest eigenvalue

feature with 3" largest eigenvalue
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1000 x
faster

-

M r’HU'W Nl

Crossdisciplinarity:

Already started paying off

« Same accuracy, 100x — 100K x faster

s u-‘l"“i.“\ ull ll”l d IMH.‘ 0y LG il lt

[1] Yang Weng, Christos Faloutsos, Marija D. lli'c, and Rohit
Negi, Speed up of Data-Driven State Estimation Using Low-

Complexity Indexing Method, IEEE PES-General Meeting,

(accepted), 2014
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Graphs - why should we care?

(P

. e oo, A Power Staton | [
* Power-grid! AT S

— Nodes: (plants/
consumers)

@ GENERATION

Distribution
Substation

(@& COMMERCIAL & INDUSTRIAL @ DISTRIBUTION

—_ Edges: power lines BUSINESS CONSUMERS -

I @ DISTRIBUTION
. AUTOMATION
y, W, DEVICES
a @ RESIDENTIAL CONSUMERS

CMU, Feb 2014 (c) 2014, C. Faloutsos 18
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Graphs - why should we care?

Food Web of Smallmouth Bass
Leech Little Rock Lake (Cannibal)
¥

1st Tropic Level ¥ .

Mostly Phytoplankton 2nd Trophic Level
Many Zooplankton

Food Web

>$10B revenue

>(0.5B users

Internet Map
[lumeta.com]

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Graphs - why should we care?

* web-log (‘blog’) news propagation
» computer network security: email/IP traffic and
anomaly detection

* Recommendation systems

* Many-to-many db relationship -> graph

CMU, Feb 2014 (c) 2014, C. Faloutsos 20
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Part 1:

Patterns & Laws
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Laws and patterns

* QI: Are real graphs random?

CMU, Feb 2014 (c) 2014, C. Faloutsos 23
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CMU, Feb 2014

Laws and patterns

* QI: Are real graphs random?
 Al: NO!!
— Diameter

— 1n- and out- degree distributions
— other (surprising) patterns

* Q2: why so many power laws?
o A2: <self-similarity — stay tuned>

e So, let’s look at the data

(c) 2014, C. Faloutsos
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Solution# S.1

 Power law 1n the degree distribution
[SIGCOMMO99]

internet domains

~ att.com
1000 . . .
log(degree)ﬂ'EST Raas 041U-lNTEﬁ?SS.g‘;L%é?tgr;nﬁ.?t{hg%%rgﬁ.sz; -
160 L
ibm.com
10
1L
o 1 1‘0 160 1oloo 1000010g(rank)
CMU, Feb 2014 (c) 2014, C. Faloutsos
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Solution# S.1

 Power law 1n the degree distribution
[SIGCOMMO99]

internet domains

~ att.com
1000 : . .
log(de gree)"..fTEST 041U-lNTEﬁ?SB.g‘;LOSé?tgr;nz'&?t{hg%%rgﬁ.sz; -
160 L
ibm.com
10
1L
o 1 1‘0 1[.10 10‘00 1000010g(rank)
CMU, Feb 2014 (c) 2014, C. Faloutsos
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* (: So what?

CMU, Feb 2014

Solution# S.1

internet domains

1000

log(degree)

100

ibm.com

0.1

~ att.com

0410-INTER'S80410.Internet outdegrees.z" ——
exp{6.65065) *x **{ -0.826118) ——

log(rank)

10 100 1000 10000

(c) 2014, C. Faloutsos
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CMU, Feb 2014

Solution# S.1

* Q: So what? (iends of friends

* Al: # of two-step-away pairs:

(F.O )

internet domains

1000

log(degree)

100

ibm.com

1k

0.1

~ att.com

0410-INTER'S80410.Internet outdegrees.z" ——
exp{6.65065) *x **{ -0.826118) ——

1 10 100 1000 10000

log(rank)

(c) 2014, C. Faloutsos
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CMU, Feb 2014

Gaussian trap

Solution# S.1

internet domains

1000

log(degree)

100

ibm.com

1k

0.1

~ att.com

« Al: # of two-step-away pairs: O(d max "2) ~ I0M"2

0410-INTER'S80410.Internet outdegrees.z" ——
exp{6.65065) *x **{ -0.826118) ——

1 10 100 1000

(c) 2014, C. Faloutsos

DCO @ CMU

~0.8PB ->
a data center(!)

4

29
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* (Q: So what?

CMU, Feb 2014

e Al: # of two-step-av~

Solution# S.1

inte-

Gaussian trap

(c) 2014, C. Faloutsos
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Solution# S.2: Eigen Exponent E

Eigenvalue
100

' 'P3.0ragon’  +
exp(4.3031) *x*(-0.47734) ——

Exponent = slope

E=-0.48

10

May 2001

1 10 100

Rank of decreasing eigenvalue

« A2:power law in the eigenvalues of the adjacency

matrix
CMU, Feb 2014 (c) 2014, C. Faloutsos 31




Roadmap

e Introduction — Motivation

» Problem#1: Patterns in graphs § 4
— Static graphs

» degree, diameter, eigen,

# e Triangles
— Time evolving graphs

e Problem#2: Tools

CMU, Feb 2014 (c) 2014, C. Faloutsos 32




Solution# S.3: Triangle ‘Laws’

<

» Real social networks have a lot of triangles

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Solution# S.3: Triangle ‘Laws’

<}

» Real social networks have a lot of triangles

— Friends of friends are friends

e Any patterns?
— 2x the friends, 2x the triangles ?

CMU, Feb 2014 (c) 2014, C. Faloutsos 34
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Triangle Law: #S.3
[Tsourakakis ICDM 2008]

P DTPL o DTPL
) (0 JEN R ——— T T 1 ! T
slope 1.68
—c'o
Reuters : SN
i Io slope -1.68;|
g
S o s
10
10_2 o ‘ 1 ‘ 2 ‘ ; o ‘ 1 ‘ 2
10 I0 I0 I0 (o] (0] 10 I0 (0] (o]
Degree Degre
P DTPL
O [Fessssssssassasss] T T
slope 1.61

i X-axis: degree
EplnlOnS; i slope -1.59{
E

% | Y-axis: mean # triangles

| DL n friends -> ~n!-¢ triangles

CMU, Feb 2014

(c) 2014, C. Faloutsos 35
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) — O(d,,, %)

Q: Can we do that quickly?

A

CMU, Feb 2014 (c) 2014, C. Faloutsos 36




Carnegie Mellon %

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) — O(d_ .. .?)

max

Q: Can we do that quickly?
A: Yes! m
Y

#triangles = 1/6 Sum (A ) 5
(and, because of skewness (S2) ,
we only need the top few eigenvalues! - O(E)

CMU, Feb 2014 (c) 2014, C. Faloutsos 37
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Triangle counting for large graphs?

8
10 e
=
Charity @(
2 10’ Water Barac
&
= 10°
©
= 5
810
=
4
Z 10% +
3
10 1 3
10* 10’ | 4

Anomalous nodes 1n Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

CMU, Feb 2014 (c) 2014, C. Faloutsos 38
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Yahoo!® Supercomputing Cluster

CMU, Feb 2014

(c) 2014, C. Faloutsos

8
10 ——
=)
Charlty-I@* X _
%107 Water Barack
5 (®» Obama
= 10° Al
5 John
5 10° -Sarah McCain
_Q -
= Palin
bV,
S A4
Z 10" | ]
' Hillar : ‘
'Y V.M 103 "Clintgn [ Twitter _+ |
BN 10* 10° 10° 10’
Degree

Triangle counting for large graphs?

Anomalous nodes 1n Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

8
108 e
i —)s:?m
(w Charity X _
@ PRATEE Water Barack
= (® Obama
= 10° Al
5 John_
@ 10° +Sarah McCain
9 .
= Palin
bV,
> 104 |
' Hillar : ‘
PPl o “Cintgh [ Twiter ¥ | S
BRI A7 10% 10° 10° 107 '
Degree

Yahoo!® Supercomputing Cluster

Anomalous nodes 1n Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

CMU, Feb 2014 (c) 2014, C. Faloutsos 40
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O

Y\ / /'/“

Yahoo!® Supercomputing Cluster

CMU, Feb 2014

Triangle counting for large graphs?

10° ——TN R
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Anomalous nodes 1n Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

(c) 2014, C. Faloutsos 41
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=)

Roadmap

* A case for cross-disciplinarity =

e Introduction — Motivation

» Part#l: Patterns in graphs
— Static graphs
— Time evolving graphs

» Part#2: Cascade analysis

e Conclusions

CMU, Feb 2014 (c) 2014, C. Faloutsos

42




Carnegie Mellon

Problem: Time evolution

e with Jure Leskovec (CMU ->
Stanford)

* and Jon Kleinberg (Cornell —
sabb. (@ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs

over Time: Densification Laws, Shrinking Diameters and Possible
Explanations, KDD 2005
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— [diameter ~ O( N1/3)]

e PO
— diameter ~ O(log N) Q
IR

— diameter ~ O(log log N)
* What 1s happening in real data?

L

NN

AC)
VO

diameter

CMU, Feb 2014 (c) 2014, C. Faloutsos 44
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

9l o

— [diameter ~

— diameter ~

— diameter ~ O og N) —>

D —

* What 1s happening in real data?

 Diameter shrinks over time

CMU, Feb 2014 (c) 2014, C. Faloutsos
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L 35; dlameter

 Patent citation
network .l
+ 25 years of data £ |
+ @1999 £
— 2.9 M nodes i 197
— 16.5 M edges T

1%75 19|80

T.1 Diameter — “Patents”

—a—Full graph
-e-Post '85 subgraph
=-Post '85 subgraph, no past

CMU, Feb 2014 (c) 2014, C. Faloutsos

1985 1990

time [years]

1995

46

2000
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* Suppose that

CMU, Feb 2014

T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t
* E(t) ... edges at time t

N(t+1) =2 * N(t) Say, k friends on average

* : what 1s your guess for
E(t+1) =2 2 * E(t) Tj\_\

S
L

K

(c) 2014, C. Faloutsos 47




T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t Gaussian trap
* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t) Say, k friends o

* : what 1s your guess for
E(t+1) G E(o) U\\

 A:over-doubled! ~ 3x

— But obeying the ~ Densification Power Law’™
CMU, Feb 2014 (c) 2014, C. Faloutsos 48
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T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t Gaussian trap
* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t) Say, k friends o

° Q what 1s your gucss for lin
E(t+1) ® E(t) T T\\

* A: over-doubled! ~ 3x X"

— But obeying the '~ Densification Power Law
CMU, Feb 2014 (c) 2014, C. Faloutsos 49
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T.2 Densification — Patent

Citations
 Citations among '
patents granted E(t) o
* @1999 g 107}
— 2.9 M nodes “§ 1.66
— 16.5 M edges Ema_
 Each yearis a 1976 » _
datapoint ﬁ = 00002 % R2=0.69
10‘ 5 l‘3 .T'
10 10 10

Number of nodes N (t)

CMU, Feb 2014 (c) 2014, C. Faloutsos 50
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MORE Graph Patterns

- Unweighted Weighted

LO1. Power-law degree distribution [Faloutsoset al. ‘99, L10. Snapshot Power Law
Kleinberg et al. "99, Chakrabarti et al. ‘04, Newman '04] (SPL) [McGlohon et al.
LO2. Triangle Power Law (TPL) [Tsourakakis "08] "08]

L0O3. Eigenvalue Power Law (EPL) [Siganos et al. "03]

LO4. Community structure [Flake et al. "02, Girvan and

Newman '02]

L05. Densification Power Law (DPL) [Leskovecet al. '05]  L11, Weight Power Law
L06. Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
99, Leskovecet al. "05] "08]

LO7. Constant size 2" and 3" connected components

[McGlohon et al. "08]

LO8. Principal Eigenvalue Power Law (A,PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. 98, Crovella and

RTG: A Recursive Realistic Graph Generator using Random

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.
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MORE Graph Patterns

- Unweighted Weighted

1. Power-law degree distribution [Faloutsos et al. '99, L10. Snapshot Power Law
Kleinberg et al. *99, Chakrabarti et al. ‘04, Newman '04] (SPL) [McGlohon et al.

. Triangle Power Law (TPL) [Tsourakakis "08] "08]

. Eigenvalue Power Law (EPL) [Siganos et al. "03]

04. Community structure [Flake et al. '02, Girvan and

Newman '02]

%Densification Power Law (DPL) [Leskovecet al. ‘'05] L11. Weight Power Law
g Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
9, Leskovec et al. "05] "08]

LO7. Constant size 2" and 3" connected components

[McGlohon et al. "08]

LO8. Principal Eigenvalue Power Law (A,PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. 98, Crovella and

RTG: A Recursive Realistic Graph Generator using Random

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.



MORE Graph Patterns

L01. Power-law degree distribution [Faloutsoset al. 99,  L10. Snapshot Power Law
Kleinberg et al. "99, Chakrabarti et al. ‘04, Newman '04]  (SPL) [McGlohon et al.
L02. Triangle Power Law (TPL) [Tsourakakis "08] *08]

A L03. Eigenvalue Power Law (EPL) [Siganos et al. "03]

L04. Community structure [Flake et al. “02, Girvan and

Newman "02]

LO5. Densification Power Law (DPL) [Leskovecet al. "05]  L11. Weight Power Law
L06. Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
"99, Leskovec et al. ‘05] '08]

L07. Constant size 2" and 3" connected components

[McGlohonet al. "08]

LO8. Principal Eigenvalue Power Law (A;PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. *98, Crovella and

Bestavros 99, McGlohon et al. "08]

Jl

== 1

JIWEBUAQ

* Mary McGlohon, Leman Akoglu, Christos
Faloutsos. Statistical Properties of Social
Networks. in "Social Network Data Analytics” (Ed.:
Charu Aggarwal)

M
Graph Mining
‘,Jul -l'."l."k-l s

nd Care S

* Deepayan Chakrabarti and Christos Faloutsos,
Graph Mining: Laws, Tools, and Case Studies Oct.
2012, Morgan Claypool.

Decpuym Clakrabeen
Chetanos Fadounsas

CMU, Feb 2014 (c) 2014, C. Faloutsos 53
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* A case for cross-disciplinarity |

e Introduction — Motivation

» Part#l: Patterns in graphs

m) — Why so many power-laws?
» Part#2: Cascade analysis

e Conclusions

CMU, Feb 2014 (c) 2014, C. Faloutsos 54
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CMU, Feb 2014

Why so many P.L.?

(c) 2014, C. Faloutsos

* Possible answer: self-similarity / fractals

55
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S —

——

2099

intro to fractals

 Remove the middle triangle; repeat

 -> Sierpinski triangle

* (Bonus question - dimensionality?
— >1 (inf. perimeter — (4/3)*)
— <2 (zero area — (3/4)*)

A\
VN

CMU, Feb 2014

(c) 2014, C. Faloutsos




20°° In

09 |
08 |
07|
06 |
05 |
04 |
03 |
02}
01 [ gt

» 0@ YTy X B 2 i A
0 02 04 06 08 1 12 14 16 18 2

CMU, Feb 2014

tro to fractals

Self-similarity -> no char. scale

-> power laws, eqg:

2x the radius,

3x the #neighbors nn(r)
nn(r) =Cr log3/log2

(c) 2014, C. Faloutsos
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:
2x the radius,
3x the #neighbors nn(r)
nn(r) =Cr log3/log2

o "‘sierpiﬁski.oﬂt" .
09

08 r
0.7
06
05
04
03 F
02 Fiar
01 | " B

§ oty R | % e ]
» 0 S N ,: LA W L R N S

0 02 04 06 . Y 12 14 16 . 2
CMU, Feb 2014 (c) 2014, C. Faloutsos 58
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:

2X the radius, Reminder:
3x the #neighbors Densification P.L.
nn = C r log3/log2 (2x nodes, ~3x edges)
o |
§10' 1.66
» o AALL K Numbel‘ffnodes N(t) w

CMU, Feb 2014 (c) 2014, C. Faloutsos 59
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0 02 0.4 06 08 1 12 14 16 18 2

CMU, Feb 2014

20’ intro to fractals

Self-similarity -> no char. scale

-> power laws, eqg:

2x the radius,

3x the #neighbors
nhn=Cr log3/log2

(c) 2014, C. Faloutsos

2x the radius,
4x neighbors
nn = C r log4/log2 = C r 2

60
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»

20”° In

tro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:
2x the radius,

3x the #neighbors

nn=C r1-58

* "‘sierpiﬁski.oﬂt" !
09 r 5

08 r
0.7
0.6
0.5
04 r
03 r
0.2

0 02 04 06 08 1 12 14 16 18 2

CMU, Feb 2014

Fractal dim.

(c) 2014, C. Faloutsos

2x the radius,
4x neighbors
nn = C r log4/log2 = C
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20’ intro to fractals
Self-similarity
-> power laws

CMU, Feb 2014 (c) 2014, C. Faloutsos
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How does self-similarity help 1
sraphs?

* A: RMAT/Kronecker generators

— With self-similarity, we get all power-laws,
automatically,

— And small/shrinking diameter

— And 'no good cuts’
R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation
and Evolution, Using Kronecker Multiplication,

by J. Leskovec, D. Chakrabarti, J. Kleinberg,

and C. Faloutsos, in PKDD 2005, Porto, Portugal
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Graph gen.: Problem din

e Given a growing graph with count of nodes N,
N,, ...

* Generate a realistic sequence of graphs that will
obey all the patterns

— Static Patterns
S1 Power Law Degree Distribution

S2 Power Law eigenvalue and eigenvector distribution *
Small Diameter

— Dynamic Patterns
T2 Growth Power Law (2x nodes; 3x edges)
T1 Shrinking/Stabilizing Diameters

CMU, Feb 2014 (c) 2014, C. Faloutsos 64




Kronecker Graphs

G

Adjacency matrix




Kronecker Graphs

G

Adjacency matrix
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Kronecker Graphs
QXI
Qi
X3
11110 G, |G, |0
1 1 G,| G,| G,
| 0 |G, |G,
G Go = G1 ® G

Adjacency matrix
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Kronecker Graphs

* Continuing multiplying with G, we obtain G,and
soon ...

G, adjacency matrix
CMU, Feb 2014 (c) 2014, C. Faloutsos 68
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CMU, Feb 2014

Kronecker Graphs

t‘t o
2 Sk

"'t i‘t

G, adjacency matrix
(c) 2014, C. Faloutsos

* Continuing multiplying with G, we obtain G,and
soon ...

69
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SO Oon ...

CMU, Feb 2014

Kronecker Graphs

G, adjacency matrix
(c) 2014, C. Faloutsos

* Continuing multiplying with G, we obtain G,and

70
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SO Oon ...

Holes within holes;
Communities
within communities

CMU, Feb 2014

Kronecker Graphs

G, adjacency matrix
(c) 2014, C. Faloutsos

* Continuing multiplying with G, we obtain G,and

0.3 »
0.2
¢ é
s "}\ ‘R é‘ & %eig f’"
0 2

71




Carnegie Mellon Self-similarity -> power laws m

Properties:

e We can PROVE that

— Degree distribution 1s multinomial ~ power law
new — Diameter: constant
— Eigenvalue distribution: multinomial

— First eigenvector: multinomial

CMU, Feb 2014 (c) 2014, C. Faloutsos 72
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Problem Definition

* (Given a growing graph with nodes N, N,, ...

Generate a realistic sequence of graphs that will obey all
the patterns

— Static Patterns
v’ Power Law Degree Distribution

v’ Power Law eigenvalue and eigenvector distribution
v Small Diameter

— Dynamic Patterns

v Growth Power Law
v Shrinking/Stabilizing Diameters

First generator for which we can prove all these
properties

CMU, Feb 2014 (c) 2014, C. Faloutsos 73
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Impact: Graph300

* Based on RMAT (= 2x2 Kronecker)
» Standard for graph benchmarks
 http://www.graph500.org/

« Competitions 2x year, with all major
entities: LLNL, Argonne, ITC-U. Tokyo,
Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA




Summary of Part#1

* *many™* patterns in real graphs
— Small & shrinking diameters
— Power-laws everywhere

— Gaussian trap

 Self-similarity (RMAT/Kronecker): good
model

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Roadmap

* A case for cross-disciplinarity =

* Introduction — Motivation
» Part#l: Patterns in graphs
m) * Part#2: Cascade analysis

e Conclusions

CMU, Feb 2014 (c) 2014, C. Faloutsos 76




Carnegie Mellon

Comic relief:

 What would a barefooted man get 1f he
steps on an electric wire?

http://energyquest.ca.gov/games/jokes/george.html

CMU, Feb 2014 (c) 2014, C. Faloutsos 77
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Comic relief:

 What would a barefooted man get 1f he
steps on an electric wire?
(Answer) A pair of shocks

http://energyquest.ca.gov/games/jokes/george.html

CMU, Feb 2014 (c) 2014, C. Faloutsos 78




Part 2:

Cascades &
lmmunization
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Why do we care?

Information Diffusion
Viral Marketing
Epidemiology and Public Health

Cyber Security

Human mobility
Games and Virtual Worlds

Ecology

CMU, Feb 2014

(c) 2014, C. Faloutsos

EWitteq

amazon

’ Ssymantec.

Sprint

EEEEE
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=)

Roadmap

A case for cross-disciplinarity ~

Introduction — Motivation
Part#1: Patterns in graphs
Part#2: Cascade analysis

— (Fractional) Immunization

— Epidemic thresholds
Conclusions

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Fractional Immunization of Networks
B. Aditya Prakash, Lada Adamic, Theodore

Iwashyna (M.D.), Hanghang Tong,
" Christos Faloutsos

SDM 2013, Austin, TX

CMU, Feb 2014 (c) 2014, C. Faloutsos 82




Whom to immunize?

* Dynamical Processes over networks

* Each circle is a hospital

* ~3,000 hospitals

* More than 30,000 patients
transferred

[US-MEDICARE Problem: Given k units of
NETWORK 2005 - . .
| disinfectant, whom to immunize?

CMU, Feb 2014 (c) 2014, C. Faloutsos 83
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Whom to immunize?

[US-MEDICARE
NETWORK 2005]

CURRENT PRACTICE OUR METHOD

Hospital-acquired inf. : 99K+ lives, $5B+ per year
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Fractional Asymmetric Immunization

Drug-resistant Bacteria

(like XDR-TB)

2 ® ) = ® i
Hospital Another
Hospital

CMU, Feb 2014 (c) 2014, C. Faloutsos 85
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Fractional Asymmetric Immunization

H-@ i +® i i
Hospital Another
Hospital

CMU, Feb 2014 (c) 2014, C. Faloutsos R6
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Fractional Asymmetric Immunization

I «:

=
g

Another
Hospital

CMU, Feb 2014 (c) 2014, C. Faloutsos R7

Hospital
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Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant,
distribute them

to maximize hospitals saved

WD a0
S G
/S 3
i | L &
ORI NRES IS
! 'é

L]

Another
Hospital

CMU, Feb 2014 (c) 2014, C. Faloutsos 88
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Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant,
distribute them

to maximize hospitals saved @ 365 days

‘w he JERER
O G
[/ .; Ty )
I A =
O (RS S8 I~
[ ’é

H @ o A @ U ¢
Hospital Another
Hospital

CMU, Feb 2014 (c) 2014, C. Faloutsos 89
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Straighttforward solution:

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

4. Tweak, and repeat step 1

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Straighttforward solution:

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

4. Tweak, and repeat step 1

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Straighttforward solution:

Simulation:
1. Distribute resources }
2. ‘infect’ a few nodes

3. Simulate evolution of spreading B
— (10x, take avg) j‘:zé:;,;,.-'
4. Tweak, and repeat step 1

CMU, Feb 2014 (c) 2014, C. Faloutsos 09?2
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Straighttforward solution:

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

® 4. Tweak, and repeat step 1

CMU, Feb 2014 (c) 2014, C. Faloutsos
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Wall-Clock
Time

Running Time
<— > 1 week

> 30,000x
speed-up!

‘l' better

14 secs

Simulations SMART-ALLOC

CMU, Feb 2014 (c) 2014, C. Faloutsos 04
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Experiments
m
# infected
'6 100 200 300
Time ticks (days)
K =120 # epochs
CMU, Feb 2014 (c) 2014, C. Faloutsos

400

\1, better

SMART-ALLOC

95




What is the ‘silver bullet’?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?
— Avg degree? Max degree?
— Std degree / avg degree ?
— Diameter?
— Modularity?

— ‘Conductance’ (~min cut size)?

— Some combination of above?
CMU, Feb 2014 (c) 2014, C. Faloutsos 06




What is the ‘silver bullet’?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

A: first eigenvalue of adjacency matrix avgdegree

Max degree
Diameter

Ql : Why?:? Modularity

‘Conductance’

(Q2: din & intuition of eigenvalue ? )

CMU, Feb 2014 (c) 2014, C. Faloutsos 97
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Why eigenvalue?
Al: ‘G2’ theorem and ‘eigen-drop’:

* For (almost) any type of virus
* For any network

e ->no epidemic, if small-enough first
eigenvalue (A, ) of adjacency matrix

Threshold Conditions for Arbitrary Cascade Models on
Arbitrary Networks, B. Aditya Prakash, Deepayan

Chakrabarti, Michalis Faloutsos, Nicholas Valler,
Christos Faloutsos, ICDM 2011, Vancouver, Canada
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Why eigenvalue?
Al: ‘G2’ theorem and ‘eigen-drop’:

e For (almost) any type of virus
* For any network

e ->no epidemic, if small-enough first
eigenvalue (A, ) of adjacency matrix

* Heuristic: for immunization, try to min A,

» The smaller A,, the closer to extinction.

CMU, Feb 2014 (c) 2014, C. Faloutsos 09




Carnegie Mellon

G2 theorem

Threshold Conditions for Arbitrary Cascade
Models on Arbitrary Networks

B. Aditya Prakash, Deepayan Chakrabarti,
Michalis Faloutsos, Nicholas Valler,

Christos Faloutsos
IEEE ICDM 2011, Vancouver

extended version, 1n arxiv
http://arxiv.org/abs/1004.0060

~10 pages proof
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Our thresholds for some models

* § = effective strength
o s <1:below threshold

Models Effective Strength  Threshold (tipping
(s) point)
SIS, SIR, SIRS, -
SEIR >
by g = 1
SIV, SEIV S 5(+6)
p\v, + b€
sLLv,Y, L) [N
(H.I.V)




Our thresholds for some models

* § = effective strength

e s <1 :below threshold

No
Immunity

e Strength  Threshold (tipping
point)

SIS, SIR, SIRS, —

SFAN |0
SEIR "

incubation Py s =1
SIV, SEIV sT+AJlo(+0)
SITVV (/3)1"2"'/328)
I S Va (‘9 +V1)

(H.1.V.)
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e Conclusions

CMU, Feb 2014

Roadmap

* Introduction — Motivation
* Part#1: Patterns in graphs
» Part#2: Cascade analysis

— (Fractional) Immunization
m)  — intuition behind A,

(c) 2014, C. Faloutsos

103




Carnegie Mellon

Intuition for A

“Official” definitions:1 “Un-official” Intuition

» Let A be the adjacency
matrix. Then A is the root
with the largest magnitude of
the characteristic polynomial

of A [det(A— Al)].

. Also:
)

&

* For ‘homogeneous’
graphs, A == degree

)Y Y
N N

e L~ avg degree

— done right, for skewed
degree distributions

Neither gives much intuition!

CMU, Feb 2014 (c) 2014, C. Faloutsos 104
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Largest Eigenvalue (1)

better connectivity—> higher A

CMU, Feb 2014

N = 1000 nodes

(c) 2014, C. Faloutsos
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Largest Eigenvalue (1)

better connectivity—> higher A

CMU, Feb 2014

N = 1000 nodes

(c) 2014, C. Faloutsos

soooor 3

A=2 A=JN A=N-1
(a)Chain (b)Star (c)Clique
A=2 A=31.67 A=999
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Examples: Simulations — SIR (mumps)
. SIR Infected (log-log) . SIR Threshold
%10 ,_,f"“;m‘s\ ~under1 15% 10 ‘
= ~ ™\ —under2
@102 Ny -overt
& 10 x\:‘~.--gv2r2 E 10-
= . . =
G 10 czzzo=” \\\\ =
= 1y S 5 Our Threshold
S10° w1
v{; 5 3
<
""'10.8 : 0 = 0 X 2
= "10° 10" 10 10 10 10 10 10
Time ticks Effective Strength
(a) Infection profile (b) “"Take-off"” plot
PORTLAND graph: synthetic population,
31 million links, 6 million nodes
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Examples: Simulations — SIRS
(pertusis)
. SIRS Infected (log-log) . SIRS Threshold
=10 P ~undert 6* 10
o AN nrann
= ~—under2
810{ -~ overt -
o --over2 I
E . =)
10 ==
S =
510'6- £2~ Our Threshold
£
g -8 . G ‘ L ! ;
=10 0o 10" 10° 10 10" 10° 10’ 10
Time ticks Effective Strength
(a) Infection profile (b) "Take-off” plot
PORTLAND graph: synthetic population,
31 million links, 6 million nodes
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Immunization - conclusion

In (almost any) immunization setting,
* Allocate resources, such that to
* Minimize 4,

* (regardless of virus specifics)

* Conversely, 1n a market penetration setting
— Allocate resources to

— Maximize 4,

CMU, Feb 2014 (c) 2014, C. Faloutsos 109
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CMU, Feb 2014

Roadmap

* Introduction — Motivation
* Part#1: Patterns in graphs
» Part#2: Cascade analysis

— (Fractional) Immunization

— Epidemic thresholds
m ° Acks & Conclusions

(c) 2014, C. Faloutsos
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Thanks

Microsoft

S

Sprint

Disclaimer: All opinions are mine; not necessatrily reflecting
the opinions of the funding agencies

Thanks to: NSF IIS-0705359, 11S-0534205,
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT,
Google, INTEL, HP, iLab




Project info: PEGASUS

WWW.CS.Ccmu.edu/~pegasus

Results on large graphs: with Pegasus +
hadoop + M45

Apache license

Code, papers, manual, video

ok o
Prof. U Kang Prof. Polo Chau

CMU, Feb 2014 (c) 2014, C. Faloutsos 112
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Akoglu, Beutel, Chau,
Leman Alex Polo

McGlohon, Prakash,  Papalexakis, Tong,
Mary Aditya Vagelis Hanghang

CMU, Feb 2014 (c) 2014, C. Faloutsos 113
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CMU, Feb 2014

CONCLUSION#1 — Big data

« Large datasets reveal patterns/outliers that
are invisible otherwise

8
10 e T Y W~
(w Charit?-I@H" @K :
%107 Ad Tlt Water Barack
c u Obama
e 10 ' Advertiser G,')‘ ]
u'g John
@ 10° +Sarah McCain
9o [
= Pall)lj
Z10* | a@&» _
< Hillary | Twitter + |
103 Clinton L[ _‘'witter + |
10* 10° 10° 107
Degree

(c) 2014, C. Faloutsos
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CONCLUSION#2 — self-similarity

» powertul tool / viewpoint

— Power laws; shrinking diameters
— Gaussian trap (eg., F.O.F.)
— RMAT - 8raph500 generator

CMU, Feb 2014 (c) 2014, C. Faloutsos 115




CONCLUSION#3 — eigen-drop

e Cascades & immunization: G2 theorem &

eigenvalue
[US-MEDICARE
. NETWORK 2005]
x ';;;,“ ‘ \/
. A
CURRENT PRACTICE OUR METHOD

14

CMU, Feb 2014 (c) 2014, C. Faloutsos 116
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Already started paying off
for power grids

« Same accuracy, 100x — 100K x faster

_2 Kd-tree © . SVD %
1 000 x N u.‘l"mi.“\ 0 fdl IMH.‘ AT KNG TR ARIIEY) 7 L

i NW'\[!M WL

[1] Yang Weng, Christos Faloutsos, Marija D. lli'c, and Rohit
Negi, Speed up of Data-Driven State Estimation Using Low-

Complexity Indexing Method, IEEE PES-General Meeting,
(accepted), 2014
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THANK YOU!

« Same accuracy, 100x — 100K x faster

_2 Kd-tree @ . SVD Jﬁ
1000 Xx UL Sl B L l——»

Sk

[1] Yang Weng, Christos Faloutsos, Marija D. lli'c, and Rohit
Negi, Speed up of Data-Driven State Estimation Using Low-

Complexity Indexing Method, IEEE PES-General Meeting,
(accepted), 2014




