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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Part#3: time sequences 
•  Conclusions 
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Graphs - why should we care? 

>$10B; ~1B users 

Google, Aug '16 
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Graphs - why should we care? 

UNM 

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos 
Faloutsos. Net-Ray: Visualizing and Mining Billion-Scale 
Graphs PAKDD 2014, Tainan, Taiwan.  

~1B nodes (web sites) 
~6B edges (http links) 
‘YahooWeb graph’ 
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Graphs - why should we care? 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic and 

anomaly detection 
•  Recommendation systems 
•  .... 

•  Many-to-many db relationship -> graph 

Google, Aug '16 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 

•  P3: time sequences 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 

•  P3: time sequences 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns & fraud detection 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
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Part 1: 
Patterns, &  

fraud detection 
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Laws and patterns 
•  Q1: Are real graphs random? 

Google, Aug '16 
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Laws and patterns 
•  Q1: Are real graphs random? 
•  A1: NO!! 

– Diameter (‘6 degrees’; ‘Kevin Bacon’) 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

Google, Aug '16 
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Solution# S.1 

•  Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

Google, Aug '16 



CMU SCS 

(c) 2016, C. Faloutsos 14 

Solution# S.1 

•  Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

Google, Aug '16 
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S2: connected component sizes 
•  Connected Components – 4 observations: 

Size 

Count 

(c) 2016, C. Faloutsos hotSoS, 2016 

1.4B nodes 
6B edges 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) 2016, C. Faloutsos hotSoS, 2016 

1) 10K x  
larger 
than next 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) 2016, C. Faloutsos hotSoS, 2016 

2) ~0.7B  
singleton 
 nodes 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) 2016, C. Faloutsos hotSoS, 2016 

3) SLOPE! 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

(c) 2016, C. Faloutsos hotSoS, 2016 

4) Spikes! 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

(c) 2016, C. Faloutsos hotSoS, 2016 



CMU SCS 

(c) 2016, C. Faloutsos 21 

Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns: Degree; Triangles 
– Anomaly/fraud detection 

•  Part#2: time-evolving graphs; tensors 
•  Part#3: time sequences 
•  Conclusions 

Google, Aug '16 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

Google, Aug '16 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 
–  2x the friends, 2x the triangles ? 

Google, Aug '16 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

Google, Aug '16 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
25 Google, Aug '16 25 (c) 2016, C. Faloutsos 
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Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
28 Google, Aug '16 28 (c) 2016, C. Faloutsos 



CMU SCS 

Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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MORE Graph Patterns 

Google, Aug '16 (c) 2016, C. Faloutsos 30 

✔ 
✔ 
✔ 

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  
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MORE Graph Patterns 
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•  Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal) 

•  Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool.  

http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/ 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  Spectral methods (‘fBox’) 
•  Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

Google, Aug '16 
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Problem: Social Network Link Fraud 
 

Google, Aug '16 

Target: find “stealthy” attackers missed by other algorithms 

Clique 

Bipartite 
core 

41.7M nodes 
1.5B edges 
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Problem: Social Network Link Fraud 
 

Google, Aug '16 

Neil Shah, Alex Beutel, Brian Gallagher and Christos 
Faloutsos. Spotting Suspicious Link Behavior with fBox: An 
Adversarial Perspective. ICDM 2014, Shenzhen, China.  

Target: find “stealthy” attackers missed by other algorithms 

Takeaway: use reconstruction error 
between true/latent representation! 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’, suspiciousness) 
•  Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
Google, Aug '16 
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Suspicious Patterns in Event Data 
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A General Suspiciousness Metric for Dense Blocks in 
Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan 
Hooi, Shiqiang Yang, and Christos Faloutsos, ICDM, 2015.  

2-modes 

n-modes 

? 

? 
? 
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Suspicious Patterns in Event Data 
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Which is more suspicious? 
20,000 Users 
Retweeting same 20 tweets 
       6 times each 
All in 10 hours 
 

225 Users 
Retweeting same 1 tweet 
        15 times each 
All in 3 hours 
All from 2 IP addresses 

vs. 

ICDM 2015 

Answer: volume * DKL(p|| pbackground) 
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Suspicious Patterns in Event Data 
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A General Suspiciousness Metric for Dense Blocks
in Multimodal Data

Anonymous
Anonymous
Anonymous

Anonymous
Anonymous
Anonymous

Anonymous
Anonymous
Anonymous

Anonymous
Anonymous
Anonymous

Abstract—Which seems more suspicious: 5,000 tweets from
200 users on 5 IP addresses, or 10,000 tweets from 500 users
on 500 IP addresses but all with the same hashtag and all in
10 minutes? The literature has many methods that try to find
dense blocks in matrices, and, recently, tensors, but no method
gives a principled way to score the suspiciouness of dense blocks
with different numbers of modes and rank them to draw human
attention accordingly. Dense blocks are worth inspecting, typically
indicating fraud, emerging trends, or some other noteworthy
deviation from the usual. Our main contribution is that we show
how to unify these methods and how to give a principled answer to
questions like the above. Specifically, (a) we give a list of axioms
that any metric of suspicousness should satisfy; (b) we propose an
intuitive, principled metric that satisfies the axioms, and is fast to
compute; (c) we propose CROSSSPOT, an algorithm to spot dense
regions, and sort them in importance (“suspiciousness”) order.
Finally, we apply CROSSSPOT to real data, where it improves
the F1 score over previous techniques by 68% and finds retweet-
boosting and hashtag-hijacking in social datasets spanning 0.3

billion posts.

I. INTRODUCTION

Imagine your job at Twitter is to detect when fraudsters
are trying to manipulate the most popular tweets for a given
trending topic. Given time pressure, which is more worthy of
your investigation: 2,000 Twitter users, all retweeting the same
20 tweets, 4 to 6 times each; or 225 Twitter users, retweeting
the same 1 tweet, 10 to 15 times each? Now, what if the latter
batch of activity happened within 3 hours, while the former
spanned 10 hours? What if all 225 users of the latter group
used the same 2 IP addresses?

Figure 1 shows an example of these patterns from Tencent
Weibo, one of the largest microblogging platforms in China;
our method CROSSSPOT detected a block of 225 users, using
2 IP addresses (“blue circle” and “red cross”), retweeting the
same tweet 27K times, within 200 minutes. Further, manual
inspection shows that several of these users get activated every
5 minutes. This type of lockstep behavior is suspicious (say,
due to automated scripts), and it leads to dense blocks, as
in Figure 1. These blocks may span several modes (user-id,
timestamp, hashtag, etc.). Although our main motivation is
fraud detection in a Twitter-like setting, our proposed approach
is suitable for numerous other settings, like distributed-denial-
of-service (DDoS) attacks, link fraud, click fraud, even health-
insurance fraud, as we discuss next.

Thus, the core question we ask in this paper is: what is
the right way to compare the severity/suspiciousness/surprise
of two dense blocks, that span 2 or more modes? Informally,
the problem is:
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Fig. 1. Density in multiple modes is suspicious. Left: A dense block of 225
users on Tencent Weibo (Chinese Twitter) retweeting one tweet 27,313 times
from 2 IP addresses over 200 minutes. Right: magnification of a subset of this
block. l and : indicate the two IP addresses used. Notice how synchronized
the behavior is, across several modes (IP-address, user-id, timestamp).

Informal Problem 1 (Suspiciousness score) Given a K-
mode dataset (tensor) X , with counts of events (that are
non-negative integer values), and two subtensors Y

1

and Y
2

,
which is more suspicious and worthy of further investigation?

Why multimodal data (tensor): Graphs and social networks
have attracted huge interest - and they are perfectly modeled as
K=2 mode datasets, that is, matrices. With K=2 modes we can
model Twitter’s “who-follows-whom” network [1][2], Face-
book’s “who-friends-whom” and “who-Likes-what” graphs
[3], eBay’s “who-buys-from-whom” graph [4], financial ac-
tivities of “who-trades-what-stocks”, and scientific relations
of “who-cites-whom.” Several high-impact datasets make use
of higher mode relations. With K=3 modes, we can consider
how all of the above graphs change over time or what words
are used in product reviews on eBay or Amazon. With K=4
modes, we can analyze network traces for intrusion detection
and distributed denial of service (DDoS) attacks by looking
for patterns in the source IP, destination IP, destination port,
and timestamp [5][6]. Health-insurance fraud detection is
another example, with (patient-id, doctor-id, prescription-id,
timestamp) where corrupt doctors prescribe fake, expensive
medicine to senile or corrupt patients [7][8].

Why are dense regions worth inspecting: Dense regions
are surprising in all of the examples above. Past work has
repeatedly found that dense regions in these tensors correspond
to suspicious, lockstep behavior: Purchased Page Likes on
Facebook result in a few users “Liking” the same “Pages”
always at the same time (when the order for the Page Likes is
placed) [3]. Spammers paid to write deceptively high (or low)
reviews for restaurants or hotels will reuse the same accounts
and often even the same text [9][10]. Zombie followers, botnets
who are set up to build social links, will inflate the number
of followers to make their customers seem more popular
than they actually are [1][11]. This high-density outcome has
a reason: Spammers have constrained resources (users, IP

Retweeting: “Galaxy Note Dream Project:  
Happy Happy Life Traveling the World” 
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Fig. 3. Finding dense blocks: CROSSSPOT outperforms baselines in finding
3-mode blocks, and directly method improves the recall on top of HOSVD.

• SVD has small recall but high precision. However, the
SVD can hardy catch small, sparse injected blocks such
as 30⇥30 submatrices of mass 16 and 32, even though
they are denser than the background. Higher decomposi-
tion rank brings higher classification accuracy.

Finding dense high-order blocks in multimodal data: We
generate random tensor data with parameters as (1) the number
of modes k=3, (2) the size of data N

1

=1,000, N
2

=1,000
and N

3

=1,000 and (3) the mass of data C=10,000. We
inject b=6 blocks of k0=3 modes into the random data, so,
I = {1, 2, 3}. Each block has size 30⇥30⇥30 and mass
c2{16, 32, 64, 128, 256, 512}. The task is again to classify the
tensor entries into suspicious and normal classes. Figure 3(a)
reports the performances of CROSSSPOT and baselines. We
observe that in order to find all the six 3-mode injected blocks,
our proposed CROSSSPOT has better performance in precision
and recall than baselines. The best F1 score CROSSSPOT gives
is 0.891, which is 46.0% higher than the F1 score given by
the best of HOSVD (0.610). If we use the results of HOSVD
as seeds to CROSSSPOT, the best F1 score of CROSSSPOT
reaches 0.979. Figure 3(b) gives the recall value of every
injected block. We observe that CROSSSPOT improves the
recall over HOSVD, especially on slightly sparser blocks.

Finding dense low-order blocks in multimodal data: We
generate random tensor data with parameters as (1) the number
of modes k=3, (2) the size of data N

1

=1,000, N
2

=1,000 and
N

3

=1,000 and (3) the mass of data C=10,000. We inject b=4
blocks into the random data:

• Block #1: The number of modes is k0
1

=3 and I
1

={1,2,3}.
The size is 30⇥30⇥30 and the block’s mass is c

1

=512.
• Block #2: The number of modes is k0

2

=2 and I
2

={1,2}.
The size is 30⇥30⇥1,000 and the block’s mass is c

2

=512.
• Block #3: k0

3

=2, I
3

={1,3}; 30⇥1,000⇥30 of c
3

=512.
• Block #4: k0

4

=2, I
4

={2,3}; 1,000⇥30⇥30 of c
4

=512.

Note, blocks 2-4 are dense in only 2 modes and random in the
third mode. Table V report the classification performances of
CROSSSPOT and baselines. We show the overall evaluations
(precision, recall and F1 score) and recall value of every block.
We observe that CROSSSPOT has 100% recall in catching the
3-mode block #1, while the baselines have 85-95% recall.
More impressively, CROSSSPOT successfully catches the 2-
mode blocks, where HOSVD has difficulty and low recall.
The F1 score of overall evaluation is as large as 0.972 with
68.8% improvement.

Testing robustness of the random seed number: We test how
the performance of our CROSSSPOT improves when we use
more seed blocks in the low-order block detection experiments.

(a) Robustness (b) Convergence

Fig. 4. CROSSSPOT is robust to the number of random seeds. In detecting
the 4 low-order blocks, when we use 41 seeds, the best F1 score has reported
the final result of as many as 1,000 seeds. CROSSSPOT converges very fast:
the average number of iterations is 2.87.

TABLE VI. BIG DENSE BLOCKS WITH TOP METRIC VALUES
DISCOVERED IN THE RETWEETING DATASET.

# User⇥tweet⇥IP⇥minute Mass c Suspiciousness

CROSSSPOT
1 14⇥1⇥2⇥1,114 41,396 1,239,865
2 225⇥1⇥2⇥200 27,313 777,781
3 8⇥2⇥4⇥1,872 17,701 491,323

HOSVD
1 24⇥6⇥11⇥439 3,582 131,113
2 18⇥4⇥5⇥223 1,942 74,087
3 14⇥2⇥1⇥265 9,061 381,211

Figure 4(a) shows the best F1 score for different numbers of
random seeds. We find that when we use 41 random seeds, the
best F1 score is close to the results when we use as many as
1,000 random seeds. Thus, once we exceed a moderate number
of random seeds, the performance is fairly robust to the number
of random seeds.

Efficiency analysis: CROSSSPOT can be parallelized into
multiple machines to search dense blocks with different sets
of random seeds. The time cost of every iteration is linear
in the number of non-zero entries in the multimodal data
as we have discussed in Section V. Figure 4(b) reports the
counts of iterations in the procedure of 1000 random seeds.
We observe that usually CROSSSPOT takes 2 or 3 iterations to
finish the local search. Each iteration takes only 5.6 seconds.
Tensor decompositions such as HOSVD and PARAFAC used
in MAF often take more time. On the same machine, HOSVD
methods of rank r=5, 10 and 20 take 280, 1750, 34,510
seconds respectively. From Table V and Figure 4(a), even
without parallelization, we know that CROSSSPOT takes only
230 seconds to have the best F1 score 0.972, while HOSVD
needs more time (280 seconds if r=5) to have a much smaller
F1 score 0.324.

D. Retweeting Boosting

Table VI shows big, dense block patterns of Tencent
Weibo retweeting dataset. CROSSSPOT reports blocks of high
mass and high density. For example, we spot that 14 users
retweet the same content for 41,396 times on 2 IP addresses
in 19 hours. Their coordinated, suspicious behaviors result
in a few tweets that seem extremely popular. We observe
that CROSSSPOT catches more suspicious (bigger and denser)
blocks than HOSVD does: HOSVD evaluates the number of
retweets per user, item, IP, or minute, but does not consider
the block’s density, mass nor the background.

Table VII shows an example of retweeting boosting from
the big, dense 225⇥1⇥2⇥200 block reported by our proposed
CROSSSPOT. A group of users (e.g., A, B, C) retweet the
same message “Galaxy note dream project: Happy happy life

ICDM 2015 
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Roadmap 
•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  Spectral methods (‘fBox’) 
•  High-density sub-matrices 
•  Belief propagation 

•  Part#2: time-evolving graphs; tensors 
•  Part#3: time sequences 
•  Conclusions 
Google, Aug '16 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 
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Popular press 
 
 
 
 

And less desirable attention: 
•  E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 

– P2.1: time-evolving graphs 
–  [P2.2: with side information (‘coupled’ M.T.F.) 
– Speed] 

•  Part#3: time sequences 
•  Conclusions 

Google, Aug '16 
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Part 2: 
Time evolving  

graphs; tensors 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Google, Aug '16 (c) 2016, C. Faloutsos 47 

smith 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 
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Mon 
Tue 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Google, Aug '16 (c) 2016, C. Faloutsos 50 
callee 

caller 
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Graphs over time -> tensors! 
•  Problem #2.1’: 

– Given author-keyword-date 
– Find patterns / anomalies 

Google, Aug '16 (c) 2016, C. Faloutsos 51 
keyword 

author 

MANY more settings, 
with >2 ‘modes’ 
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Graphs over time -> tensors! 
•  Problem #2.1’’: 

– Given subject – verb – object facts 
– Find patterns / anomalies 

Google, Aug '16 (c) 2016, C. Faloutsos 52 
object 

subject 

MANY more settings, 
with >2 ‘modes’ 



CMU SCS 

Graphs over time -> tensors! 
•  Problem #2.1’’’: 

– Given <triplets> 
– Find patterns / anomalies 

Google, Aug '16 (c) 2016, C. Faloutsos 53 
mode2 

mode1 

MANY more settings, 
with >2 ‘modes’ 
(and 4, 5, etc modes) 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 

– P2.1: time-evolving graphs 
–  [P2.2: with side information (‘coupled’ M.T.F.) 
– Speed] 

•  Conclusions 

Google, Aug '16 
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Answer to both: tensor 

factorization 
•  Recall: (SVD) matrix factorization: finds 

blocks 
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N  
users 

M 
products 

‘meat-eaters’ 
‘steaks’ 

‘vegetarians’ 
‘plants’ 

‘kids’ 
‘cookies’ 

~ + + 
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Answer to both: tensor 

factorization 
•  PARAFAC decomposition 
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= + + subject 

object 

politicians artists athletes 
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Answer: tensor factorization 
•  PARAFAC decomposition 
•  Results for who-calls-whom-when 

–  4M x 15 days 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

 
 
 
 
 
~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 
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evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

 
 
 
 
 
~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 

Google, Aug '16 59 (c) 2016, C. Faloutsos 

= 



CMU SCS 
Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

 
 
 
 
 
~200 calls to EACH receiver on EACH day! 
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Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, 
Christos Faloutsos, Prithwish Basu, Ananthram Swami, 
 Evangelos Papalexakis, Danai Koutra.  Com2: Fast 
Automatic Discovery of Temporal (Comet) Communities. 
PAKDD 2014, Tainan, Taiwan. 
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Part 2: Conclusions 

•  Time-evolving / heterogeneous graphs -> 
tensors 

•  PARAFAC finds patterns 
•  (GigaTensor/HaTen2 -> fast & scalable) 
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Part 3: 
Time sequences 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Part#3: time sequences 
•  Acknowledgements and Conclusions 

Google, Aug '16 
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RSC: Mining and Modeling Temporal 
Activity in Social Media 
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Universidade 
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KDD 2015 – Sydney, 
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Reddit Dataset 
Time-stamp from comments 
21,198 users 
20 Million time-stamps 

Twitter Dataset 
Time-stamp from tweets 
6,790 users 
16 Million time-stamps 

Pattern Mining: Datasets 

For each user we have:  
 Sequence of postings time-stamps: T = (t1, t2, t3, …) 
 Inter-arrival times (IAT) of postings:  (∆1, ∆2, ∆3, …) 

65 t1 t2 t3 t4 

∆1 ∆2 ∆3 

time 
Google, Aug '16 (c) 2016, C. Faloutsos 
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Pattern Mining 
Pattern 1: Distribution of IAT is heavy-tailed 

Users can be inactive for long periods of time before making new 
postings 
 
IAT Complementary Cumulative Distribution Function (CCDF) 

(log-log axis) 
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Pattern Mining 
Pattern 2: Bimodal IAT distribution 

‘Active’/ ‘resting’ periods 
 

Log-binned histogram of postings IAT 
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Human? Robots? 

log 

linear 
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Human? Robots? 

log 

linear 
2’ 3h 1day 
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Experiments: Can RSC-Spotter Detect 
Bots? 

Precision vs. Sensitivity Curves 
Good performance: curve close to the top 
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94% 
Sensitivity > 

70% 
 

With strongly 
imbalanced 

datasets 
# humans >> # 

bots 

Twitter 
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Experiments: Can RSC-Spotter Detect 
Bots? 

Precision vs. Sensitivity Curves 
Good performance: curve close to the top 
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96% 
Sensitivity > 

47% 
 

With strongly 
imbalanced 

datasets 
# humans >> # 

bots 

Reddit 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Part#3: time sequences 
•  Acknowledgements and Conclusions 

Google, Aug '16 
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Thanks 

Google, Aug '16 

Thanks to: NSF IIS-0705359, IIS-0534205,  
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab 

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies 
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CONCLUSION#1 – Big data 
•  Patterns          Anomalies 

•  Large datasets reveal patterns/outliers that 
are invisible otherwise 

Google, Aug '16 
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CONCLUSION#2 – tensors 

•  powerful tool 

Google, Aug '16 
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1 caller 5 receivers 4 days of activity 
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Conclusion#3 
•  Different footprints of real vs ‘robot’ users 
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TAKE HOME MESSAGE: 

Cross-disciplinarity 
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Cross-disciplinarity 
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Thank you!  


