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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

CyLab, CMU 

computer network security:  
•  Email traffic 
•  IP traffic (src, dst, dst-port, t) 

Malware propagation 
•  (machine-id, infected-file-id) 
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Graphs - why should we care? 

>$10B; ~1B users 

CyLab, CMU 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 
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Part 1: 
Patterns, &  

fraud detection 
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Laws and patterns 
•  Q1: Are real graphs random? 

CyLab, CMU 
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Laws and patterns 
•  Q1: Are real graphs random? 
•  A1: NO!! 

– Diameter (‘6 degrees’; ‘Kevin Bacon’) 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

CyLab, CMU 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

CyLab, CMU 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 
–  2x the friends, 2x the triangles ? 

CyLab, CMU 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

CyLab, CMU 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

26 CyLab, CMU 26 (c) 2016, C. Faloutsos 



CMU SCS 

Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

27 CyLab, CMU 27 (c) 2016, C. Faloutsos 



CMU SCS 

Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

28 CyLab, CMU 28 (c) 2016, C. Faloutsos 



CMU SCS 

Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

CyLab, CMU 
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Part 2: 
Time evolving  

graphs; tensors 
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Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 
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Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 

CyLab, CMU (c) 2016, C. Faloutsos 60 
callee 

caller 
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Graphs over time -> tensors! 
•  Problem #2’: 

– Given author-keyword-date 
– Find patterns / anomalies 

CyLab, CMU (c) 2016, C. Faloutsos 61 
keyword 

author 

MANY more settings, 
with >2 ‘modes’ 
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Graphs over time -> tensors! 
•  Problem #2’’: 

– Given subject – verb – object facts 
– Find patterns / anomalies 

CyLab, CMU (c) 2016, C. Faloutsos 62 
object 

subject 

MANY more settings, 
with >2 ‘modes’ 
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Graphs over time -> tensors! 
•  Problem #2’’’: 

– Given <triplets> 
– Find patterns / anomalies 

CyLab, CMU (c) 2016, C. Faloutsos 63 
mode2 

mode1 

MANY more settings, 
with >2 ‘modes’ 
(and 4, 5, etc modes) 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 

–  Intro to tensors 
– Results 
– Speed 

•  Conclusions 

CyLab, CMU 
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Answer to both: tensor 

factorization 
•  Recall: (SVD) matrix factorization: finds 

blocks 
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N  
users 

M 
products 

‘meat-eaters’ 
‘steaks’ 

‘vegetarians’ 
‘plants’ 

‘kids’ 
‘cookies’ 

~ + + 
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Answer to both: tensor 

factorization 
•  PARAFAC decomposition 
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= + + subject 

object 

politicians artists athletes 



CMU SCS 

Answer: tensor factorization 
•  PARAFAC decomposition 
•  Results for who-calls-whom-when 

–  4M x 15 days 
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= + + caller 

callee 

?? ?? ?? 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 

CyLab, CMU 68 (c) 2016, C. Faloutsos 
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1 caller 5 receivers 4 days of activity 



CMU SCS 
Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 
CyLab, CMU 70 (c) 2016, C. Faloutsos 

= 

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, 
Christos Faloutsos, Prithwish Basu, Ananthram Swami, 
 Evangelos Papalexakis, Danai Koutra.  Com2: Fast 
Automatic Discovery of Temporal (Comet) Communities. 
PAKDD 2014, Tainan, Taiwan. 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 

–  Inter-arrival time patterns 
•  Acknowledgements and Conclusions 

CyLab, CMU 
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RSC: Mining and Modeling Temporal 
Activity in Social Media 

Alceu F. Costa*   Yuto Yamaguchi    Agma J. M. Traina 

Caetano Traina Jr.    Christos Faloutsos 

Universidade 
de São Paulo 

KDD 2015 – Sydney, 
Australia 

*alceufc@icmc.usp.br 
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Reddit Dataset 
Time-stamp from comments 
21,198 users 
20 Million time-stamps 

Twitter Dataset 
Time-stamp from tweets 
6,790 users 
16 Million time-stamps 

Pattern Mining: Datasets 

For each user we have:  
 Sequence of postings time-stamps: T = (t1, t2, t3, …) 
 Inter-arrival times (IAT) of postings:  (∆1, ∆2, ∆3, …) 

78 
t1 t2 t3 t4 

∆1 ∆2 ∆3 

time 
CyLab, CMU (c) 2016, C. Faloutsos 



CMU SCS 

Pattern Mining 
Pattern 1: Distribution of IAT is heavy-tailed 

Users can be inactive for long periods of time before making new 
postings 

IAT Complementary Cumulative Distribution Function (CCDF) 
(log-log axis) 
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Pattern Mining 
Pattern 2: Bimodal IAT distribution 

Users have highly active sections and resting periods 

Log-binned histogram of postings IAT 

80 Twitter Users 
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Human? Robots? 

log 

linear 

CyLab, CMU (c) 2016, C. Faloutsos 81 



CMU SCS 

Human? Robots? 

log 

linear 
2’ 3h 1day 

CyLab, CMU (c) 2016, C. Faloutsos 82 



CMU SCS 

Experiments: Can RSC-Spotter Detect 
Bots? 

Precision vs. Sensitivity Curves 
Good performance: curve close to the top 
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 RSC Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94% 
Sensitivity > 

70% 

With strongly 
imbalanced 

datasets 

# humans >> # 
bots 

Twitter 
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Experiments: Can RSC-Spotter Detect 
Bots? 

Precision vs. Sensitivity Curves 
Good performance: curve close to the top 
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 RSC Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96% 
Sensitivity > 

47% 

With strongly 
imbalanced 

datasets 

# humans >> # 
bots 

Reddit 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Acknowledgements and Conclusions 

CyLab, CMU 
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Thanks 

CyLab, CMU 

Thanks to: NSF IIS-0705359, IIS-0534205,  
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab 

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies 
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CONCLUSION#1 – Big data 
•  Patterns          Anomalies 

•  Large datasets reveal patterns/outliers that 
are invisible otherwise 

CyLab, CMU 
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CONCLUSION#2 – tensors 

•  powerful tool 

CyLab, CMU 

= 

1 caller 5 receivers 4 days of activity 
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TAKE HOME MESSAGE: 

Cross-disciplinarity 
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Cross-disciplinarity 
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Thank you!  


