Anomaly detection in large graphs

Christos Faloutsos CMU

Thank you!

• Prof. Yuzuru Tanaka

• Mr. Kiyoshi Toyoda

• Prof. Nicolas Spyratos

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Conclusions

Graphs - why should we care?

Graphs - why should we care?

Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs - why should we care?

- web-log ('blog') news propagation MAHOO! вLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

NETFLIX

• Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

Ο

00

• P2: patterns in time-evolving graphs /

Motivating problems

Retterns X anomalies

• P1: patterns? Fraud detection?

P2: patterns in time-evolving graphs / tensors
 destination

source

time

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
 - Part#2: time-evolving graphs; tensors
 - Conclusions

Part 1: Patterns, & fraud detection

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

• Connected Components – 4 observations:

Connected Components

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- P1.1: Patterns: Degree; Triangles
- P1.2: Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CREST, JST

ahoo!
Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CREST, JST

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CREST, JST

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CREST, JST

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CREST, JST

R

MORE Graph Patterns

	Unweighted	Weighted	
Static	 A. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] A. Triangle Power Law (TPL) [Tsourakakis '08] B. Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]	
Dvnamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]	
TG: A Recursive Realistic Graph Generator using Random			

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. '05] L06. Small and shrinking diameter [Albert and Barabási '99. Leskovec et al. '05] L07. Constant size 2 nd and 3 rd connected components [McGlohon et al. '08] L08. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. '08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. `08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u>Oct.
 2012, Morgan Claypool.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns

- P1.2: Anomaly / fraud detection
 - No labels spectral **Patterns**
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

How to find 'suspicious' groups?

• 'blocks' are normal, right?

CREST, JST

Except that:

• 'blocks' are normal, ish

• 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily?

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily?
 - A: Silver bullet: SVD!

 Recall: (SVD) matrix factorization: finds blocks Even if shuffled!

Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)

- Case #0: No lockstep behavior in random power law graph of 1M nodes, 3M edges

Adjacency Matrix

Spectral Subspace Plot

- Case #1: non-overlapping lockstep
- "Blocks" ←→ "Rays"

Rule 1 (short "rays"): two blocks, high density (90%), no "camouflage", no "fame"
CREST, JST(c) C. Faloutsos, 201851

- Case #2: non-overlapping lockstep
- "Blocks; low density" ←→ Elongation

Rule 2 (long "rays"): two blocks, low density (50%), no "camouflage", no "fame"CREST, JST(c) C. Faloutsos, 201852

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
 "Rays" Adjacency Matrix
 Spectral Subspace Plot

Rule 3 (tilting "rays"): two blocks, with "camouflage", no "fame"CREST, JST(c) C. Faloutsos, 201853

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
 "Rays" Adjacency Matrix Spectral Subspace Plot

Rule 3 (tilting "rays"): two blocks, no "camouflage", with "fame"CREST, JST(c) C. Faloutsos, 201854

- Case #4: ? lockstep

"Pearls"

- Case #4: overlapping lockstep
- "Staircase"

"Pearls"

Rule 4 ("pearls"): a "staircase" of three partially overlapping blocks.

Dataset

- Tencent Weibo **P**?
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

CREST, JST

CREST, JST

(c) C. Faloutsos, 2018

• Spikes on the out-degree distribution

CREST, JST

(c) C. Faloutsos, 2018

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral methods
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

(c) C. Faloutsos, 2018

E-bay Fraud detection

CREST, JST

(c) C. Faloutsos, 2018

69

E-bay Fraud detection - NetProbe

(c) C. Faloutsos, 2018

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere
 - Long (and growing) list of tools for anomaly/fraud detection

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
 - P2.1: tools/tensors
 - P2.2: other patterns
- Conclusions

Part 2: Time evolving graphs; tensors

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

CREST, JST

(c) C. Faloutsos, 2018

MANY more settings,

with >2 'modes'

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

- Problem #2.1''':
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 'modes' (and 4, 5, etc modes)

Answer: tensor factorization

• PARAFAC decomposition

Answer: tensor factorization

• PARAFAC decomposition

– 4M x 15 days

• Results for who-calls-whom-when

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

CREST, JST

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

CREST, JST

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs
 - P2.1: tools/tensors
 - P2.2: other patterns inter-arrival time
- Conclusions

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa^{*} Yuto Yamaguchi Agma J. M. Traina Caetano Traina Jr. Christos Faloutsos

*alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)

Pattern Mining

Human? Robots?

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves

Good performance: curve close to the top

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves

Good performance: curve close to the top

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns (P.L. growth)

CREST, JST

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Acknowledgements and Conclusions

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Beutel, Alex

Chau, Polo

Eswaran,

Dhivya

Hooi, Bryan

Danai

Kang, U

Papalexakis, Vagelis

Shah,

Neil

Shin, Kijung

Song, Hyun Ah

CREST, JST

(c) C. Faloutsos, 2018

127

CONCLUSION#1 – Big data

- Patterns X Anomalies
- Large datasets reveal patterns/outliers that are invisible otherwise

CONCLUSION#2 – tensors

• powerful tool

CREST, JST

References

- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/S004 49ED1V01Y201209DMK006

TAKE HOME MESSAGE:

Cross-disciplinarity

CREST, JST

Thank you!

Cross-disciplinarity

CREST, JST