Mining Large Graphs and Time Sequences: Patterns, Anomalies, and Fraud Detection

Christos Faloutsos
CMU

Thank you!

• Alkis Polyzotis

• Denise Olivera

Roadmap

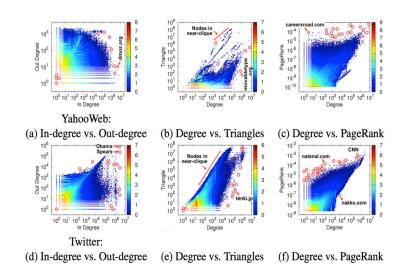
- Introduction Motivation
 - Why study (big) graphs?

- Part#3: time sequences
- Conclusions

Graphs - why should we care?

>\$10B; ~1B users

Graphs - why should we care?



~1B nodes (web sites) ~6B edges (http links) 'YahooWeb graph'

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. *Net-Ray: Visualizing and Mining Billion-Scale Graphs* PAKDD 2014, Tainan, Taiwan.

Graphs - why should we care?

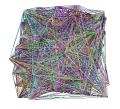
- web-log ('blog') news propagation MAHOO! BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

•

Many-to-many db relationship -> graph

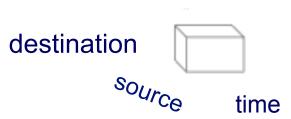
Motivating problems

• P1: patterns? Fraud detection?

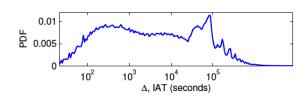


• P2: patterns in time-evolving graphs /

tensors

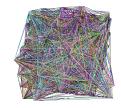


• P3: time sequences



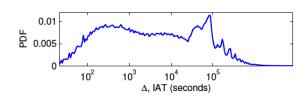
Motivating problems

• P1: patterns? Fraud detection?



• P2: patterns in time-evolving graphs / tensors

• P3: time sequences

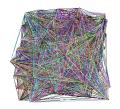


Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Google, Aug '16

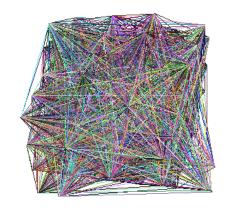


Part 1: Patterns, & fraud detection

Google, Aug '16 (c) 2016, C. Faloutsos 10

Laws and patterns

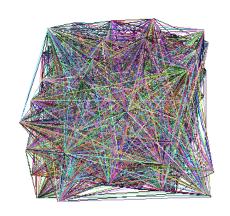
• Q1: Are real graphs random?



Google, Aug '16 (c) 2016, C. Faloutsos 11

Laws and patterns

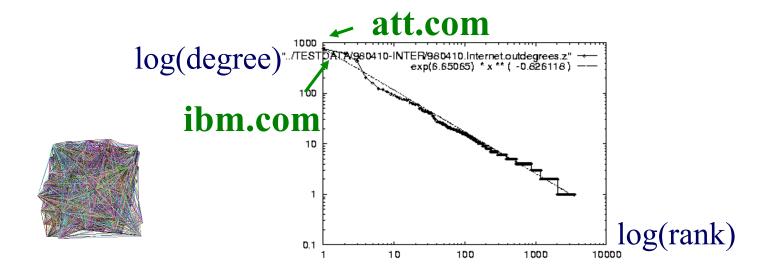
- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data



Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

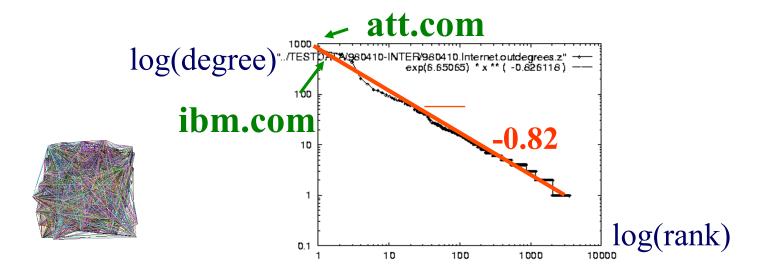


Google, Aug '16 (c) 2016, C. Faloutsos 13

Solution# S.1

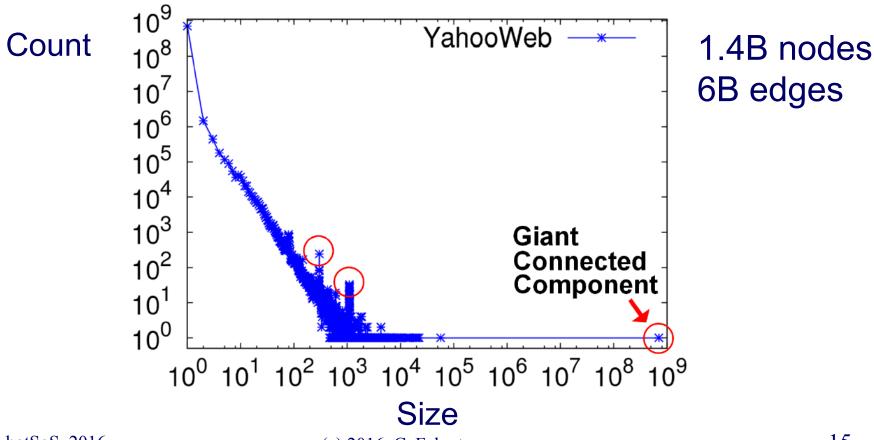
• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains



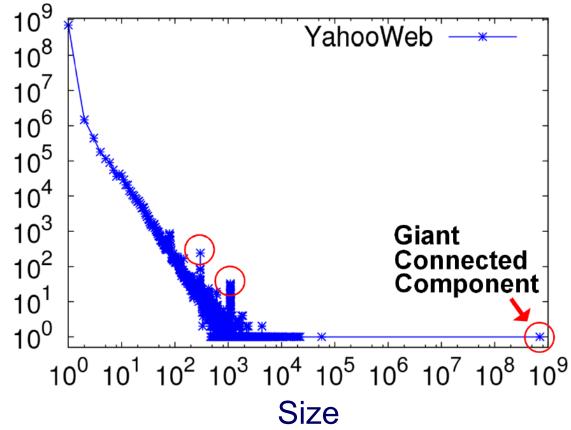
Google, Aug '16 (c) 2016, C. Faloutsos 14

• Connected Components – 4 observations:



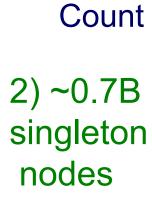
hotSoS, 2016 (c) 2016, C. Faloutsos 15

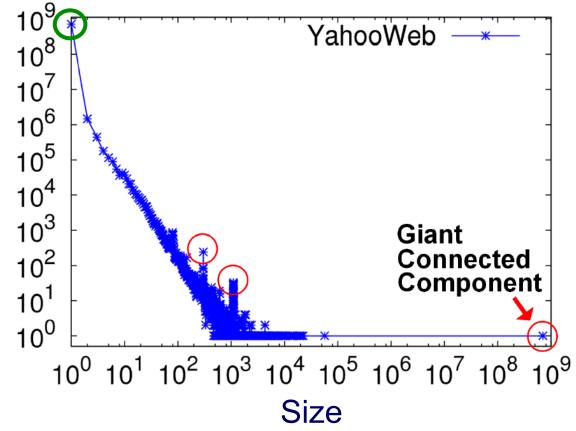
Connected Components



1) 10K x larger than next

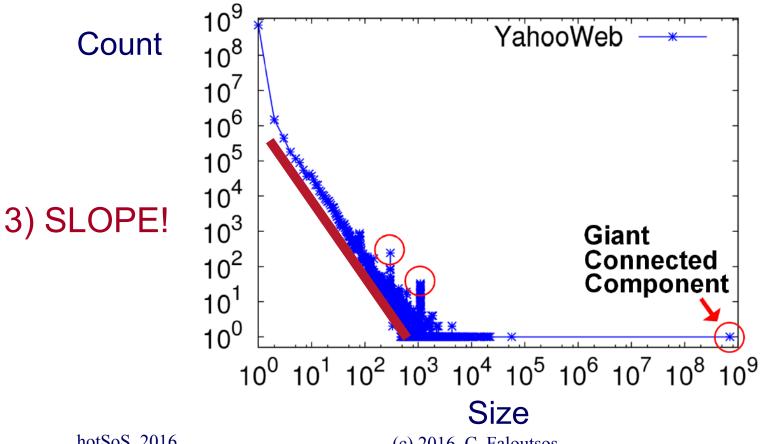
Connected Components





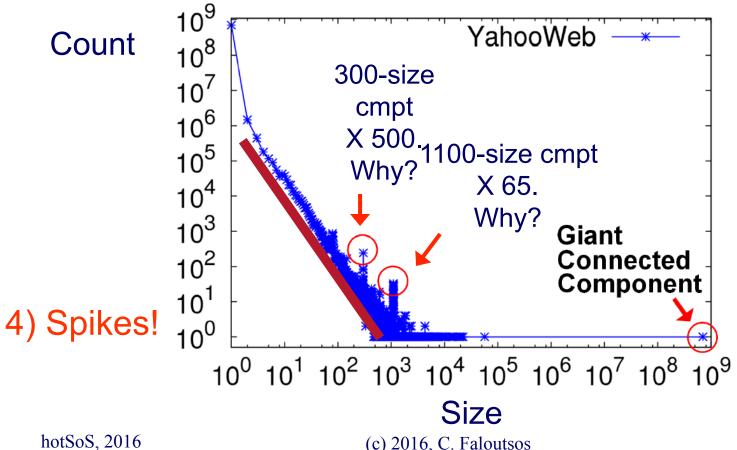
hotSoS, 2016 (c) 2016, C. Faloutsos 17

Connected Components

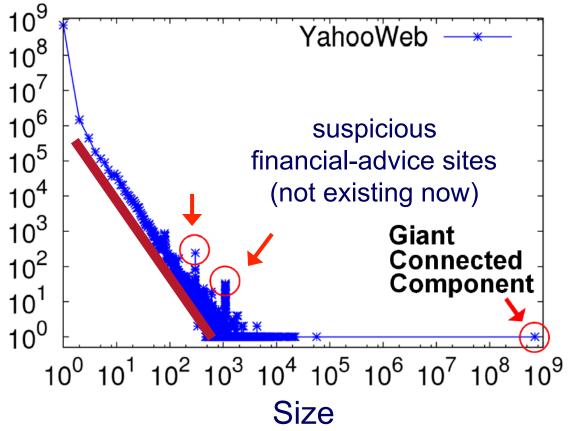


18 hotSoS, 2016 (c) 2016, C. Faloutsos

Connected Components



Connected Components



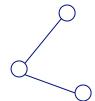
hotSoS, 2016 (c) 2016, C. Faloutsos 20

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Patterns: Degree; Triangles
- Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Conclusions

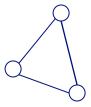
Solution# S.3: Triangle 'Laws'



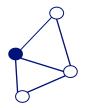
• Real social networks have a lot of triangles

Google, Aug '16 (c) 2016, C. Faloutsos 22

Solution# S.3: Triangle 'Laws'

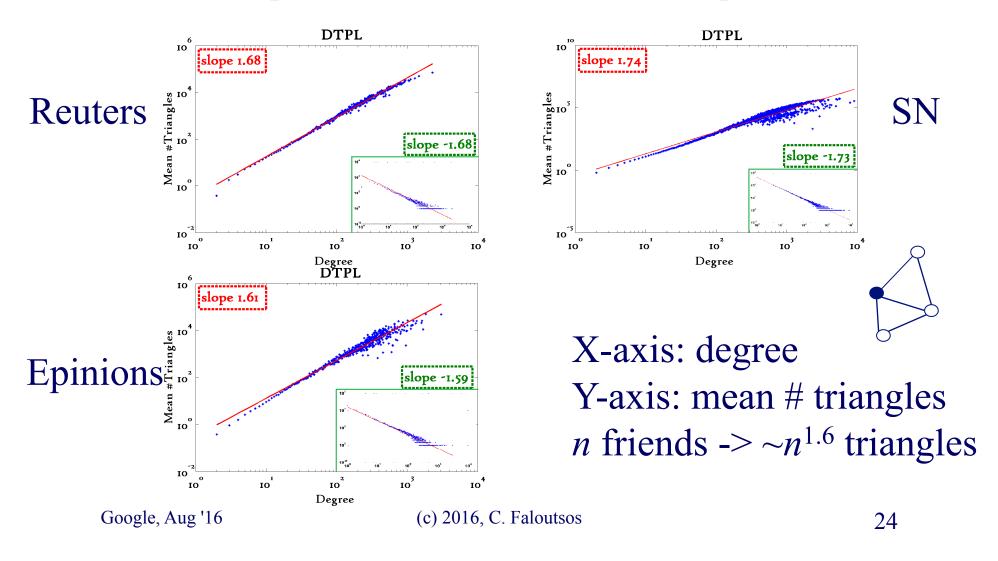


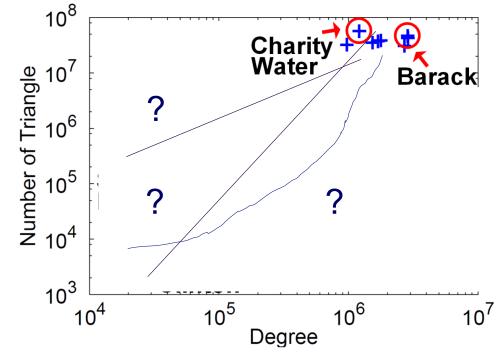
- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?



Google, Aug '16 (c) 2016, C. Faloutsos 23

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

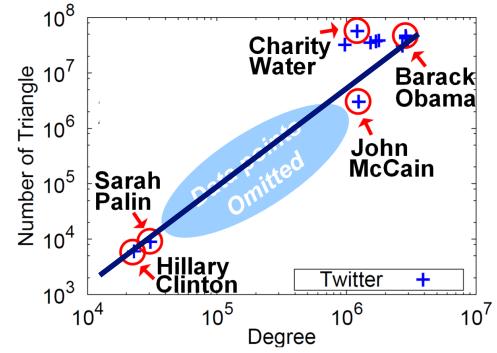




Anomalous nodes in Twitter(~ 3 billion edges)

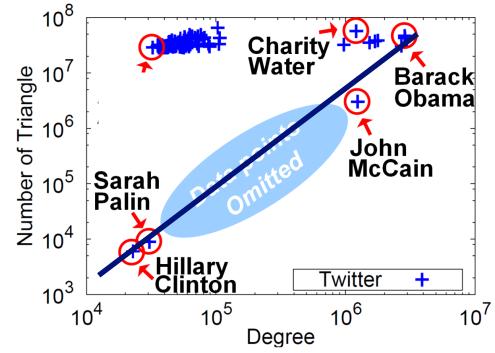
[U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16



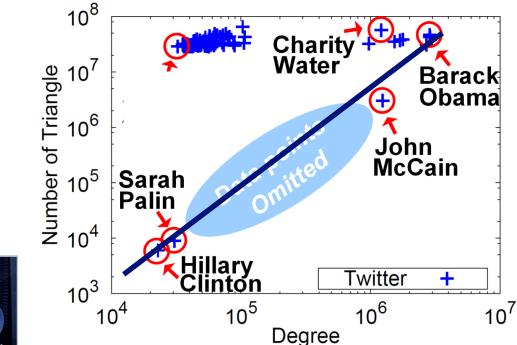
Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16



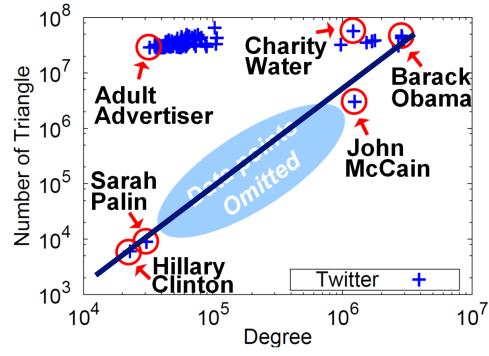
Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16



Yahoo!® Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16

MORE Graph Patterns

	Unweighted	Weighted
Static	1. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] 1. Triangle Power Law (TPL) [Tsourakakis '08] 1. Eigenvalue Power Law (EPL) [Siganos et al. '03] 1. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]

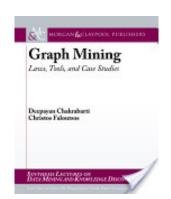
RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis' 08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	105. Densification Power Law (DPL) [Leskovec et al. '05] 106. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] 107. Constant size 2 nd and 3 rd connected components [McGlohon et al. '08] 108. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. '08] 109. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. '08]

Mary McGlohon, Leman Akoglu, Christos
Faloutsos. Statistical Properties of Social
Networks. in "Social Network Data Analytics" (Ed.:
Charu Aggarwal)

Deepayan Chakrabarti and Christos Faloutsos,
 <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.



http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns

- Anomaly / fraud detection
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

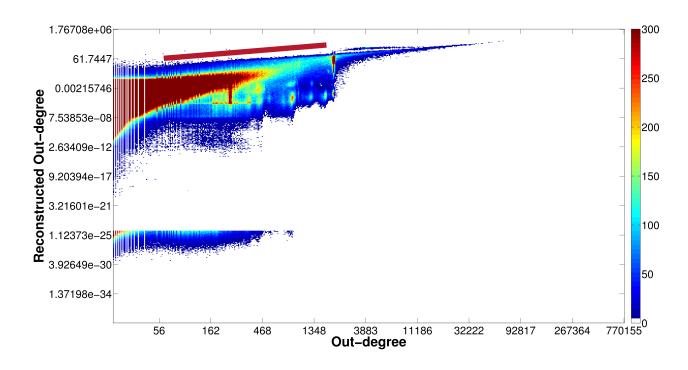
Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Clique

41.7M nodes 1.5B edges

Bipartite core

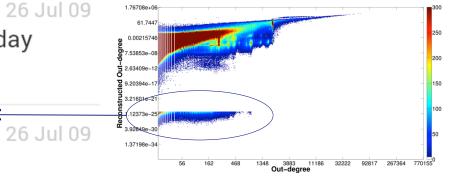


Google, Aug '16

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Lekan Olawole Lowe @loweinc 26
Sign up free and Get 400 followers a day using http://tweeteradder.com



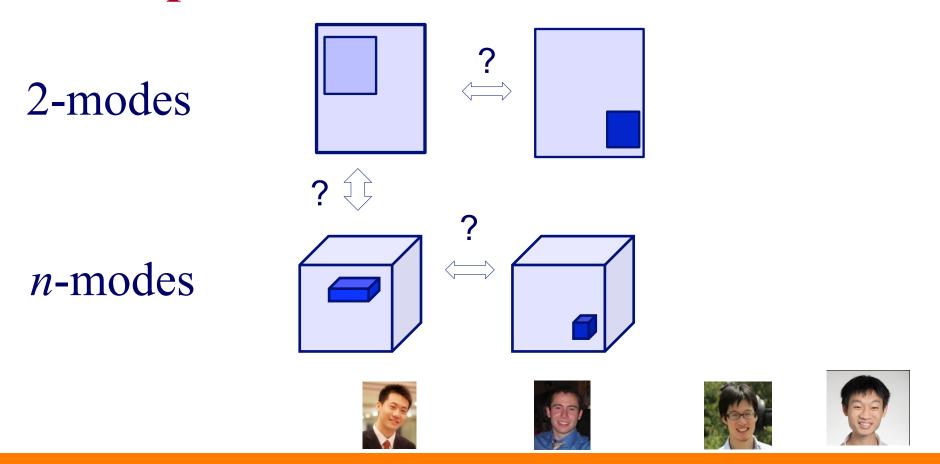
Lekan Olawole Lowe @loweinc Get 400 followers a day using http://www.tweeterfollow.com

Neil Shah, Alex Beutel, Brian Gallagher and Christos Faloutsos. Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective. ICDM 2014, Shenzhen, China.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox', suspiciousness)
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Suspicious Patterns in Event Data

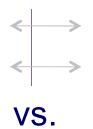


A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.

Suspicious Patterns in Event Data

Which is more suspicious?

20,000 Users
Retweeting same 20 tweets
6 times each
All in 10 hours

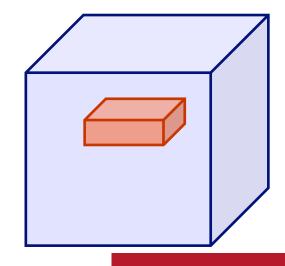


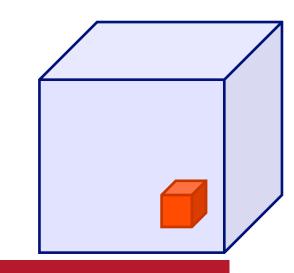
225 Users

Retweeting same 1 tweet 15 times each

All in 3 hours

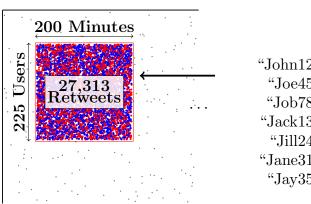
All from 2 IP addresses

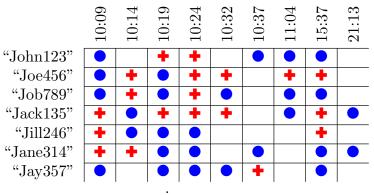




Answer: volume * D_{KL}(p|| p_{background})

Suspicious Patterns in Event Data





Retweeting: "Galaxy Note Dream Project: Happy Happy Life Traveling the World"

	#	User × tweet × IP × minute	Mass c	Suspiciousness
CROSSSPOT	1	$14 \times 1 \times 2 \times 1,114$	41,396	1,239,865
	2	$225\times1\times2\times200$	27,313	777,781
	3	$8\times2\times4\times1,872$	17,701	491,323
HOSVD	1	$24\times6\times11\times439$	3,582	131,113
	2	$18\times4\times5\times223$	1,942	74,087
	3	$14 \times 2 \times 1 \times 265$	9,061	381,211

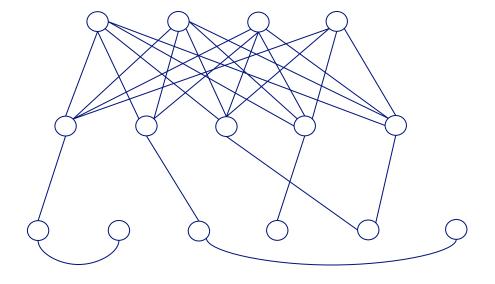
Carnegie Mellon

Roadmap

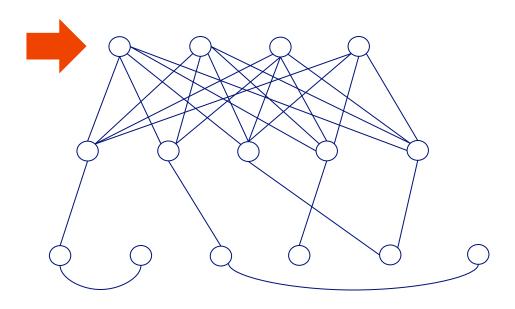
- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - Spectral methods ('fBox')
 - High-density sub-matrices
 - Belief propagation
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Conclusions

E-bay Fraud detection

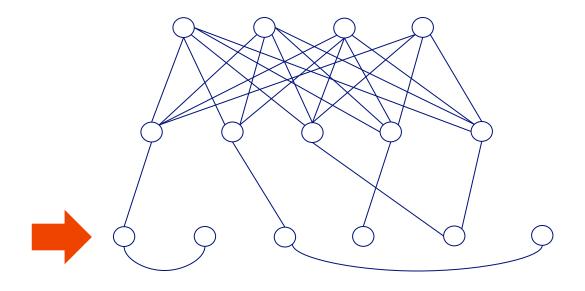
w/ Polo Chau & Shashank Pandit, CMU [www'07]



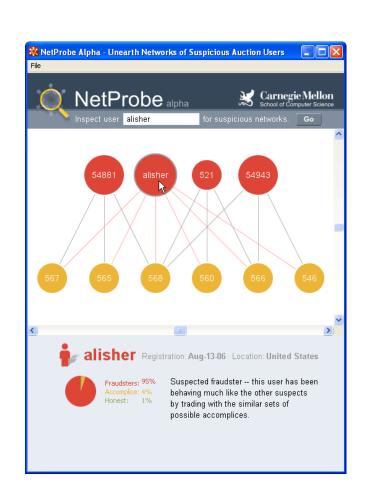
E-bay Fraud detection

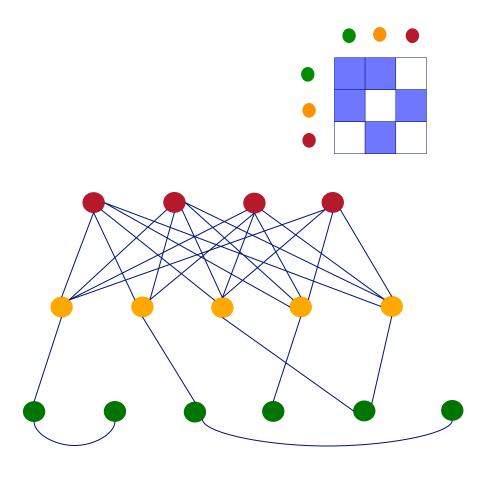


E-bay Fraud detection



E-bay Fraud detection - NetProbe





Popular press

The Washington Post

Ios Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Roadmap

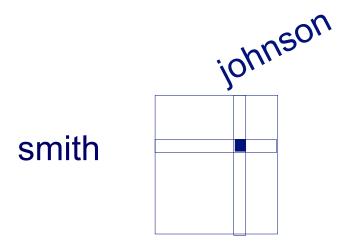
- Introduction Motivation
- Part#1: Patterns in graphs

• Part#2: time-evolving graphs; tensors

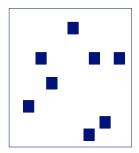
- P2.1: time-evolving graphs
- [P2.2: with side information ('coupled' M.T.F.)
- Speed]
- Part#3: time sequences
- Conclusions

Part 2: Time evolving graphs; tensors

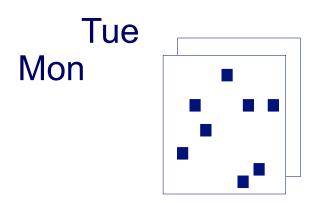
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



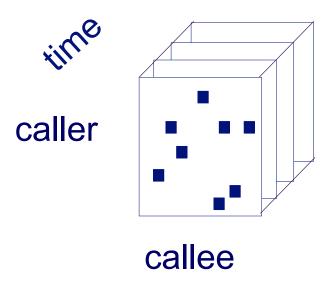
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

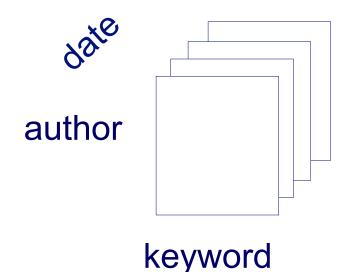


- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



Google, Aug '16

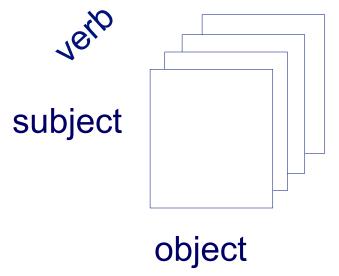
- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies



MANY more settings, with >2 'modes'

Google, Aug '16

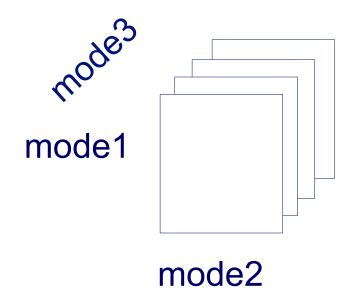
- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies



MANY more settings, with >2 'modes'

Google, Aug '16

- Problem #2.1'':
 - Given <triplets>
 - Find patterns / anomalies



MANY more settings, with >2 'modes' (and 4, 5, etc modes)

Google, Aug '16

Roadmap

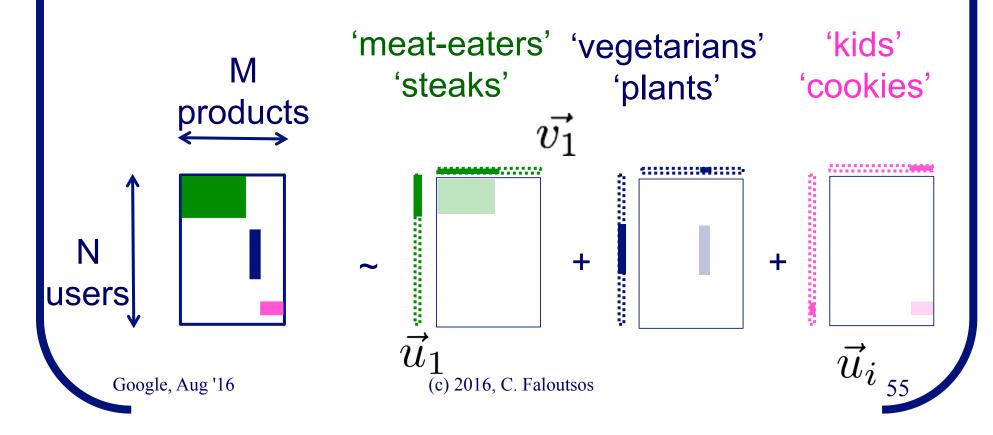
- Introduction Motivation
- Part#1: Patterns in graphs

• Part#2: time-evolving graphs; tensors

- P2.1: time-evolving graphs
- [P2.2: with side information ('coupled' M.T.F.)
- Speed]
- Conclusions

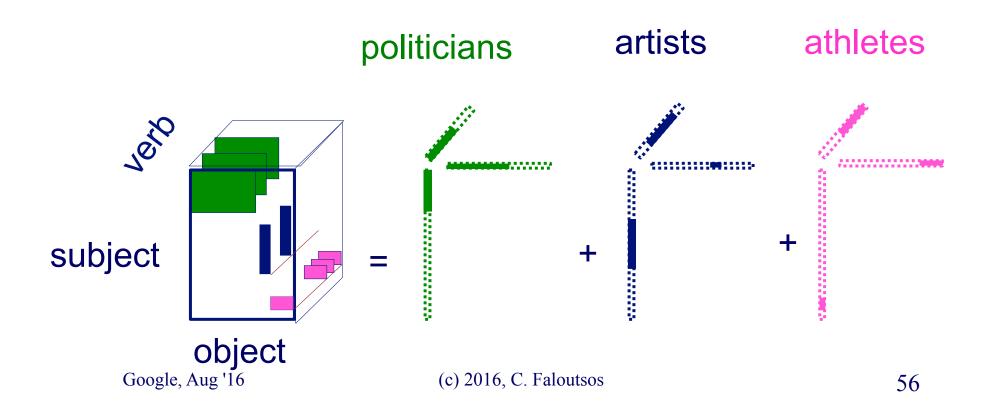
Answer to both: tensor factorization

 Recall: (SVD) matrix factorization: finds blocks



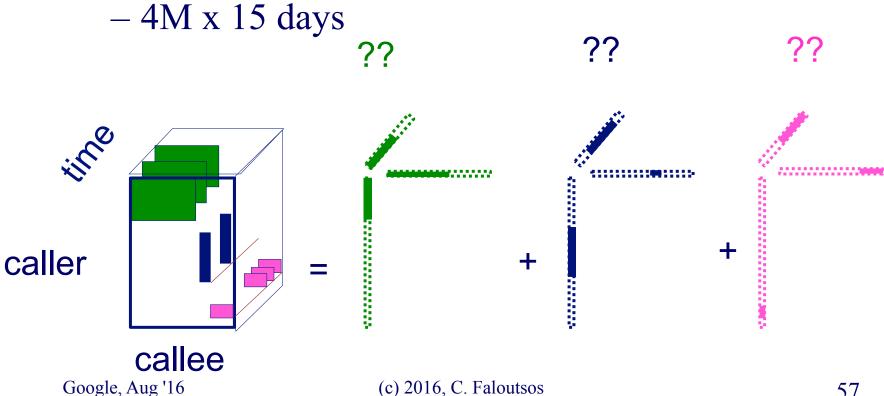
Answer to both: tensor factorization

• PARAFAC decomposition



Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when

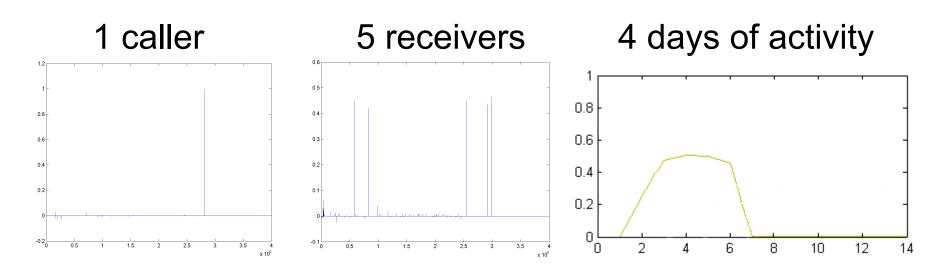


(c) 2016, C. Faloutsos

57

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

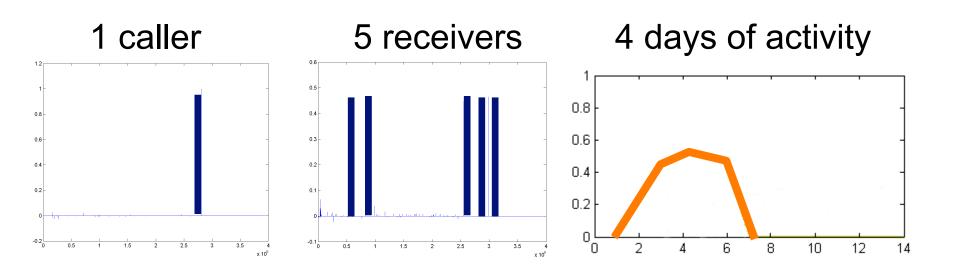


~200 calls to EACH receiver on EACH day!

Google, Aug '16

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

Google, Aug '16

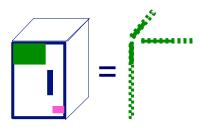
Anomaly detection in timeevolving graphs =

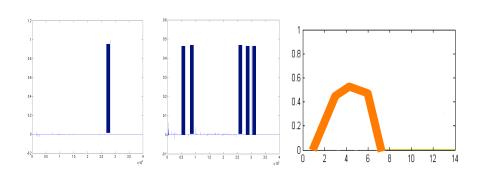
- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- (GigaTensor/HaTen2 -> fast & scalable)





Google, Aug '16

Part 3: Time sequences

Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors

Acknowledgements and Conclusions

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa* Yuto Yamaguchi Agma J. M. Traina
Caetano Traina Jr. Christos Faloutsos

^{*}alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

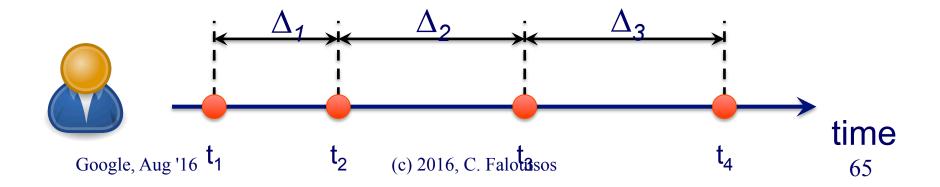
Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

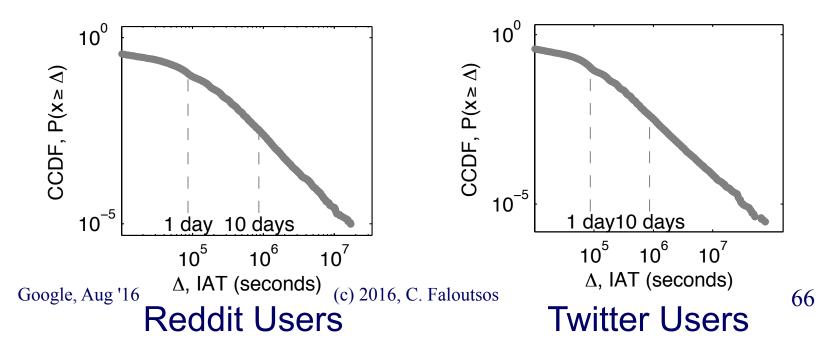


Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)

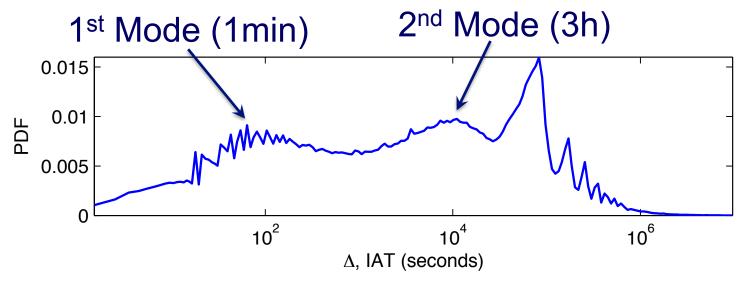


Pattern Mining

Pattern 2: Bimodal IAT distribution

'Active'/ 'resting' periods

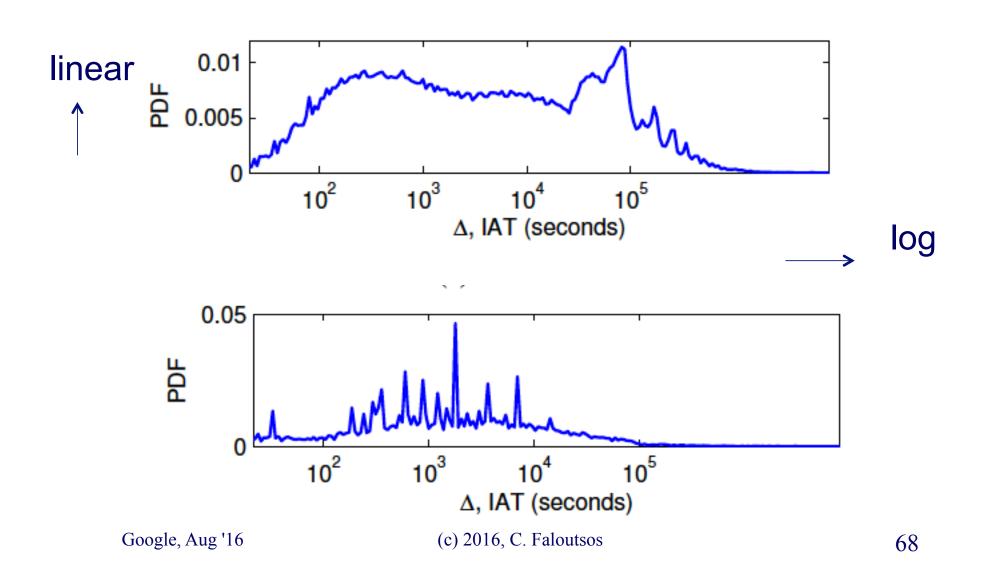
Log-binned histogram of postings IAT

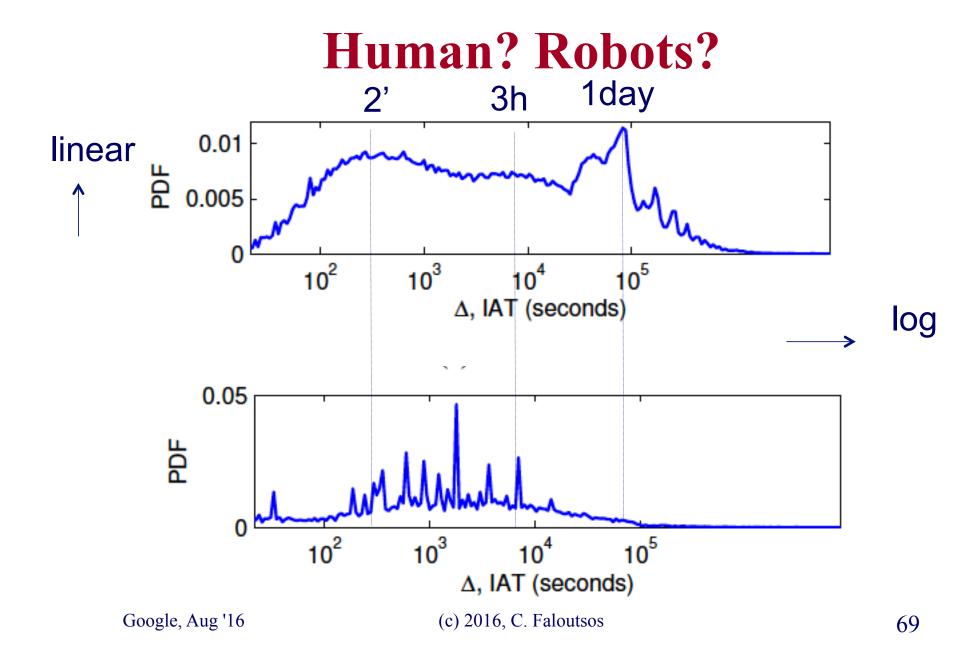


Google, Aug '16

(c) Fwitten wsers

Human? Robots?

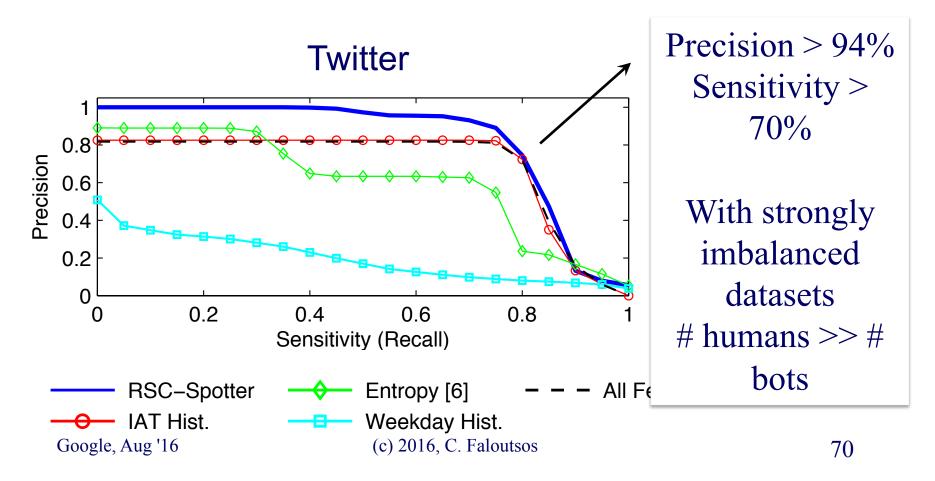




Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

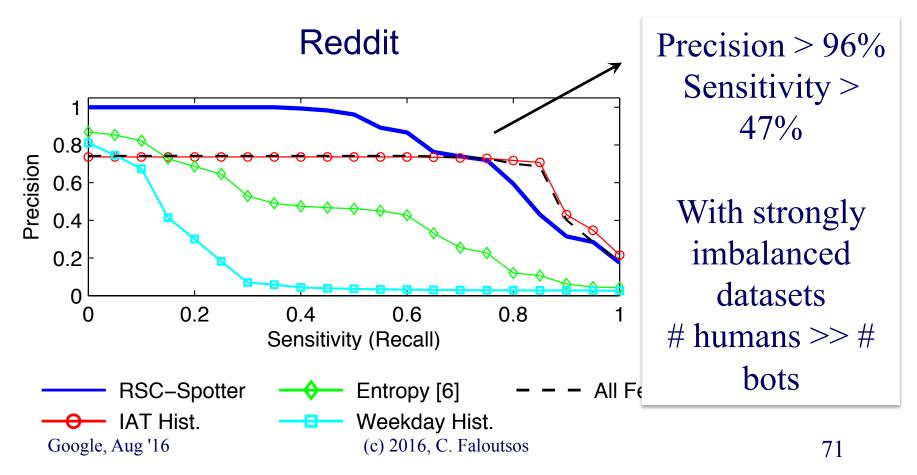
Good performance: curve close to the top



Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

Good performance: curve close to the top



Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Acknowledgements and Conclusions

Google, Aug '16

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

${\bf Carnegie\,Mellon}$

Akoglu, Leman

Kang, U

Araujo, Miguel

Koutra, Danai

Beutel, Alex

Papalexakis, Vagelis

Chau, Polo

Shah, Neil

Hooi, Bryan

Song, Hyun Ah

74

Google, Aug '16

Cast

Akoglu, Leman

Araujo, Miguel

Beutel, Alex

Chau, Polo

Eswaran, Dhivya

Hooi, Bryan

Kang, U

Koutra, Danai

Papalexakis, Vagelis

Shah, Neil

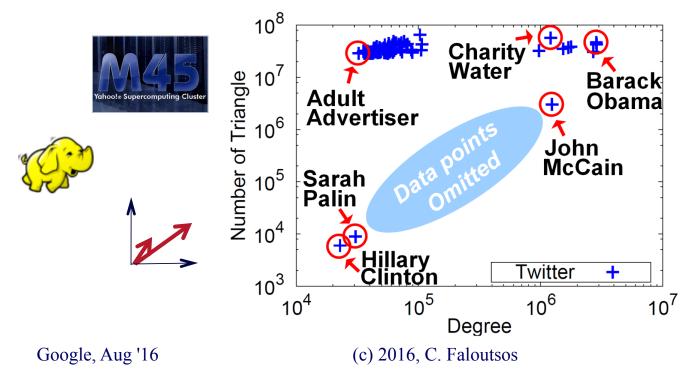
Shin, Kijung

Song, Hyun Ah

CONCLUSION#1 – Big data

Patterns Anomalies

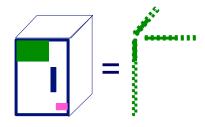
• Large datasets reveal patterns/outliers that are invisible otherwise

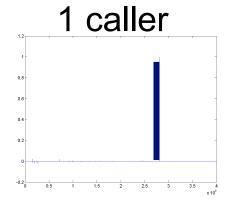


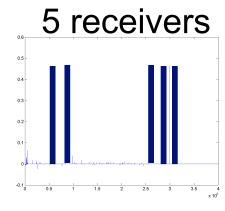
76

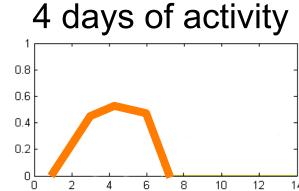
CONCLUSION#2 – tensors

powerful tool







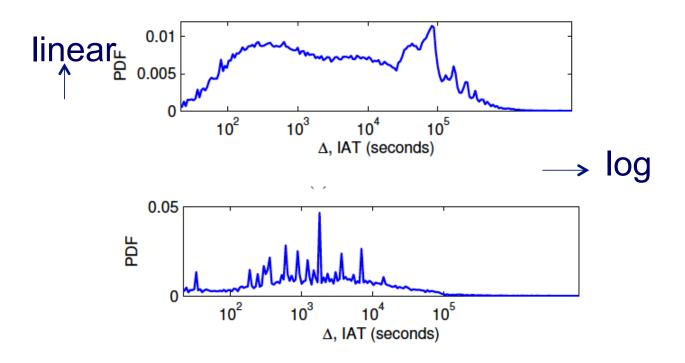


Google, Aug '16

(c) 2016, C. Faloutsos

Conclusion#3

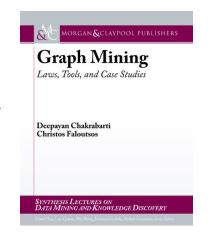
• Different footprints of real vs 'robot' users



Google, Aug '16 (c) 2016, C. Faloutsos 78

References

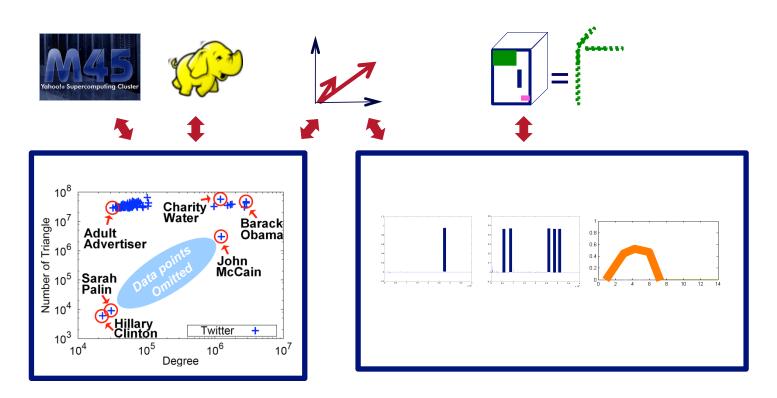
- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/ 10.2200/S00449ED1V01Y201209DMK006



- Graph-based Anomaly Detection and Description: A Survey, Leman Akoglu, Hanghang Tong, Danai Koutra
- http://arxiv.org/abs/1404.4679

TAKE HOME MESSAGE:

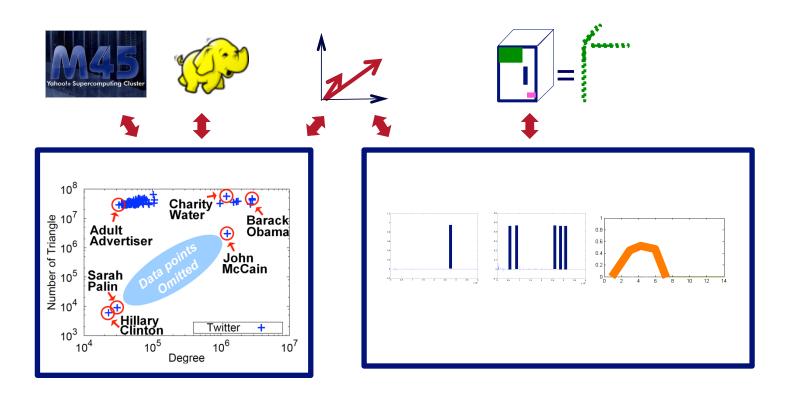
Cross-disciplinarity



Google, Aug '16 (c) 2016, C. Faloutsos 80

Thank you!

Cross-disciplinarity



Google, Aug '16 (c) 2016, C. Faloutsos 81

Catchsync: catch synchronized behavior in large directed graphs

Meng Jiang

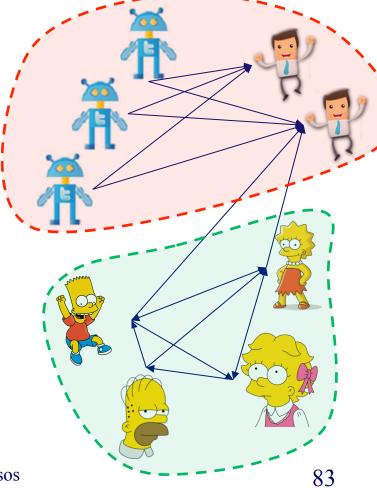
Joint work with Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang

Fraud Detection: Graph Analysis **Problem**

[buymorelikes.com]

\$525	\$1,000	^{\$} 1,750
ime Replacement Warranty ated 24/7 Customer Service 0% Risk Free, Try Us Today r starts within 24 - 48 hours	Lifetime Replacement Warranty Dedicated 24/7 Customer Service 100% Risk Free, Try Us Today Order starts within 24 -48 hours	Lifetime Replacement Warranty Dedicated 24/7 Customer Service 100% Risk Free, Try Us Today Order starts within 24 -48 hours
	ime Replacement Warranty ated 24/7 Customer Service 0% Risk Free, Try Us Today	Lifetime Replacement Warranty ated 24/7 Customer Service Dedicated 24/7 Customer Service NS Risk Free, Try Us Today 100% Risk Free, Try Us Today Order starts within 24 - 48 hours

(c) 2016, C. Faloutsos

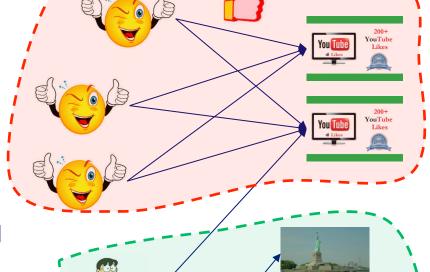


hotSoS, 2016

Fraud Detection: Graph Analysis **Problem**

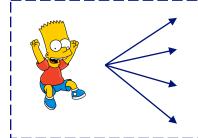
[buycheaplikes.com]

It's easy to buy Amazon reviews. Just choose the number of reviews you would like to receive. High quality reviews that customers love. 100% unique content by native speaking professional writers. Choose the number of reviews and click Buy Now button to ramp up your Amazon business NOW. Choose the number of reviews: 20 Buy Now UISA TO SOUTH BANK

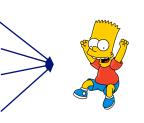


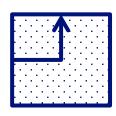
(c) 2016, C. Faloutsos

Behavior-based Features

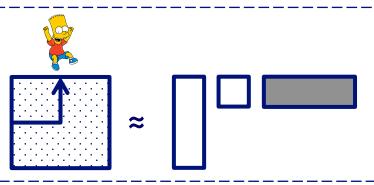


Follower behavior





≈



Out-degree

1st left singular vector (Hubness)

2nd left singular vector

In-degree

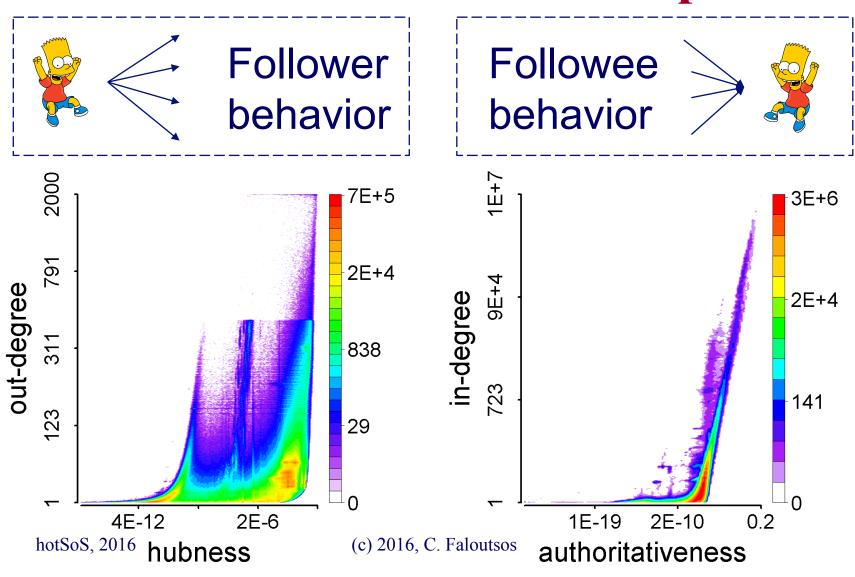
1st right singular vector (Authoritativeness)
2nd right singular vector

. . hotSoS, 2016

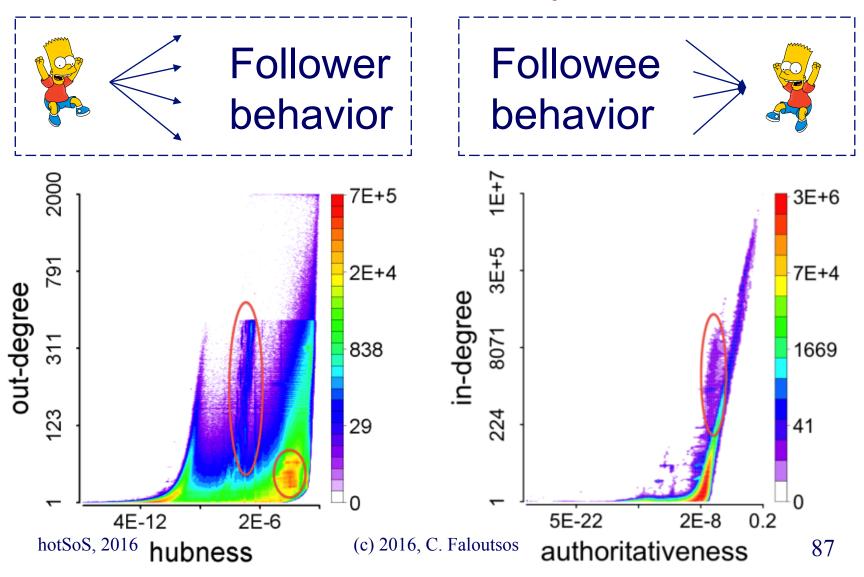
(c) 2016, C. Faloutsos

85

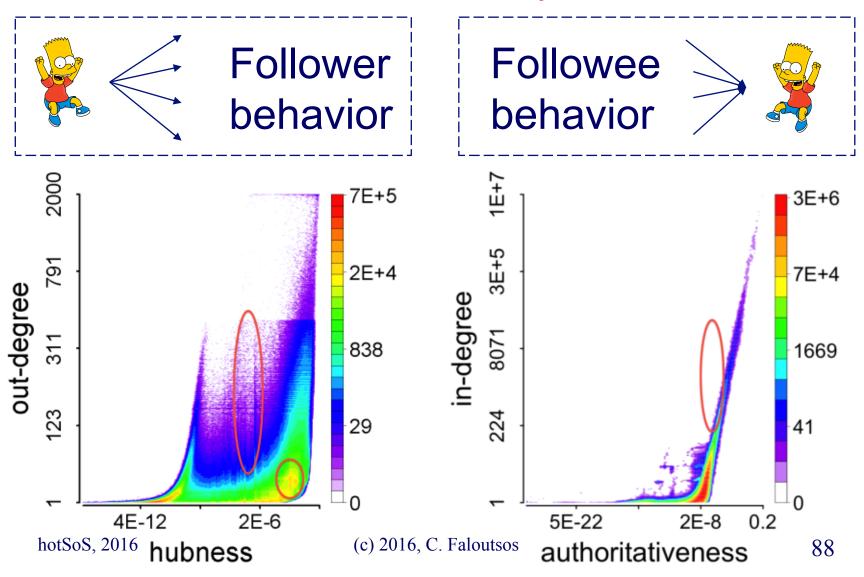
Behavior-based Feature Space



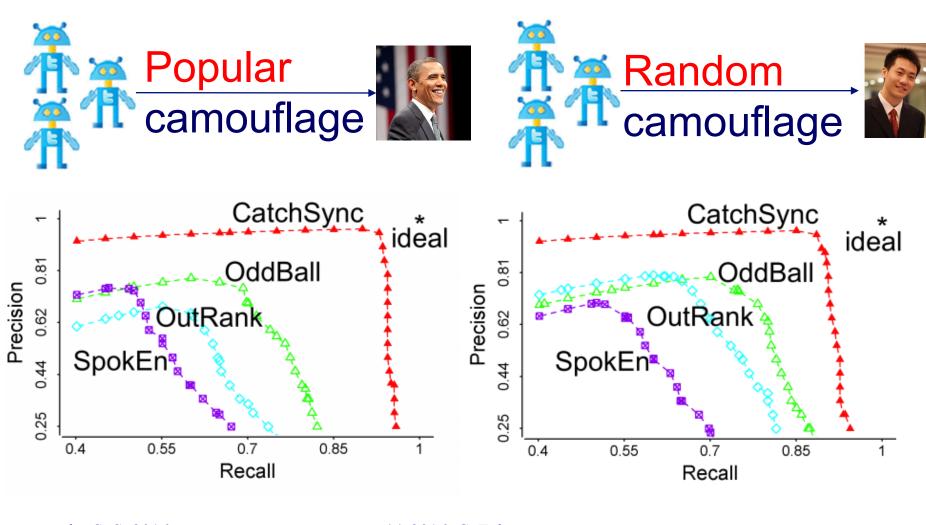
Before CatchSync



After CatchSync



Q3: Is CatchSync Robust?



hotSoS, 2016

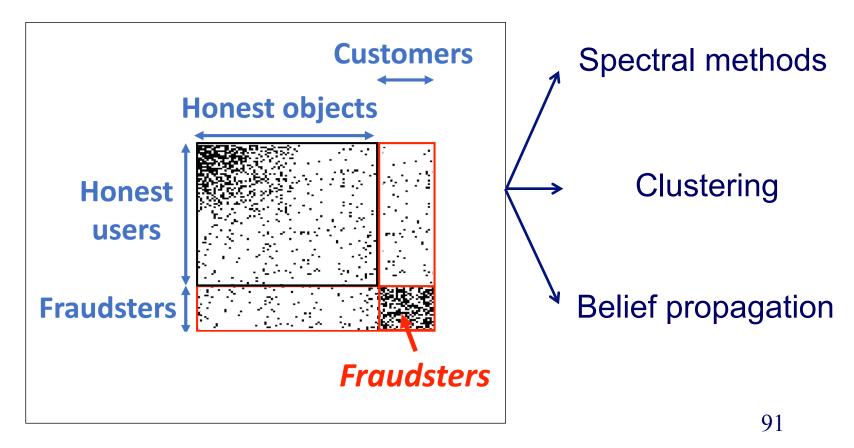
(c) 2016, C. Faloutsos

Carnegie Mellon

n Method Experiments Conclusion Carne

Detecting Review Spam

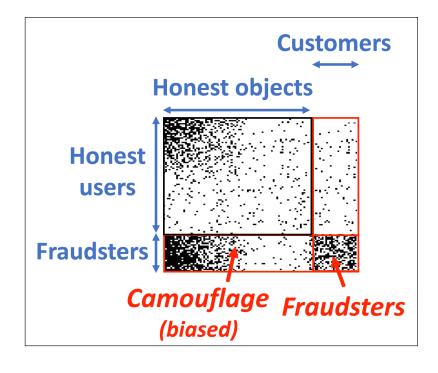
Many existing methods detect fraudsters using dense subgraph detection.

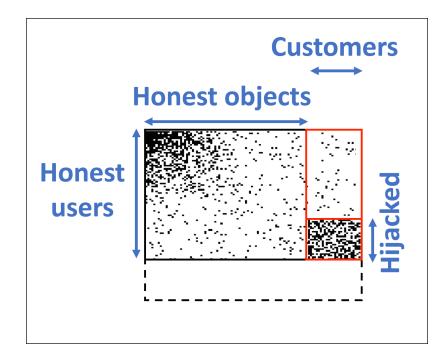


n Method Experiments Conclusion Carnes

Evading Detection

Attackers can evade detection using camouflage.

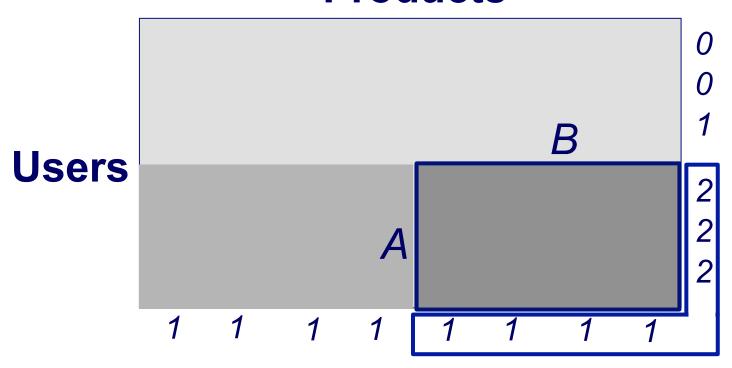




Method Experiments Conclusion Carne

Node suspiciousness

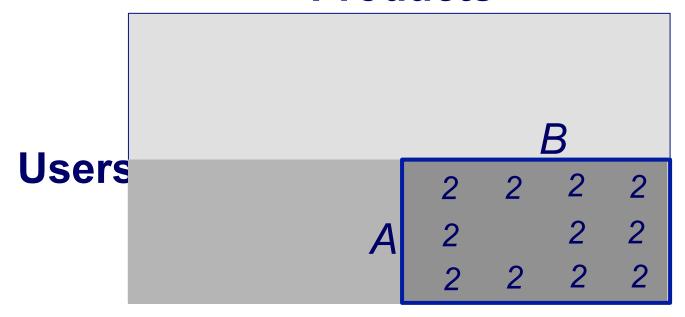
Products



Node suspiciousness of (A,B) = 10

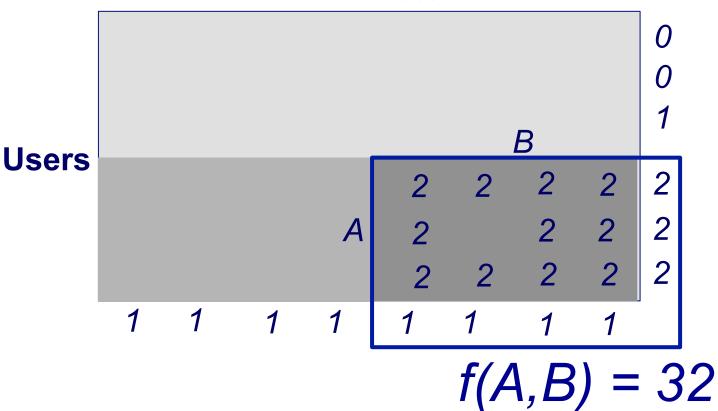
Edge suspiciousness

Products



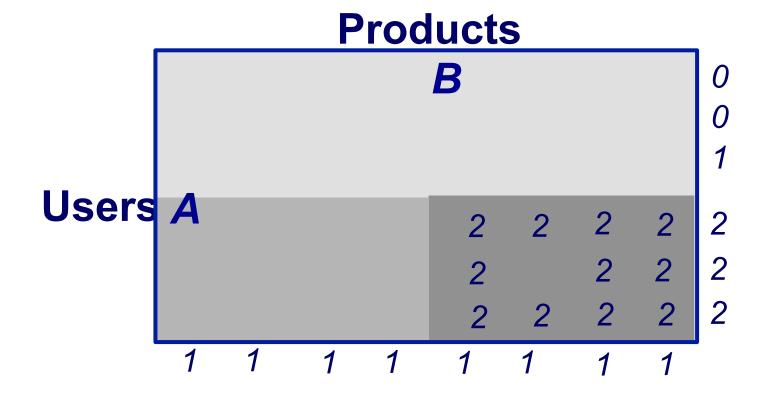
Edge suspiciousness of (A,B) = 22

Total suspiciousness



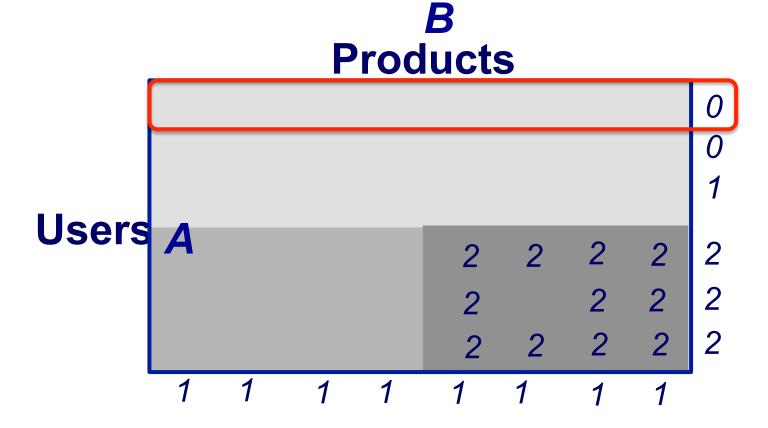
$$f(A,B)$$
 = (edge susp.) + (node susp.)

Greedy Algorithm

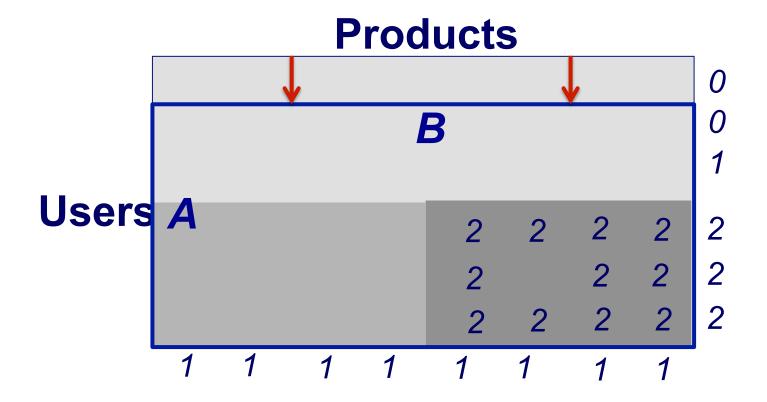


Start with A, B as all users / products

Greedy Algorithm

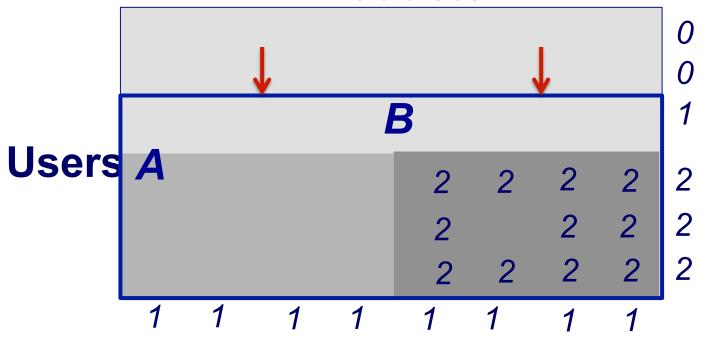


Greedy Algorithm

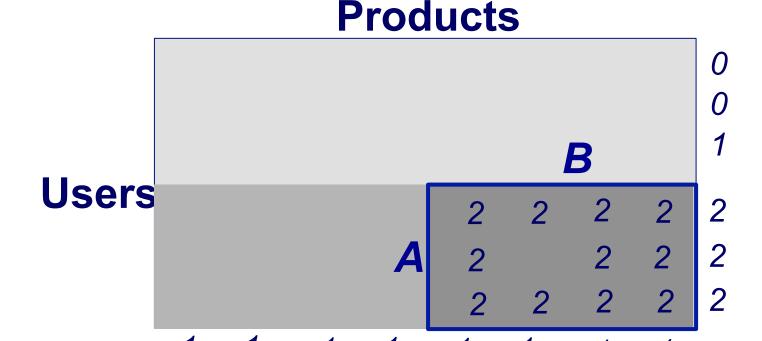


Greedy Algorithm

Products



Greedy Algorithm



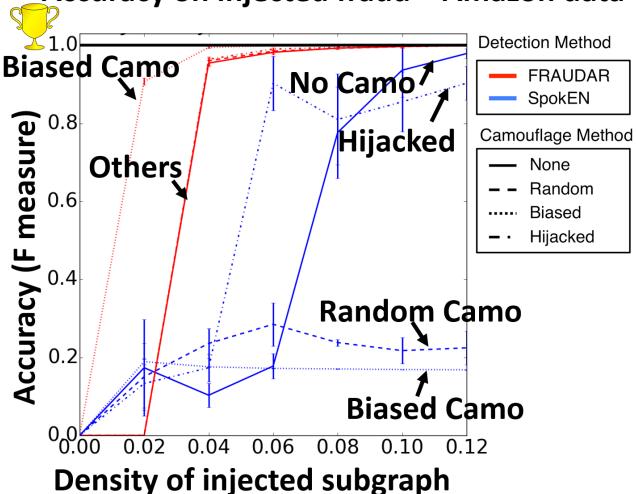
Method Experiments Conclusion Carnegie Mellon School of Computer Science

Experiments: Amazon data

- 24K x 4K Amazon review graph
- Injected dense blocks with various types of camouflage
 - None
 - Random camouflage
 - Biased camouflage
 - Hijacked accounts

Experiments: Amazon

Accuracy on injected fraud – Amazon data



Method Experiments Conclusion Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

Twitter data

Followees

Density = 4×10^{-7}

Followers

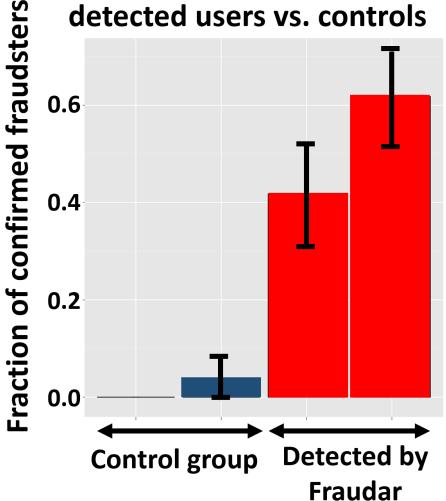
4300

4000

Density = 0.66

Twitter data

Follower-buying services in detected users vs. controls

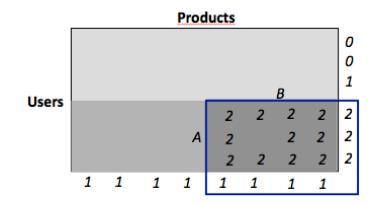


Conclusion

 Average suspiciousness metric

 Theoretical guarantees

Effectiveness



$$g(A,B) = f(A,B) / (|A| + |B|)$$

$$g(\mathcal{A} \cup \mathcal{B}) \geq rac{1}{2}g_{OPT}$$

