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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Conclusions
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Graphs - why should we care?

>$10B; ~1B users

CREST, JST
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Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

CREST, JST
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Graphs - why should we care?
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic and 

anomaly detection
• Recommendation systems
• ....

• Many-to-many db relationship -> graph

CREST, JST
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors
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time

destination

Patterns            anomalies
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns & fraud detection
• Part#2: time-evolving graphs; tensors
• Conclusions

CREST, JST
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Part 1:
Patterns, & 

fraud detection
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Laws and patterns
• Q1: Are real graphs random?

CREST, JST
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Laws and patterns
• Q1: Are real graphs random?
• A1: NO!!

– Diameter (‘6 degrees’; ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

CREST, JST
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

CREST, JST
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

CREST, JST
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S2: connected component sizes
• Connected Components – 4 observations:

Size

Count

(c) C. Faloutsos, 2018CREST, JST

1.4B nodes
6B edges
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S2: connected component sizes
• Connected Components

Size

Count

(c) C. Faloutsos, 2018CREST, JST

1) 10K x 
larger
than next
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S2: connected component sizes
• Connected Components

Size

Count

(c) C. Faloutsos, 2018CREST, JST

2) ~0.7B 
singleton
nodes



CMU SCS

19

S2: connected component sizes
• Connected Components

Size

Count

(c) C. Faloutsos, 2018CREST, JST

3) SLOPE!
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S2: connected component sizes
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?1100-size cmpt

X 65.
Why?

(c) C. Faloutsos, 2018CREST, JST

4) Spikes!
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S2: connected component sizes
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

(c) C. Faloutsos, 2018CREST, JST
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns: Degree; Triangles
– P1.2: Anomaly/fraud detection

• Part#2: time-evolving graphs; tensors
• Conclusions

CREST, JST
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 

CREST, JST
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?
– 2x the friends, 2x the triangles ?

CREST, JST
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Triangle Law: #S.3 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

CREST, JST
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

26CREST, JST 26(c) C. Faloutsos, 2018

? ?

?
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

30CREST, JST 30(c) C. Faloutsos, 2018
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MORE Graph Patterns

CREST, JST (c) C. Faloutsos, 2018 35

✔
✔
✔

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09. 
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MORE Graph Patterns
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• Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal)

• Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool. 
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions

CREST, JST

Patterns            anomalies
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How to find ‘suspicious’ groups?
• ‘blocks’ are normal, right?

CREST, JST (c) C. Faloutsos, 2018 38

fans

idols
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Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

CREST, JST (c) C. Faloutsos, 2018 39
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

CREST, JST (c) C. Faloutsos, 2018 40

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]
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Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

CREST, JST (c) C. Faloutsos, 2018 42

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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~ + +

DETAILS

M
timestamps

‘cancer’ ‘alzheimer’ ‘Parkinson’

N genes
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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~ + +

DETAILS

M
timestamps

‘hurricane’ ‘cold-spell’ ‘heat-wave’

N locations



CMU SCS

Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS

Even if shuffled!
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)
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Lockstep and Spectral Subspace Plot

• Case #0: No lockstep behavior in random
power law graph of 1M nodes, 3M edges

• Random “Scatter”

Adjacency Matrix Spectral Subspace Plot

+ +CREST, JST 50(c) C. Faloutsos, 2018
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Lockstep and Spectral Subspace Plot

• Case #1: non-overlapping lockstep
• “Blocks” “Rays”

Adjacency Matrix Spectral Subspace Plot

CREST, JST 51(c) C. Faloutsos, 2018



CMU SCS

Lockstep and Spectral Subspace Plot

• Case #2: non-overlapping lockstep
• “Blocks; low density” Elongation

Adjacency Matrix Spectral Subspace Plot

CREST, JST 52(c) C. Faloutsos, 2018
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Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) Tilting

“Rays”
Adjacency Matrix Spectral Subspace Plot

CREST, JST 53(c) C. Faloutsos, 2018
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Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) Tilting

“Rays”
Adjacency Matrix Spectral Subspace Plot
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Lockstep and Spectral Subspace Plot

• Case #4: ? lockstep
• “?” “Pearls”

Adjacency Matrix Spectral Subspace Plot

?

CREST, JST 55(c) C. Faloutsos, 2018
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Lockstep and Spectral Subspace Plot

• Case #4: overlapping lockstep
• “Staircase” “Pearls”

Adjacency Matrix Spectral Subspace Plot

CREST, JST 56(c) C. Faloutsos, 2018
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Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

CREST, JST 57(c) C. Faloutsos, 2018
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Real Data

“Pearls” “Staircase”

“Rays” “Block”

CREST, JST 58(c) C. Faloutsos, 2018
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Real Data
• Spikes on the out-degree distribution

´

´
CREST, JST 59(c) C. Faloutsos, 2018
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral methods
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions

CREST, JST
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E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU
[www’07]
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E-bay Fraud detection
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E-bay Fraud detection
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E-bay Fraud detection - NetProbe
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Popular press

And less desirable attention:
• E-mail from ‘Belgium police’ (‘copy of 

your code?’)
CREST, JST (c) C. Faloutsos, 2018 71
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Summary of Part#1
• *many* patterns in real graphs

– Power-laws everywhere
– Long (and growing) list of tools for 

anomaly/fraud detection

CREST, JST (c) C. Faloutsos, 2018 84

Patterns            anomalies
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs

– P2.1: tools/tensors
– P2.2: other patterns

• Conclusions

CREST, JST



CMU SCS

CREST, JST (c) C. Faloutsos, 2018 86

Part 2:
Time evolving 
graphs; tensors
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 87

smith
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 89

Mon
Tue
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 90
callee

caller
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Graphs over time -> tensors!
• Problem #2.1’:

– Given author-keyword-date
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 91
keyword

author

MANY more settings,
with >2 ‘modes’



CMU SCS

Graphs over time -> tensors!
• Problem #2.1’’:

– Given subject – verb – object facts
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 92
object

subject

MANY more settings,
with >2 ‘modes’
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Graphs over time -> tensors!
• Problem #2.1’’’:

– Given <triplets>
– Find patterns / anomalies

CREST, JST (c) C. Faloutsos, 2018 93
mode2

mode1

MANY more settings,
with >2 ‘modes’
(and 4, 5, etc modes)



CMU SCS

Answer : tensor factorization
• Recall: (SVD) matrix factorization: finds 

blocks

CREST, JST (c) C. Faloutsos, 2018 94

N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
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Answer: tensor factorization
• PARAFAC decomposition

CREST, JST (c) C. Faloutsos, 2018 96

= + +subject

object

politicians artists athletes
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Answer: tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days

CREST, JST (c) C. Faloutsos, 2018 97

= + +caller

callee

?? ?? ??
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

CREST, JST 98(c) C. Faloutsos, 2018

=
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

CREST, JST 99(c) C. Faloutsos, 2018
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
CREST, JST 100(c) C. Faloutsos, 2018

=

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann,
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
Evangelos Papalexakis, Danai Koutra. Com2: Fast
Automatic Discovery of Temporal (Comet) Communities.
PAKDD 2014, Tainan, Taiwan.
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs

– P2.1: tools/tensors
– P2.2: other patterns – inter-arrival time

• Conclusions

CREST, JST
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RSC: Mining and Modeling Temporal 
Activity in Social Media

Alceu F. Costa* Yuto Yamaguchi    Agma J. M. Traina

Caetano Traina Jr.    Christos Faloutsos

Universidade
de São Paulo

KDD 2015 – Sydney, 
Australia

*alceufc@icmc.usp.br
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Reddit Dataset
Time-stamp from comments
21,198 users
20 Million time-stamps

Twitter Dataset
Time-stamp from tweets
6,790 users
16 Million time-stamps

Pattern Mining: Datasets

For each user we have: 
Sequence of postings time-stamps: T = (t1, t2, t3, …)
Inter-arrival times (IAT) of postings: (∆1, ∆2, ∆3, …)

103
t1 t2 t3 t4

∆1 ∆2 ∆3

time
CREST, JST (c) C. Faloutsos, 2018
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Pattern Mining
Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new 
postings

IAT Complementary Cumulative Distribution Function (CCDF)
(log-log axis)
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Pattern Mining
Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new 
postings

IAT Complementary Cumulative Distribution Function (CCDF)
(log-log axis)
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Reddit Users Twitter Users
CREST, JST (c) C. Faloutsos, 2018

No surprises –
Should we give up?
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Human? Robots?

log

linear

CREST, JST (c) C. Faloutsos, 2018 106
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Human? Robots?

log

linear
2’ 3h 1day
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top

108
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94%
Sensitivity > 
70%

With strongly 
imbalanced 
datasets
# humans >> # 
bots

Twitter

CREST, JST (c) C. Faloutsos, 2018
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96%
Sensitivity > 
47%
With strongly 
imbalanced 
datasets
# humans >> # 
bots

Reddit

CREST, JST (c) C. Faloutsos, 2018
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Part 2: Conclusions

• Time-evolving / heterogeneous graphs -> 
tensors

• PARAFAC finds patterns
• Surprising temporal patterns (P.L. growth)

CREST, JST 124(c) C. Faloutsos, 2018
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Acknowledgements and Conclusions

CREST, JST
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Thanks

CREST, JST

Thanks to: NSF IIS-0705359, IIS-0534205, 
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies
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CONCLUSION#1 – Big data
• Patterns          Anomalies

• Large datasets reveal patterns/outliers that 
are invisible otherwise

CREST, JST
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CONCLUSION#2 – tensors

• powerful tool

CREST, JST

=

1 caller 5 receivers 4 days of activity
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TAKE HOME MESSAGE:

Cross-disciplinarity
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Cross-disciplinarity
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=

Thank you! 


