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Part 1: Graphs
Anomaly detection & B.P.

https://www.cs.cmu.edu/~christos/TALKS/19-GoI
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Roadmap

• Introduction 
• Part#1: Graphs and Tensors
• Part#2: Time series
• Part#3: extras (visualization, etc)
• Conclusions

Gov. of India
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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?un-supervised

semi-supervised
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.3: community detection
– P1.4: fraud/anomaly detection

• P1.4.1. Outliers
• P1.4.2. Lock-step behavior

– P1.5: belief propagation
Gov. of India

?un-supervised
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‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer

Gov. of India Copyright (C) 2019 C. Faloutsos 5
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Problem
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Given: Find:
1) Outliers
2) Lock-step
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Solution
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Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD
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P1.4.1. Outliers
• Which node(s) are strange?

– Q: How to start?

Gov. of India Copyright (C) 2019 C. Faloutsos 8
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P1.4.1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A1: egonet; and extract node features
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Ego-net Patterns: Which is 
strange?

10Gov. of India Copyright (C) 2019 C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Near-star Near-clique

telemarketer, port scanner,
people adding friends
indiscriminatively, etc.

tightly connected people, 
terrorist groups?, discussion 

group, etc.

Ego-net Patterns: Which is 
strange?

Gov. of India Copyright (C) 2019 C. Faloutsos
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P1.4.1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A: egonet; and extract node features
– Q’: which features?
– A’: ART! Infinite! Pick a few, e.g.:

Gov. of India Copyright (C) 2019 C. Faloutsos 12
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§ Ni: number of neighbors (degree) of ego i
§ Ei: number of edges in egonet i

§ Wi: total weight of egonet i
§ λw,i: principal eigenvalue of the weighted

adjacency matrix of egonet i

13

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Ego-net Patterns 

Gov. of India Copyright (C) 2019 C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Ei ∝ Ni
α

1 ≤ α ≤ 2

Gov. of India Copyright (C) 2019 C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

Enron CEO
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Gov. of India Copyright (C) 2019 C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.3: community detection
– P1.4: fraud/anomaly detection

• Outliers
• Lock-step behavior

– P1.5: belief propagation
Gov. of India

?

16

CMU SCS

Problem

Gov. of India Copyright (C) 2019 C. Faloutsos 17

Given: Find:
1) Outliers
2) Lock-step
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P1.4.1. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans

idols

Copyright (C) 2019 C. Faloutsos 18Gov. of India
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P1.4.1. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans

idols

Copyright (C) 2019 C. Faloutsos 19Gov. of India

19

CMU SCS

Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Copyright (C) 2019 C. Faloutsos 20Gov. of India
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?

Copyright (C) 2019 C. Faloutsos 21Gov. of India
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
A: Silver bullet: SVD!

Copyright (C) 2019 C. Faloutsos 22Gov. of India
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

Copyright (C) 2019 C. Faloutsos 23Gov. of India

From: HITS
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CMU SCS

Crush intro to SVD
• (SVD) matrix factorization: finds blocks

Gov. of India Copyright (C) 2019 C. Faloutsos 24

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

A) Even if shuffled!

24
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

Gov. of India

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

Copyright (C) 2019 C. Faloutsos 25

B) Even if ‘salt+pepper’ noise

25

CMU SCS

SVD - intuition
• Hidden/latent variable detection
• Block detection
• Dimensionality reduction
• embedding

Copyright (C) 2019 C. Faloutsos 26Gov. of India
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Toy example – 5 blocks

Copyright (C) 2019 C. Faloutsos 27

u0

u1 v1

v0

u0 u1

v0 v1

EigenPlots
Gov. of India

From: HITS

‘fans’

‘idols’
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Toy example – 5 blocks
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u0

u1 v1

v0

u0 u1

v0 v1

Gov. of India

From: HITS

‘fans’

‘idols’
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SVD - intuition
• Hidden/latent variable detection
• Block detection
• Dimensionality reduction
• embedding

Copyright (C) 2019 C. Faloutsos 29Gov. of India
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SVD - intuition

Copyright (C) 2019 C. Faloutsos 30

#logins from 128.1.1.1

#1
28

.1
.1

.3

Gov. of India
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SVD - intuition

Copyright (C) 2019 C. Faloutsos 31

u0

u1

‘customers’

‘IP-addresses’

500-d vector

2-d‘Smith’
‘Smith’

Gov. of India
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SVD - intuition
• Hidden/latent variable detection
• Block detection
• Dimensionality reduction
• Embedding (linear)

– SVD is a special case of ’deep neural net’

Copyright (C) 2019 C. Faloutsos 32Gov. of India
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)

OPTIONAL
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Lockstep and Spectral Subspace Plot

• Case #1: non-overlapping lockstep
• “Blocks” “Rays”

Adjacency Matrix Spectral Subspace Plot

Copyright (C) 2019 C. Faloutsos 34

OPTIONAL

Gov. of India
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Lockstep and Spectral Subspace Plot

• Case #2: non-overlapping lockstep
• “Blocks; low density” Elongation

Adjacency Matrix Spectral Subspace Plot

Copyright (C) 2019 C. Faloutsos 35

OPTIONAL

Gov. of India

35

CMU SCS

Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) Tilting

“Rays”
Adjacency Matrix Spectral Subspace Plot

Copyright (C) 2019 C. Faloutsos 36

OPTIONAL

Gov. of India
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Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) Tilting

“Rays”
Adjacency Matrix Spectral Subspace Plot

Copyright (C) 2019 C. Faloutsos 37

OPTIONAL

Gov. of India
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Lockstep and Spectral Subspace Plot

• Case #4: ? lockstep
• “?” “Pearls”

Adjacency Matrix Spectral Subspace Plot

?

Copyright (C) 2019 C. Faloutsos 38

OPTIONAL

Gov. of India
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Lockstep and Spectral Subspace Plot

• Case #4: overlapping lockstep
• “Staircase” “Pearls”

Adjacency Matrix Spectral Subspace Plot

Copyright (C) 2019 C. Faloutsos 39

OPTIONAL

Gov. of India
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Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

Copyright (C) 2019 C. Faloutsos 40Gov. of India
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Real Data

“Pearls” “Staircase”

“Rays” “Block”

Copyright (C) 2019 C. Faloutsos 41Gov. of India
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Real Data
• Spikes on the out-degree distribution

´

´
Copyright (C) 2019 C. Faloutsos 42Gov. of India

42



Faloutsos

15

CMU SCS

Solution

Gov. of India Copyright (C) 2019 C. Faloutsos 43

Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

?un-supervised

semi-supervised
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India
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Problem
• What color, for the rest?

– Given homophily (/heterophily etc)?

Gov. of India Copyright (C) 2019 C. Faloutsos 46
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)

Gov. of India Copyright (C) 2019 C. Faloutsos 47

www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.5: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP
• Success stories

Gov. of India

48

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip


Faloutsos

17

CMU SCS

E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU
[PKDD’06][WWW’07]

Copyright (C) 2019 C. Faloutsos 49Gov. of India

Detecting Fraudulent Personalities in Networks of Online 
Auctioneers. Duen Horng (Polo) Chau, Shashank Pandit, 
and Christos Faloutsos. (PKDD) 2006
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E-bay Fraud detection

Copyright (C) 2019 C. Faloutsos 50Gov. of India
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E-bay Fraud detection

Copyright (C) 2019 C. Faloutsos 51Gov. of India
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E-bay Fraud detection - NetProbe

Copyright (C) 2019 C. Faloutsos 52Gov. of India
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Background

Prof. Danai Koutra
U. Michigan

Copyright (C) 2019 C. Faloutsos 53Gov. of India
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CMU SCS Belief  Propagation
• Iterative message-based method

1st

round
2nd

round

...
until 
stop 

criterion 
fulfilled

• “Propagation matrix”:
² Homophily

0.9 0.1
0.1 0.9

PL

AI

class of
sender

class of receiver

[Pearl ‘82][Yedidia+ ’02] … [Gonzalez+ ‘09][Chechetka+ ‘10]
Copyright (C) 2019 C. Faloutsos 54Gov. of India
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Belief Propagation Equations

0.9 0.1
0.2 0.8

i j … … 

message(i −> j) ≈ belief(i) � homophily 
strength

Copyright (C) 2019 C. Faloutsos 55Gov. of India
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Belief Propagation Equations

i j … 

belief of i
prior 
belief messages from 

neighbors

Copyright (C) 2019 C. Faloutsos 56Gov. of India
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Background

Copyright (C) 2019 C. Faloutsos 57Gov. of India
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.5: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP

Gov. of India
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Unifying	Guilt-by-Association	Approaches:	
Theorems	and	Fast	Algorithms

Danai Koutra
U Kang

Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece
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Problem Definition:
GBA techniques

Given: Graph; &
few labeled nodes

Find: labels of rest
(assuming network 
effects)

Copyright (C) 2019 C. Faloutsos 60Gov. of India
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Problem Definition:
GBA techniques

Given: Graph; &
few labeled nodes

Find: labels of rest
(assuming network 
effects)

Copyright (C) 2019 C. Faloutsos 61Gov. of India
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BP  vs.  Linearized BP

BP is approximated by
Linearized	BP

0  1  0
1  0  1
0  1  0

?
0

-10-2
10-
2

1
1 
1

d1
d2 
d3

linearnon-linear

Belief Propagation

Our proposal:Original [Yedidia+]:

Copyright (C) 2019 C. Faloutsos 62Gov. of India

DETAILS

• Closed-form formula?
• Convergence?
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BP  vs.  Linearized BP

BP is approximated by
Linearized	BP

0  1  0
1  0  1
0  1  0

?
0

-10-2
10-
2

1
1 
1

d1
d2 
d3

linearnon-linear

Belief Propagation

Our proposal:Original [Yedidia+]:

Copyright (C) 2019 C. Faloutsos 63Gov. of India

DETAILS

• Closed-form formula?
• Convergence?
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Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my parents are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them

Copyright (C) 2019 C. Faloutsos 64Gov. of India
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CMU SCS

Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my parents are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them

Copyright (C) 2019 C. Faloutsos 65Gov. of India

YES!

65
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Correspondence of Methods

Method Matrix Unknown known
RWR [I  – c AD-1] × x = (1-c)y
SSL [I  + a(D - A)] × x = y

FABP [I  + a D - c’A] × bh = φh

0  1  0
1  0  1
0  1  0

?
0
1
1

1
1

1
d1

d2 
d3

final 
labels/ 
beliefs

prior 
labels/ 
beliefs

adjacency 
matrix

Copyright (C) 2019 C. Faloutsos 66Gov. of India

DETAILS
p = (1-c)/n [I - c B] -1 𝒆
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Problem: e-commerce ratings fraud
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
fraudulent users, 
products and sellers

Copyright (C) 2019 C. Faloutsos 67Gov. of India
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CMU SCS

Problem: e-commerce ratings fraud
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
fraudulent users, 
products and sellers

Copyright (C) 2019 C. Faloutsos 68Gov. of India

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
“ZooBP: Belief Propagation for Heterogeneous Networks”,
VLDB 2017
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Problem: e-commerce ratings fraud

Copyright (C) 2019 C. Faloutsos 69Gov. of India

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
“ZooBP: Belief Propagation for Heterogeneous Networks”,
VLDB 2017

DETAILS

69
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ZooBP: features
Fast; convergence guarantees.

Near-perfect accuracy linear in graph size

ideal

600x (matlab)
3x (C++)

Copyright (C) 2019 C. Faloutsos 70Gov. of India

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
“ZooBP: Belief Propagation for Heterogeneous Networks”,
VLDB 2017
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ZooBP in the real world

• Near 100% precision on 
top 300 users (Flipkart)

• Flagged users: 
suspicious
• 400 ratings in 1 sec
• 5000 good ratings and no 

bad ratings

Copyright (C) 2019 C. Faloutsos 71Gov. of India

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
“ZooBP: Belief Propagation for Heterogeneous Networks”,
VLDB 2017
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ZooBP: code etc
http://www.cs.cmu.edu/~deswaran/code/zoobp.zip

Copyright (C) 2019 C. Faloutsos 72Gov. of India

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
“ZooBP: Belief Propagation for Heterogeneous Networks”,
VLDB 2017

72
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– P1.5: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP
• Success stories

Gov. of India

73
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Other ‘success stories’?
• Accounting fraud
• Malware detection

Gov. of India Copyright (C) 2019 C. Faloutsos 74
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Network Effect Tools: SNARE
• Some accounts are sort-of-suspicious – how to combine weak 

signals?
Before

Copyright (C) 2019 C. Faloutsos 75Gov. of India

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M.
Steier, Christos Faloutsos: SNARE: a link analytic system for
graph labeling and risk detection. KDD 2009: 1265-1274
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Polo Chau
Machine Learning Dept

Carey Nachenberg
Vice President & Fellow

Jeffrey Wilhelm
Principal Software Engineer

Adam Wright
Software Engineer

Prof. Christos Faloutsos
Computer Science Dept

Polonium: Tera-Scale Graph Mining and 
Inference for Malware Detection

PATENT PENDING

SDM 2011, Mesa, Arizona

76

CMU SCS

Polonium: The Data
60+ terabytes of data anonymously 
contributed by participants of worldwide 
Norton Community Watch program 

50+ million machines
900+ million executable files

Constructed a machine-file bipartite 
graph (0.2 TB+)

1 billion nodes (machines and files)
37 billion edges

√
√

√

Copyright (C) 2019 C. Faloutsos 77Gov. of India
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)

Gov. of India Copyright (C) 2019 C. Faloutsos 78

www.cs.cmu.edu/~deswaran/code/zoobp.zip

78
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– …
– conclusions

• Part#2: Tensors and Knowledge Bases
• Conclusions – Future research

Gov. of India
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Over-arching conclusion
• MANY, time-tested, algorithms for graph 

mining
• (more, are needed)

Gov. of India Copyright (C) 2019 C. Faloutsos 80
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Over-arching conclusion

Gov. of India Copyright (C) 2019 C. Faloutsos 81

Pro
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In more detail
• (repeating the conclusions from each part 

P1.1-P1.5)

Gov. of India Copyright (C) 2019 C. Faloutsos 82

82

CMU SCS
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

? ?

83
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Problem definition
• Are real graphs random?

– S*: what do static graphs look like?
– T*: how do graphs evolve over time?

Gov. of India Copyright (C) 2019 C. Faloutsos 84

? ?

84
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Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– T*: how do graphs evolve over time?
• T.1: diameters
• T.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 85

? ?
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CMU SCS

Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– T*: how do graphs evolve over time?
• T.1: diameters
• T.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 86

Power laws: y ~ xa

NOT Gaussians

Take logarithms

? ?

x (log scale)

y (log scale)

a

86

CMU SCS
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

?
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Gov. of India Copyright (C) 2019 C. Faloutsos P1-88

Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q: Which node is the most important?

88

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos P1-89

Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q: Which node is the most important?
• A1: PageRank (PR)
• A2: HITS
• A3: SALSA

89

CMU SCS
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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Gov. of India Copyright (C) 2019 C. Faloutsos 91

Problem Definition

• Given a graph, and k
• Break it into k (disjoint) communities
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Short answer

• METIS [Karypis, Kumar]
• (but: maybe NO good cuts exist!)
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Roadmap

• Introduction – Motivation
• Part#1: Graphs
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– P1.2: node importance
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– P1.5: belief propagation
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Problem
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Given: Find:
1) Outliers
2) Lock-step
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Solution
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Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
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Problem
• What color, for the rest?

– Given homophily (/heterophily etc)?

Gov. of India Copyright (C) 2019 C. Faloutsos 97
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Thanks to
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Danai Koutra
U. Michigan

Dhivya Eswaran
CMU

Vagelis
Papalexakis
UCR

Namyong Park
CMU

Hyun Ah Song
CMU
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P1 – Graphs - More references
Danai Koutra and Christos Faloutsos, 
Individual and Collective Graph Mining: 
Principles, Algorithms, and Applications
October 2017, Morgan Claypool
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P1 – Graphs - More references
Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies
Oct. 2012, Morgan Claypool.
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P1 – Graphs - More references
Anomaly detection
• Leman Akoglu, Hanghang Tong, & Danai 

Koutra, Graph based anomaly detection 
and description: a survey Data Mining and 
Knowledge Discovery (2015) 29: 626.

• Arxiv version: 
https://arxiv.org/abs/1404.4679
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https://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
https://doi.org/10.1007/s10618-014-0365-y
https://arxiv.org/abs/1404.4679

