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Graphs - why should we care?
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¥
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Mostly Phytoplankton 2nd Trophic Level

Many Zooplankton

Food Web

>$10B revenue

>(0.5B users

Internet Map
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Graphs - why should we care?

* web-log (‘blog’) news propagation
» computer network security: email/IP traffic and
anomaly detection

* Recommendation systems

* Many-to-many db relationship -> graph
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Part 1:

Patterns & Laws




Carnegie Mellon

Laws and patterns

* QI: Are real graphs random?

CMU-Q tutorial (c) 2015, C. Faloutsos 7
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Laws and patterns

* QI: Are real graphs random?
« Al: NO!!

— Diameter

— 1n- and out- degree distributions
— other (surprising) patterns

* Q2: why ‘no good cuts’?
o A2: <self-similarity — stay tuned>

e So, let’s look at the data

CMU-Q tutorial (c) 2015, C. Faloutsos 8
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Solution# S.1

* Power law 1n the degree distribution [Faloutsos x 3
SIGCOMM99; + Siganos]

internet domains
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Carnegie Mellon

Solution# S.1

* Power law 1n the degree distribution [Faloutsos x 3
SIGCOMM99; + Siganos]
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Solution# S.1

* (: So what?

internet domains

. att.com
log(degree)-meTimagsnoneneeo persioudegees s
ibm.com
. - - log(rank)
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Solution# S.1

ds FOF)
* Q:Sowhat?_ .o ds of sriends {

* Al: # of two-step-away pairs:
internet domains

~ att.com
1000 . . .
log(de gree) " {TEST 041 U-lNTEEIFI;?SSE‘;‘BOS%T?:?E.?u_hgfaa%rgﬁg; -
160 L
ibm.com
10 frm — — — —
1L
o 1 1‘0 160 1oloo 1000010g(rank)
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Solution# S.1

. £O.F)
Q: So what? _ tiends of friends (

o Al: # of two-step- away pairs: 10072 * N= 10 Trillion

internet domains

~ att.com

1000
log(degree)- msTmugosoncres memicuegeesss —
ibm.com
N log(rank)

1 10 100 1000 10000
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Solution# S.1

* (: So what? frie
o Al:#of twofstep-away pairs: 100
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Gaussian trap

Solution# S.1

o Al: # of two-step-away pairs: O(d max "2) ~ [0M"2

internet domains @

~ att.com ~0.8PB ->

0410-INTER'S80410.Internet outdegrees.z" ——

exp(B.65085) * x **{ -0.626118) —— | a data Ce nte r( !)
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Gaussian trap

Solution# S.1

* (Q: So what?
e Al: # of two-step-av~

inte-

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 16
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/ Observation — big-data: \

« O(N?) algorithms are ~intractable - N=1B

e N’ seconds = 31B years (>2x age of
universe) 1B '

A
v

A

1B

o

MLDAS, Doha 2015 (c) 2015, C. Faloutsos




Solution# S.2: Eigen Exponent E

Eigenvalue
100

' 'P3.0regon’  +
exp(4.3031) *x*(-0.47734) ——

Exponent = slope

E=-0.48

10

May 2001

1 10 100

_ Rank of decreasing eigenvalue
5

Q

« A2:power law in the eigenvalues of the adjacency

matrix
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Roadmap

e Introduction — Motivation

» Problem#1: Patterns in graphs § 4
— Static graphs

» degree, diameter, eigen,

# e Triangles
— Time evolving graphs

e Problem#2: Tools

CMU-Q tutorial (c) 2015, C. Faloutsos 19



Solution# S.3: Triangle ‘Laws’

<

» Real social networks have a lot of triangles

CMU-Q tutorial (c) 2015, C. Faloutsos 20



Solution# S.3: Triangle ‘Laws’

<}

» Real social networks have a lot of triangles

— Friends of friends are friends

e Any patterns?
— 2x the friends, 2x the triangles ?

CMU-Q tutorial (c) 2015, C. Faloutsos 21
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Triangle Law: #S.3
[Tsourakakis ICDM 2008]

P DTPL o DTPL
) (0 JEN R ——— T T 1 ! T
slope 1.68
—c'o
Reuters : SN
i Io slope -1.68;|
g
S o s
10
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Degree Degre
P DTPL
O [Fessssssssassasss] T T
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& X-axis: degree
EI)IIllOIlSTt I slope -1.59 . .

E ) | Y-axis: mean # triangles
| e n friends -> ~n!-¢ triangles

CMU-Q tutorial
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) — O(d,,, %)

Q: Can we do that quickly?

A

CMU-Q tutorial (c) 2015, C. Faloutsos 23



Carnegie Mellon W

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) — O(d_ .. .?)

max

Q: Can we do that quickly?
A: Yes! m
Y

#triangles = 1/6 Sum (A ) 5
(and, because of skewness (S2) ,
we only need the top few eigenvalues! - O(E)

CMU-Q tutorial (c) 2015, C. Faloutsos 24
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Triangle counting for large graphs?
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Triangle counting for large graphs?
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Triangle counting for large graphs?
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Roadmap

e Introduction — Motivation

 Part#1: Patterns in graphs
— Static graphs

* Power law degrees; eigenvalues; triangles
#  Anti-pattern: NO good cuts!

— Time-evolving graphs

e Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 29



Background: Graph cut problem

* (Given a graph, and £
* Break 1t into & (disjoint) communities

CMU-Q tutorial (c) 2015, C. Faloutsos
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Graph cut problem

* (Given a graph, and £
* Break 1t into & (disjoint) communities

* (assume: block diagonal = ‘cavemen’ graph)

j 8 k=2

CMU-Q tutorial

(c) 2015, C. Faloutsos 31




Many algo’s for graph partitioning

« METIS [Karypis, Kumar +] N

o 2nd eigenvector of Laplacian

* Modularity-based [Girwan+Newman]
 Max flow [Flake+!

CMU-Q tutorial (c) 2015, C. Faloutsos 32
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Strange behavior of min cuts

* Subtle details: next
— Preliminaries: min-cut plots of “usual’ graphs

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.

WWW 2008.




“Min-cut” plot

* Do min-cuts recursively.

log (mincut-size / #edges)

A

Mincut size
= sqrt(N)

¢

»
>

log (# edges)

N nodes
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“Min-cut” plot

* Do min-cuts recursively.

In-cut
log (mincut-size / #edges)

pree TTTET

_________________ ‘

BONeS ’
: log (# edges)

N nodes

CMU-Q tutorial (c) 2015, C. Faloutsos 35
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“Min-cut” plot

* Do min-cuts recursively.

New min-cut

N nodes

CMU-Q tutorial

log (mincut-size / #edges)

1 o

o Slope =-0.5
Better

cut "
log (# edges)
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“Min-cut” plot

log (mincut-size / #edges)

T,
Slope = -1/d
&

»
»

log (# edges)

For a d-dimensional
grid, the slope is -1/d

CMU-Q tutorial

log (mincut-size / #edges)

A

O
e

[
»

log (# edges)
For a random graph

(and clique),

the slope is O
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Experiments

e Datasets:

— Google Web Graph: 916,428 nodes and
5,105,039 edges

— Lucent Router Graph: Undirected graph of

network routers from
www.1s1.edu/scan/mercator/maps.html; 112,969

nodes and 181,639 edges

— User =» Website Clickstream Graph: 222,704
nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,

Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy




“Min-cut” plot
« What does 1t look like for a real-world

graph?

log (mincut-size / #edges)

N — ?

log (# edges)

CMU-Q tutorial (c) 2015, C. Faloutsos
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log (mincut-size / #edges)

A
N
Experiments :
* Used the METIS algorithm [Karypis, Kumar,
—1995] | -
S Slope~-04 -
L "T’" 1+ Google Web graph
N3 Y » Values along the y-
= T Teewe” 77 gxis are averaged
E log (# edges) « “lip” for large # edges
=  Slope of -0.4,

corresponds to a 2.5-
dimensional grid!

CMU-Q tutorial (c) 2015, C. Faloutsos 40



o log (mincut-size / #edges)
Carnegie Mellon A

N
Experiments :

* Used the METIS algorithm [Karypis, Kumar,

ol ce0 ] I

- Slope~-04 -

oy et 1« Google Web graph

N ", +Values along the y-

= Teseseen” 7T 7 gxis are averaged
Betterg log (# edges) » “lip” for large # edges

cut 2
-  Slope of -0.4,

corresponds to a 2.5-
dimensional grid!
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Experiments

» Same results for other graphs too...

’UT ° luceni-averaged -~ ° clickstream-averaged
o - — == O TINC — — — — ,
8= Slope~ -0.57 = Slope~ -0.45 |
HF - D s ]
- = 2 ]
R T O ool LN /
(T) log(edges) ~ % |og(edg€s)\
§ log (# edges) 3 log (# edges)
— C
S £
g 2

Lucent Router graph Clickstream graph

CMU-Q tutorial (c) 2015, C. Faloutsos
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Why no good cuts?

* Answer: self-similarity (few foils later)

CMU-Q tutorial (c) 2015, C. Faloutsos
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Roadmap

e Introduction — Motivation

* Part#1: Patterns in graphs
— Static graphs
m) — Time-evolving graphs
— Why so many power-laws?

» Part#2: Cascade analysis

e Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 44



Carnegie Mellon

Problem: Time evolution

e with Jure Leskovec (CMU ->
Stanford)

* and Jon Kleinberg (Cornell —
sabb. (@ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs

over Time: Densification Laws, Shrinking Diameters and Possible
Explanations, KDD 2005
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— [diameter ~ O( N1/3)]

e PO
— diameter ~ O(log N) Q
IR

— diameter ~ O(log log N)
* What 1s happening in real data?

L

NN

AC)
VO

diameter

CMU-Q tutorial (c) 2015, C. Faloutsos 46



T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

9l o

— [diameter ~

— diameter ~

— diameter ~ O og N) —>

D —

* What 1s happening in real data?

 Diameter shrinks over time

CMU-Q tutorial (c) 2015, C. Faloutsos
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T.1 Diameter — “Patents”

e Patent citation
network

e 25 years of data

. @1999
— 2.9 M nodes
— 16.5 M edges

CMU-Q tutorial

35; dlameter
—a—Full graph
-e-Post '85 subgraph
30 =-Post '85 subgraph, no past
S o5)
@
=
Ru
©
o 201
2
3
o 151
10F
1%75 1980 1985 1990 1995

time [years]

(c) 2015, C. Faloutsos
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T.2 Temporal Evolution of the
Graphs

* N(t) ... nodes at time t
* E(t) ... edges at time t

* Suppose that
N(t+1) =2 * N(t) Say, k friends on average

* : what 1s your guess for
E(t+1) =2 2 * E(t) Tj\_\

K

S
L

CMU-Q tutorial (c) 2015, C. Faloutsos 49



T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t Gaussian trap
* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t) Say, k friends o

* : what 1s your guess for
E(t+1) G E(o) U\\

 A:over-doubled! ~ 3x

— But obeying the ~ Densification Power Law’™
CMU-Q tutorial (c) 2015, C. Faloutsos 50
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T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t Gaussian trap
* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t) Say, k friends o

° Q what 1s your gucss for lin
E(t+1) ® E(t) T T\\

* A: over-doubled! ~ 3x X"

— But obeying the '~ Densification Power Law
CMU-Q tutorial (c) 2015, C. Faloutsos 51
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T.2 Densification — Patent
Citations

 Citations among
patents granted

. @1999
— 2.9 M nodes
— 16.5 M edges

 Each yearisa
datapoint

CMU-Q tutorial

10°%¢

E(t)

—
o
-l
T

Number of edges

N
o

1975 *

199

1.66

+ Edges

—=0.0002 x5 R2=0.99

10°

10°

(c) 2015, C. Faloutsos
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Number of nodes N (t)
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MORE Graph Patterns

- Unweighted Weighted

LO1. Power-law degree distribution [Faloutsoset al. ‘99, L10. Snapshot Power Law
Kleinberg et al. "99, Chakrabarti et al. ‘04, Newman '04] (SPL) [McGlohon et al.
LO2. Triangle Power Law (TPL) [Tsourakakis "08] "08]

L0O3. Eigenvalue Power Law (EPL) [Siganos et al. "03]

LO4. Community structure [Flake et al. "02, Girvan and

Newman '02]

L05. Densification Power Law (DPL) [Leskovecet al. '05]  L11, Weight Power Law
LO6. Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
99, Leskovecet al. "05] "08]

LO7. Constant size 2" and 3" connected components

[McGlohon et al. "08]

LO8. Principal Eigenvalue Power Law (A,PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. 98, Crovella and

RTG: A Recursive Realistic Graph Generator using Random

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.
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MORE Graph Patterns

Unweighted Weighted

1. Power-law degree distribution [Faloutsos et al. '99, L10. Snapshot Power Law
Kleinberg et al. "99, Chakrabarti et al. ‘04, Newman '04]  (SPL) [McGlohon et al.
. Triangle Power Law (TPL) [Tsourakakis "08] "08]
. Eigenvalue Power Law (EPL) [Siganos et al. "03]
04. Community structure [Flake et al. '02, Girvan and
Newman '02]

%Densification Power Law (DPL) [Leskovecet al. ‘'05] L11. Weight Power Law
«- Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
9, Leskovec et al. "05] "08]

LO7. Constant size 2" and 3" connected components

[McGlohon et al. "08]

LO8. Principal Eigenvalue Power Law (A,PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. 98, Crovella and

RTG: A Recursive Realistic Graph Generator using Random

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.



MORE Graph Patterns

L01. Power-law degree distribution [Faloutsoset al. 99,  L10. Snapshot Power Law
Kleinberg et al. "99, Chakrabarti et al. ‘04, Newman '04]  (SPL) [McGlohon et al.
L02. Triangle Power Law (TPL) [Tsourakakis "08] *08]

A L03. Eigenvalue Power Law (EPL) [Siganos et al. "03]

L04. Community structure [Flake et al. “02, Girvan and

Newman "02]

LO5. Densification Power Law (DPL) [Leskovecet al. "05]  L11. Weight Power Law
L06. Small and shrinking diameter [Albert and Barabasi  (WPL) [McGlohon et al.
"99, Leskovec et al. ‘05] '08]

L07. Constant size 2" and 3" connected components

[McGlohonet al. "08]

LO8. Principal Eigenvalue Power Law (A;PL) [Akoglu et al.

"08]

L09. Bursty/self-similar edge/weight additions [Gomez

and Santonja "98, Gribble et al. *98, Crovella and

Bestavros 99, McGlohon et al. "08]

Jl

== 1

JIWEBUAQ

* Mary McGlohon, Leman Akoglu, Christos
Faloutsos. Statistical Properties of Social
Networks. in "Social Network Data Analytics” (Ed.:
Charu Aggarwal)

M
Graph Mining
Lo, Toaldl, e

nd Care S

* Deepayan Chakrabarti and Christos Faloutsos,
Graph Mining: Laws, Tools, and Case Studies Oct.
2012, Morgan Claypool.

Decpuym Clakrabeen
Chetanos Fadounsas
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Roadmap

e Introduction — Motivation

* Part#1: Patterns in graphs

m) - Why so many power-laws?
— Why no ‘good cuts’?
» Part#2: Cascade analysis

e Conclusions
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2 Questions, one answer

* QI: why so many power laws
* Q2: why no ‘good cuts’?

CMU-Q tutorial (c) 2015, C. Faloutsos
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2 Questions, one answer

* QI: why so many power laws

* Q2: why no ‘good cuts’?

* A: Self-similarity = fractals = ‘RMAT’
‘Kronecker graphs’

CMU-Q tutorial (c) 2015, C. Faloutsos
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e 20’ intro to fractals

 Remove the middle triangle; repeat
* -> Sierpinski triangle
* (Bonus question - dimensionality?
— >1 (inf. perimeter — (4/3)*)
— <2 (zero area — (3/4)>)

A
@ v

CMU-Q tutorial (c) 2015, C. Faloutsos 59
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:
2x the radius,
3x the #neighbors nn(r)
nn(r) =Cr log3/log2

09 r
08 r
0.7
0.6
0.5
04 r
03 r
0.2
0.1

» ; YL Ty ¥ B 2 i A
0 02 04 06 08 1 12 14 16 18 2

CMU-Q tutorial (c) 2015, C. Faloutsos
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:
2x the radius,
3x the #neighbors nn(r)
nn(r) =Cr log3/log2

A "‘sierpirlmski.oﬂt" .
09

0.8
0.7 |
0.6 |-
0.5 |
04 |
03 k
21 e
01| B°CR

0 02 04 06 08 12 14 16 18 2
CMU-Q tutorial (c) 2015, C. Faloutsos
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:

2X the radius, Reminder:
3x the #neighbors Densification P.L.
nn = C r log3/log2 (2x nodes, ~3x edges)
o |
§10' 1.66
» o AALL K Numbel‘ffnodes N(t) w

CMU-Q tutorial (c) 2015, C. Faloutsos 62
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20’ intro to fractals

Self-similarity -> no char. scale
-> power laws, eqg:
2X the radius, 2x the radius,

3x the #neighbors 4x neighbors
nn = C r log3/log2 nn = C rlog4/log2 = C r 2

0 02 0.4 06 08 1 12 14 16 18 2

CMU-Q tutorial (c) 2015, C. Faloutsos 63




Carnegie Mellon

20’ intro to fractals

Self-similarity -> no char. scale

-> power laws, eqg:

2X the radius, 2x the radius,
3x the #neighbors 4x neighbors

nn=C r1.58 nn = C r log4/log2 = C@

Fractal dim.

* "‘sierpirlmski.oﬂt" .
09 r HA

08 |
07|
06 |
05 |
04 |
03 |
02}
01 gt

02 04 06 08 12 14 16 18 2
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20’ intro to fractals
Self-similarity
-> power laws

CMU-Q tutorial (c) 2015, C. Faloutsos
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How does self-similarity help in

osraphs?
* A: RMAT/Kronecker generators

— With self-similarity, we get all power-laws,
automatically,

— And small/shrinking diameter

— And 'no good cuts’
R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation
and Evolution, Using Kronecker Multiplication,

by J. Leskovec, D. Chakrabarti, J. Kleinberg,

and C. Faloutsos, in PKDD 2005, Porto, Portugal
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Graph gen.: Problem din

e Given a growing graph with count of nodes N,
N,, ...

* Generate a realistic sequence of graphs that will
obey all the patterns

— Static Patterns
S1 Power Law Degree Distribution

S2 Power Law eigenvalue and eigenvector distribution *
Small Diameter

— Dynamic Patterns
T2 Growth Power Law (2x nodes; 3x edges)
T1 Shrinking/Stabilizing Diameters

CMU-Q tutorial (c) 2015, C. Faloutsos 67
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Kronecker Graphs
QXI
Qi
X3
11110 G, |G, |0
1 1 G,| G,| G,
| 0 |G, |G,
G Go = G1 ® G

Adjacency matrix



Kronecker Graphs

* Continuing multiplying with G, we obtain G,and
soon ...

G, adjacency matrix
CMU-Q tutorial (c) 2015, C. Faloutsos 71
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CMU-Q tutorial (c) 2015, C. Faloutsos 72



Kronecker Graphs

* Continuing multiplying with G, we obtain G,and
soon ...

G, adjacency matrix
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Kronecker Graphs
* Continuing multiplying with G, we obtain G,and
soon ... .

&? &:erpiﬁski‘o ﬁﬁﬁﬁﬁ

faﬁm‘f’&%

Holes within holes; &
iti %%’aé“&ﬁ fﬁ
Communities 1

within communities

G, adjacency matrix
CMU-Q tutorial (c) 2015, C. Faloutsos 74




Self-similarity -> power laws

Properties:

e We can PROVE that

— Degree distribution 1s multinomial ~ power law
new — Diameter: constant
— Eigenvalue distribution: multinomial

— First eigenvector: multinomial
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Problem Definition

* (Given a growing graph with nodes N, N,, ...

* Generate a realistic sequence of graphs that will obey all
the patterns
— Static Patterns
v’ Power Law Degree Distribution

v Power Law eigenvalue and eigenvector distribution
v Small Diameter

— Dynamic Patterns

v/ Growth Power Law
v Shrinking/Stabilizing Diameters

* First generator for which we can prove all these
properties

CMU-Q tutorial (c) 2015, C. Faloutsos
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Impact: Graph300

* Based on RMAT (= 2x2 Kronecker)
» Standard for graph benchmarks
 http://www.graph500.org/

« Competitions 2x year, with all major
entities: LLNL, Argonne, ITC-U. Tokyo,
Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is divine

R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA




Roadmap

e Introduction — Motivation

* Part#1: Patterns in graphs

— Q1: Why so many power-laws? A: real graphs ->

m) - Q2: Why no ‘good cuts’? self sirrllilar -
, power laws
» Part#2: Cascade analysis

e Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 78
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Q2: Why ‘no good cuts’?

* A: self-similarity
— Communities within communities within
communities ...

CMU-Q tutorial (c) 2015, C. Faloutsos
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Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and
soon ...

G, adjacency matrix
CMU-Q tutorial (c) 2015, C. Faloutsos 80



Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and

SO On ... f .
_ ‘Linux users’
Communities within -
communities within ‘ ,
. - ‘Mac users
communities ...
= - ‘win users’

G, adjacency matrix
CMU-Q tutorial (c) 2015, C. Faloutsos 81



Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and
soon ...

How many

. o Communities?
Communities within 39
communities within

communities ...

G, adjacency matrix
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Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and

soon...
How many
.. . Communities?
Communities within et 39
communities within s ss . 02
communities ... Bt 570
g adles adad e | A ONE — but
“adats g nNot a typical,
8 block-like

G, adjacency matrix ~ community...
CMU-Q tutorial (c) 2015, C. Faloutsos 83
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Communities?

CMU-Q tutorial

(Gaussian) Piece-wise
Clusters? flat parts?

A%, "sierpinski.out" N

‘ age

(c) 2015, C. Faloutsos R4
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CMU-Q tutorial

Wrong questions to ask!

(c) 2015, C. Faloutsos

age
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Summary of Part#1

* *many™* patterns in real graphs
— Small & shrinking diameters
— Power-laws everywhere
— Gaussian trap
— ‘no good cuts’

» Self-similarity (RMAT/Kronecker): good
model

CMU-Q tutorial (c) 2015, C. Faloutsos
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Summary of Part#1

* *many™* patterns in real graphs
— Small & shrinking diameters 90% Trust Intuition
— Power-laws everywhere Take logarithms!

— Gaussian trap Mode << Avg << Max
— ‘no good cuts’

» Self-similarity (RMAT/Kronecker): good
model

CMU-Q tutorial (c) 2015, C. Faloutsos R7
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Why do we care?
* Information Diffusion T —
* Viral Marketing amazon

* Epidemiology and Public Health

* Cyber Security ) qymantec.
* Human mobility Sprint
» Games and Virtual Worlds W LiFE
* Ecology AR

CMU-Q tutorial (c) 2015, C. Faloutsos R0



Roadmap

* Introduction — Motivation
* Part#1: Patterns in graphs

» Part#2: Cascade analysis

m)  — (Fractional) Immunization
— Epidemic thresholds

e Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 90
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Fractional Immunization of Networks
B. Aditya Prakash, Lada Adamic, Theodore

Iwashyna (M.D.), Hanghang Tong,
" Christos Faloutsos

SDM 2013, Austin, TX

CMU-Q tutorial (c) 2015, C. Faloutsos 01
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Whom to immunize?

* Dynamical Processes over networks

* Each circle is a hospital

* ~3,000 hospitals

* More than 30,000 patients
transferred

[US-MEDICARE Problem: Given k units of
NETWORK 2005 - . .
| disinfectant, whom to immunize?

CMU-Q tutorial (c) 2015, C. Faloutsos 02
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Whom to immunize?

[US-MEDICARE
NETWORK 2005]

CURRENT PRACTICE OUR METHOD

Hospital-acquired inf. : 99K+ lives, $5B+ per year
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Fractional Asymmetric Immunization

Drug-resistant Bacteria

(like XDR-TB)

2 ® ) o ® i
Hospital Another
Hospital

CMU-Q tutorial (c) 2015, C. Faloutsos 04
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Fractional Asymmetric Immunization

H-@) i +® i (a
Hospital Another
Hospital
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Carnegie Mellon

Fractional Asymmetric Immunization

I «=

-
=

Another
Hospital

CMU-Q tutorial (c) 2015, C. Faloutsos 06

Hospital




Fractional Asymmetric Immunization

% .t Problem:

. Given k units of disinfectant,
distribute them

to maximize hospitals saved

Nl
Y A0
4 s
y/ g & 3
14 b A
o (frad, S35 5

L]

Another
Hospital

CMU-Q tutorial (c) 2015, C. Faloutsos 07
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Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant,
distribute them

to maximize hospitals saved @ 365 days

a5
> 4
7’
Hospital Another
Hospital

CMU-Q tutorial (c) 2015, C. Faloutsos 08
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Straightforward solution

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

4. Tweak, and repeat step 1

CMU-Q tutorial (c) 2015, C. Faloutsos
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Straighttforward solution:

Simulation:
1. Distribute resources }
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

4. Tweak, and repeat step 1
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Straighttforward solution:

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

4. Tweak, and repeat step 1
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Straighttforward solution:

Simulation:
1. Distribute resources
2. ‘infect’ a few nodes

3. Simulate evolution of spreading
— (10x, take avg)

® 4. Tweak, and repeat step 1

CMU-Q tutorial (c) 2015, C. Faloutsos
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Running Time
<— > 1 week

Wall-Clock
Time

> 30,000x
speed-up!

‘l' better

14 secs

Simulations SMART-ALLOC

CMU-Q tutorial (c) 2015, C. Faloutsos 103
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Experiments

# infected
‘1, better

SMART-ALLOC

0 100 200 300 400
Time ticks (days)

K = 120 # epochs

CMU-Q tutorial (c) 2015, C. Faloutsos 104



What is the ‘silver bullet’?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?
— Avg degree? Max degree?
— Std degree / avg degree ?
— Diameter?
— Modularity?

— ‘Conductance’ (~min cut size)?

— Some combination of above?
CMU-Q tutorial (c) 2015, C. Faloutsos 105



What is the ‘silver bullet’?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

A: first eigenvalue of adjacency matrix avgdegree

Max degree
Diameter

Ql: Why?? Modularity

‘Conductance’

(Q2: din & intuition of eigenvalue ? )

CMU-Q tutorial (c) 2015, C. Faloutsos 106
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Why eigenvalue?
Al: ‘G2’ theorem and ‘eigen-drop’:

* For (almost) any type of virus
* For any network

e ->no epidemic, if small-enough first
eigenvalue (A, ) of adjacency matrix

Threshold Conditions for Arbitrary Cascade Models on
Arbitrary Networks, B. Aditya Prakash, Deepayan

Chakrabarti, Michalis Faloutsos, Nicholas Valler,
Christos Faloutsos, ICDM 2011, Vancouver, Canada
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Why eigenvalue?

Al: ‘G2’ theorem and ‘eigen-drop’:

For (almost) any type of virus
For any network

-> no epidemic, 1f small-enough first
eigenvalue (A, ) of adjacency matrix

Heuristic: for immunization, try to min A,

The smaller A, the closer to extinction.

CMU-Q tutorial (c) 2015, C. Faloutsos 108
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G2 theorem

Threshold Conditions for Arbitrary Cascade
Models on Arbitrary Networks

B. Aditya Prakash, Deepayan Chakrabarti,
Michalis Faloutsos, Nicholas Valler,

Christos Faloutsos
IEEE ICDM 2011, Vancouver

2

extended version, 1n arxiv
http://arxiv.org/abs/1004.0060

~10 pages proof
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Our thresholds for some models

* § = effective strength
o s <1:below threshold

Models Effective Strength  Threshold (tipping
(s) point)
SIS, SIR, SIRS, -
SEIR >
by g = 1
SIV, SEIV S 5(+6)
p\v, + b€
sLLv,Y, L) [N
(H.I.V)




Our thresholds for some models

* § = effective strength
o s <1:below threshold

e Strength  Threshold (tipping
point)

SIS, SIR, SIRS, —

SFAN |0
SEIR "

incubation Py s =1
SIV, SEIV sT+AJlo(+0)
SITVV (/3)1"2"'/328)
I S L\ Y2 (‘9 +V1)

(H.1.V.)




Roadmap

e Introduction — Motivation

* Part#1: Patterns in graphs
» Part#2: Cascade analysis

— (Fractional) Immunization
m)  — intuition behind A,

e Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 112
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Intuition for A

“Official” definitions:1 “Un-official” Intuition

» Let A be the adjacency
matrix. Then A is the root
with the largest magnitude of
the characteristic polynomial

of A [det(A —xI)].
 Also:

* For ‘homogeneous’
graphs, A == degree

)Y Y
N N

* A~avg degree
— done right, for skewed
degree distributions

Neither gives much intuition!

CMU-Q tutorial (c) 2015, C. Faloutsos 113
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Largest Eigenvalue (1)

better connectivity—> higher A

N = 1000 nodes

CMU-Q tutorial (c) 2015, C. Faloutsos 114
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Largest Eigenvalue (1)

better connectivity—> higher A

soooor 3

A=2 A=JN A=N-1
(a)Chain (b)Star (c)Clique
A=2 A=31.67 A=999

N = 1000 nodes

CMU-Q tutorial

(c) 2015, C. Faloutsos
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Examples: Simulations — SIR (mumps)

SIR Infected (log-log)

£ 10° 5X 10° SIR Threshold
= 27T e —under1 ‘
= AN |
o~ SO under2
= b3 \
& 10-2‘ L% --overd
Q ‘.\ “. ~N
i 1 \-—over2 = 10
: A ‘\ hY o
e 4 “\, \ o
oy 10 L.-: Sl i \\ kY ==
(e} T ———— X \\\ g
o 1\ S 5 Our Threshold
210° Wy ] =
P
E -8 G . .
&3 101 00 1(‘)1 102 1 0-2 10" 10° 10" 1 02
Time ticks Effective Strength
(a) Infection profile (b) “"Take-off"” plot

PORTLAND graph: synthetic population,
31 million links, 6 million nodes
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Examples: Simulations — SIRS

[ J
(pertusis)
. SIRS Infected (log-log) 5 SIRS Threshold
= s~ UNDEF T |
= ' ~under2
D PP
010 L “'0V9I’1
& --over2 =N
= =
10, g.
S - =
= S2 Our Threshold
210° =
~
Q
g 8 0
10 ' ; . w0

= 0" 10" 10 10° 10" 10° 10' 10°

-
o

Time ticks

(a) Infection profile

Effective Strength

(b) “Take-off” plot

PORTLAND graph: synthetic population,
31 million links, 6 million nodes
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Immunization - conclusion

In (almost any) immunization setting,
* Allocate resources, such that to
* Minimize 4,

* (regardless of virus specifics)

* Conversely, 1n a market penetration setting
— Allocate resources to

— Maximize 4,

CMU-Q tutorial (c) 2015, C. Faloutsos 118



Roadmap

e Introduction — Motivation

* Part#1: Patterns in graphs
» Part#2: Cascade analysis

— (Fractional) Immunization

— Epidemic thresholds
m ° Acks & Conclusions

CMU-Q tutorial (c) 2015, C. Faloutsos 122



Thanks

Microsoft

c]

Sprint

Disclaimer: All opinions are mine; not necessatrily reflecting
the opinions of the funding agencies

Thanks to: NSF I1S-0705359, 11S-0534205,
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT,
Google, INTEL, HP, iLab



Project info: PEGASUS

WWW.CS.Ccmu.edu/~pegasus

Results on large graphs: with Pegasus +
hadoop + M45

Apache license

Code, papers, manual, video

ok o
Prof. U Kang Prof. Polo Chau
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Akoglu, Beutel, Chau,
Leman Alex Polo

McGlohon, Prakash,  Papalexakis, Tong,
Mary Aditya Vagelis Hanghang
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CONCLUSION#1 — Big data

« Large datasets reveal patterns/outliers that

are 1nvisible otherwise

CMU-Q tutorial

8
10 e T Y W~
(w Charit?-I@H" @K :
%107 Ad Tlt Water Barack
c u Obama
e 10 ' Advertiser G,')‘ ]
u'g John
@ 10° +Sarah McCain
9o [
= Pall)lj
Z10* | a@&» _
< Hillary | Twitter + |
103 Clinton L[ _‘'witter + |
10* 10° 10° 107
Degree
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CONCLUSION#2 — self-similarity

» powertul tool / viewpoint

— Power laws; shrinking diameters

— Gaussian trap (eg., F.O.F.)
— ‘no good cuts’

— RMAT - gPapSO generator

- - a-.?‘.
55 155 W5 b e Vs
S an adad
Sl Wit
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CONCLUSION#3 — eigen-drop

e Cascades & immunization: G2 theorem &

eigenvalue
[US-MEDICARE
. NETWORK 2005]
x ';;;,“ ‘ \/
. A
CURRENT PRACTICE OUR METHOD

14
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References

e D. Chakrabarti, C. Faloutsos: Graph Mining — Laws,
Tools and Case Studies, Morgan Claypool 2012

 http://www.morganclaypool.com/do1/abs/10.2200/
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TAKE HOME MESSAGE:

Cross-disciplinarity

M Charit?—c@rl'— GDK

Water Barack
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| Advertiser ® Obamé

X
John
McCain

Number of Triangle
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QUESTIONS?

Cross-disciplinarity

Barack

' Adult
| Advertiser ©) Obamay

X
John
McCain

Number of Triangle

e [ |
e

107
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