Mining Large Graphs and Time Sequences: Patterns, Anomalies, and Fraud Detection

Christos Faloutsos CMU

Thank you!

• Alkis Polyzotis

• Denise Olivera

Google, Aug '16

Roadmap

Introduction – Motivation
 – Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Conclusions

>\$10B; ~1B users

Google, Aug '16

(c) 2016, C. Faloutsos

4

Graphs - why should we care?

(c) Degree vs. PageRank

(b) Degree vs. Triangles

(d) In-degree vs. Out-degree (e) Degree vs. Triangles (f) Degree vs. PageRank

~1B nodes (web sites) ~6B edges (http links) 'YahooWeb graph'

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. Net-Ray: Visualizing and Mining Billion-Scale Graphs PAKDD 2014, Tainan, Taiwan.

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! вLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

NETFLIX

• Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

Ο

00

• P2: patterns in time-evolving graphs / tensors

• P3: time sequences

Motivating problems

👻 Patterns 📈 anomalies

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors

• P3: time sequences

time

(c) 2016, C. Faloutsos

source

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
 - Part#2: time-evolving graphs; tensors
 - Conclusions

Part 1: Patterns, & fraud detection

Google, Aug '16

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

• Connected Components – 4 observations:

Connected Components

16

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Patterns: Degree; Triangles
 - Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Conclusions

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

 Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16

Triangle counting for large graphs?

Google, Aug '16

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Google, Aug '16

R

MORE Graph Patterns

	Unweighted	Weighted	
Static	 Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]	
Dvnamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]	
G: A Recursive Realistic Graph Generator using Random			

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	$ \begin{array}{l} \textbf{L05. Densification Power Law (DPL) [Leskovec et al. '05] \\ \textbf{L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] \\ \textbf{L07. Constant size 2nd and 3rd connected components \\ [McGlohon et al. '08] \\ \textbf{L08. Principal Eigenvalue Power Law ($\lambda_1 PL$) [Akoglu et al. '08] \\ \textbf{L09. Bursty/self-similar edge/weight additions [Gomez and Santonja'98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08] \\ \end{array} $	L11. Weight Power Law (WPL) [McGlohon et al. `08]

Carnegie Mellon

 Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

 Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Google, Aug '16

(c) 2016, C. Faloutsos

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Lekan Olawole Lowe @loweinc 26 Jul 09 Sign up free and Get 400 followers a day using http://tweeteradder.com

Lekan Olawole Lowe @loweinc Get 400 followers a day using http://www.tweeterfollow.com

Takeaway: use *reconstruction error* between true/latent representation!

Neil Shah, Alex Beutel, Brian Gallagher and Christos Faloutsos. *Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective.* ICDM 2014, Shenzhen, China.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox', suspiciousness)
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Suspicious Patterns in Event Data

A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.
ICDM 2015

Suspicious Patterns in Event Data

Which is more suspicious?

ICDM 2015

Suspicious Patterns in Event Data

Retweeting: "Galaxy Note Dream Project: Happy Happy Life Traveling the World"

	#	User × tweet × IP × minute	Mass c	Suspiciousness
CROSSSPOT	1	$14 \times 1 \times 2 \times 1,114$	41,396	1,239,865
	2	$225 \times 1 \times 2 \times 200$	27,313	777,781
	3	8×2×4×1,872	17,701	491,323
HOSVD	1	24×6×11×439	3,582	131,113
	2	$18 \times 4 \times 5 \times 223$	1,942	74,087
	3	$14 \times 2 \times 1 \times 265$	9,061	381,211

Google, Aug '16

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - Spectral methods ('fBox')
 - High-density sub-matrices
 - Belief propagation
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Conclusions

Google, Aug '16

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

Google, Aug '16

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: time-evolving graphs
 - [P2.2: with side information ('coupled' M.T.F.)
 - Speed]
- Part#3: time sequences
- Conclusions

Part 2: Time evolving graphs; tensors

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

Google, Aug '16

(c) 2016, C. Faloutsos

MANY more settings, with >2 'modes'

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

- Problem #2.1''':
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 'modes' (and 4, 5, etc modes)

Google, Aug '16

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: time-evolving graphs
 - [P2.2: with side information ('coupled' M.T.F.)
 - Speed]
- Conclusions

Answer to both: tensor factorization • PARAFAC decomposition

Answer: tensor factorization

• PARAFAC decomposition

- 4M x 15 days

• Results for who-calls-whom-when

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Google, Aug '16

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Anomaly detection in timeevolving graphs

Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- (GigaTensor/HaTen2 -> fast & scalable)

Google, Aug '16

Part 3: Time sequences

Google, Aug '16

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
 - Acknowledgements and Conclusions

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa^{*} Yuto Yamaguchi Agma J. M. Traina Caetano Traina Jr. Christos Faloutsos

*alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)

Pattern Mining

Pattern 2: Bimodal IAT distribution

'Active'/ 'resting' periods

Log-binned histogram of postings IAT

Human? Robots?

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves

Good performance: curve close to the top

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves

Good performance: curve close to the top

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: time sequences
- Acknowledgements and Conclusions
Carnegie Mellon

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Araujo, Miguel

Beutel, Alex

Eswaran,

Dhivya

Hooi, Bryan

Koutra, Kang, U Danai

Shah, Neil

Shin, Kijung

Song, Hyun Ah

Google, Aug '16

CONCLUSION#1 – Big data

- Patterns X Anomalies
- Large datasets reveal patterns/outliers that are invisible otherwise

CONCLUSION#2 – tensors

• powerful tool

(c) 2016, C. Faloutsos

Conclusion#3

• Different footprints of real vs 'robot' users

References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/ 10.2200/S00449ED1V01Y201209DMK006

MORGAN & CLAYPOOL PUBLISHERS
Graph Mining Laws, Tools, and Case Studies
Deepayan Chakrabarti Christos Faloutsos
Synthesis Lectures on Dati Mining and Knowledge Discovery

- Graph-based Anomaly Detection and Description: A Survey, Leman Akoglu, Hanghang Tong, Danai Koutra
- <u>http://arxiv.org/abs/1404.4679</u>

TAKE HOME MESSAGE:

Cross-disciplinarity

Google, Aug '16

Thank you!

Cross-disciplinarity

Google, Aug '16