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Part#2: Time series
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* Introduction — Motivation
* Part#1: Graphs
— P1.1: properties/patterns in graphs
=) — P1.2: node importance

— P1.3: community detection
— P1.4: fraud/anomaly detection
— P1.5: belief propagation
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¢ Introduction — Motivation
* Part#1: Graphs

— P1.1: properties/patterns in graphs
=) _ P1.2: node importance ﬂ
* PageRank and Personalized PR
* HITS
- svp)
* SALSA
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‘Recipe’ Structure:

» Problem definition
e Short answer/solution
* LONG answer — details

» Conclusion/short-answer
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Node importance - Motivation:

Given a graph (eg., web pages containing
the desirable query word)
Q1: Which node is the most important?

Q2: How close is node ‘A’ to node ‘B’?

VL
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CarnegieMellon

Node importance - Motivation:

 Given a graph (eg., web pages containing
the desirable query word)
* QI1: Which node is the most important?
— PageRank (PR = RWR), HITS, SALSA
* Q2: How close is node ‘A’ to node ‘B’?
— Personalized P.R. (/SALSA)
i
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SVD properties

v'Hidden/latent variable detection
v'Compute node importance (HITS)
v'Block detecti
y .oc d.e ec 1.0n . ?

Dimensionality reduction Ny
v'Embedding (linear)

— SVD is a special case of ’deep neural net’

m e -
fio ETI
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Roadmap

* Introduction — Motivation
* Part#1: Graphs
— P1.1: properties/patterns in graphs

— P1.2: node importance

* PageRank and Personalized PR
 HITS
* SALSA
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PageRank (google)

*Brin, Sergey and Lawrence
Page (1998). Anatomy of a
Large-Scale Hypertextual Web
Search Engine. Tth Intl World
Wide Web Conf.

*Page, Brin, Motwani, and
Winograd (1999). The PageRank
citation ranking: Bringing order
Larry Sergey to the web. Technical Report
Page Brin
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Problem: PageRank

Given a directed graph, find its most
interesting/central node

A node is important,
m if its parents are important
(recursive, but OK!)
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Problem: PageRank - solution

Given a directed graph, find its most \ﬁ\@x
interesting/central node ) O

Proposed solution: Random walk; spot most
‘popular’ node (-> steady state prob. (ssp))

A node high ssp,
m if its parents have high ssp
(recursive, but OK!)
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(Simplified) PageRank algm%
* Let A be the adjacency matrix;
® let B be the transition matrix: transpose, column-normalized = then
\From B
To i
5 ey | HHH
1/2 12
12
12
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CarnegieMellon
(Simplified) PageRank algm%
*Bp=p
B
1
6o |
12 12
12
12
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Definitions %

A Adjacency matrix (from-to)
D  Degree matrix = (diag ( d1, d2, ..., dn))
B Transition matrix: to-from, column

normalized
B=ATD!
Gov. of India Copyright (C) 2019 C. Faloutsos 15
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(Simplified) PageRank algm%

* thus, p is the eigenvector that corresponds
to the highest eigenvalue (=1, since the matrix is
column-normalized)

* Why does such a p exist?

— p exists if B is nxn, nonnegative, irreducible
[Perron—Frobenius theorem]
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(Simplified) PageRank algorithm

* In short: imagine a particle randomly ?\ﬁk
moving along the edges ¢ \Q\Q{‘ D
» compute its steady-state probabilities (ssp)

Full version of algo: with occasional random e

jumps
Why? To make the matrix irreducible @
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(Simplified) PageRank algorithm
. . . S
* In short: imagine a particle randomly \ﬁﬁ
moving along the edges ¢ 5‘}3@\
» compute its steady-state probabilities (ssp)
Full version of algo: with occasional random

jumps
Why? To make the matrix irreducible @

Gov. of India Copyright (C) 2019 C. Faloutsos 18

18




Faloutsos

(Simplified) PageRank algorithm

[N N
* In short: imagine a particle randomly \ﬁiﬂ
moving along the edges \“sg
» compute its steady-state probabilities (ssp)

Full version of algo: with occasional random

jumps
Why? To make the matrix irreducible
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CarnegieMellon

(Simplified) PageRank algorithm

* In short: imagine a particle randomly ?\ﬁk
moving along the edges ¢ \Q\Q{‘ D
» compute its steady-state probabilities (ssp)

Full version of algo: with occasional random

jumps
Why? To make the matrix irreducible @
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(Simplified) PageRank algorithm

[N 3
* In short: imagine a particle randomly \ﬁﬁ
moving along the edges ¢ 5‘}3@\

» compute its steady-state probabilities (ssp)
Full version of algo: with occasional random

jumps
Why? To make the matrix irreducible @
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(Simplified) PageRank algorithm
* In short: imagine a particle randomly ﬁ
R

moving along the edges
» compute its steady-state probabilities (ssp)
PageRank = PR

= Random Walk with Restarts = RWR
= Random surfer

Gov. of India Copyright (C) 2019 C. Faloutsos 2
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Full Algorithm %

» With probability /-c, fly-out to a random \ﬁ
node \‘&
* Then, we have
p=cBp+(l-c)nl1=>
p=(-c)n [I-cB] ' 1

H H
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Full Algorithm %

* With probability /-c, fly-out to a random\ﬁ#

node \{

* Then, we have
p=cBp+(lc)nl=> -

p=(l-c)yn [I-¢B] ' 1

- 1
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Notice:

» pageRank ~ in-degree
* (and HITS, also: ~ in-degree)
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CarnegieMellon

Roadmap v

* Introduction — Motivation

 Part#1: Graphs
— P1.1: properties/patterns in graphs

— P1.2: node importance
-  PageRank and Personalized PR
« HITS
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Node importance - Motivation:

» Given a graph (eg., web pages containing
the desirable query word)
* QI1: Which node is the most important?

=) » Q2: How close is node ‘A’ to node ‘B’?

A

AL
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Personalized P.R.

Taher H. Haveliwala. 2002. Topic-sensitive
PageRank. (WWW '02). 517-526.
http://dx.doi.org/10.1145/511446.511513

Page L., Brin S., Motwani R., and Winograd
T. (1999). The PageRank citation ranking:
Bringing order to the web. Technical Report
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Extension: Personalized P.R.

* How close is ‘4’ to “2°?
* (or: if I like page/node “2°, what else would
you recommend?)

\
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Extension: Personalized P.R.

* How close is ‘4’ to ‘2’7
* (or: if I like page/node ‘2°, what else would
you recommend?)

\
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CarnegieMellon

Extension: Personalized P.R.
* How close is ‘4’ to 2°?

* (or: if I like page/node ‘2°, what else would
you recommend?)

'\

Gov. of India

Copyright (C) 2019 C. Faloutsos
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Extension: Personalized P.R.
* How close is ‘4’ to ‘2°?

* (or: if I like page/node “2°, what else would
you recommend?)

High score (A -> B) if

*  Many
* Short
* Heavy
T paths A->B
Gov. of India Copyright (C) 2019 C. Faloutsos 33

* With probability /-c, fly-out to a
node(s)

* Then, we have e
p=cBp+(l-c)n¥= e
(p=(-c)n [I-cB] ' 4]

| O]

Gov. of India

- |1 ®
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Extension: Personalized P.R.

[N -
* How close is ‘4’ to ‘2°? w \%s
. S¥..
* A: compute Personalized P.R. of ‘4, "3\

restarting from 2’

'\
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Extension: Personalized P.R.

* How close is ‘4’ to “2°?

* A: compute Personalized P.R. of ‘4’,
restarting from ‘2° — Related to
— ‘escape’ probability

— ‘round trip’ probability
Gov. of India Copyright (C) 2019 C. Faloutsos 36
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77

* Introduction — Motivation

* Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance

 PageRank and Personalized PR
-) — Fast computation - ‘Pixie’

» HITS

g
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Extension: Personalized P%

* Q: Faster computation than:
p=(-c)n [I-cB]"' 1

Gov. of India Copyright (C) 2019 C. Faloutsos 38
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Pixie algorithm

@

Chantat Eksombatchai, Pranav Jindal, Jerry
Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, Jure Leskovec:
Pixie: A System for Recommending 3+ Billion
Items to 200+ Million Users in Real-Time.
WWW 2018: 1775-1784

https://dl.acm.org/citation.cfm?doid=3178876.
3186183
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Pixie algorithm

* Q: Faster computation than:
p=(l-c)yn [I-¢B] ' 1

* A:simulate a few R.W.
— keep visit counts  C;

— fast and nimble

Gov. of India Copyright (C) 2019 C. Faloutsos 40

40


https://dl.acm.org/citation.cfm?doid=3178876.3186183

Faloutsos
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Personalized PageRank algorithm

LI

?

i
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Personalized PageRank algorithm

@/
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Personalized PageRank algorithm

LI

/@/
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Personalized PageRank algorithm

o

¥

O “
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Personalized PageRank algorithm

|
gl
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Personalized PageRank algorithm

2%
I
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Roadmap

* Introduction — Motivation

 Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance
 PageRank and Personalized PR

— Fast computation - ‘Pixie’

-) — Other applications
* HITS

p
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Applications of node proximity

= « Recommendation
* Link prediction /
* ‘Center Piece Subgraphs’
e
/7 .

@:’9?;’

e'// H.
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Applications of node proximity

* Recommendation
= .« Link prediction
* ‘Center Piece Subgraphs’

* ... &) /’
&

!

Gov. of India Copyright (C) 2019 C. Faloutsos
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CarnegieMellon

Applications of node proximity

+ Recommendation e
27

* Link prediction
= - ‘Center Piece Subgraphs’

° e
o ©
i
A O O  CePS auy
| S
o QO O~0
R ° °
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CarnegieMellon

Applications of node proximity

* Recommendation
* Link prediction /

= « ‘Center Piece Subgraphs’

(@] / CePS guy

Copyright (C) 2019 C. Faloutsos
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Applications of node proximity

* Recommendation 1
* Link prediction /

= « ‘Center Piece Subgraphs’

. b’ s 0
2> weBIG
« ,%%“' © __  BNG
e — SR, THEORY
~ O W O e
O A ) — e
oo 3 O
¥ °A ° °
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Applications of node proximity

+ Recommendation e
27

* Link prediction
= - ‘Center Piece Subgraphs’

cePS gu
 CePsauy

Fast_Algorithms for Querying and Mining Large Graphs

54

CarnegieMellon

Roadmap

* Introduction — Motivation @

* Part#1: Graphs
— P1.1: properties/patterns in graphs ?
— P1.2: node importance ‘ ﬂ
* PageRank and Personalized PR
- « HITS
* SVD

Gov. of India Copyright (C) 2019 C. Faloutsos 55

55


http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-112.pdf

Faloutsos

Kleinberg’s algo (HITS)

Kleinberg, Jon (1998).
Authoritative sources in a
hyperlinked environment.
Proc. 9th ACM-SIAM
Symposium on Discrete
Algorithms.
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Recall: problem dfn

» Given a graph (eg., web pages containing
the desirable query word)

* QI1: Which node is the most important?

L
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/ Why not just PageRank? \

HITS (and its derivative, SALSA),
differentiate between “hubs” and
“authorities”

2. HITS can help to find the largest community

3. (SVD: powerful tool) dol
idols

\ @/)\Qg fans Mo |
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Gov. of India

Kleinberg’s algorithm

* Problem dfn: given the web and a query
* find the most ‘authoritative’ web pages for
this query

Copyright (C) 2019 C. Faloutsos 59
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Gov. of India

Problem: PageRank

Given a directed graph, find its most
interesting/central node

A node is important,
; ‘ E if its parents are important
(recursive, but OK!)

Copyright (C) 2019 C. Faloutsos 60
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CarnegieMellon

Gov. of India

HITS
Problem: Pagefank

Given a directed graph, find its most
interesting/central node

“wise”

O  Anode is important,
; ‘ E if its parents are iwnt
(recursive, but OK!)

AND: A node is “'wise”
if its children are important

61
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Kleinberg’s algorithm
* Step 0: find nodes with query word(s)

* Step 1: expand by one move forward and
backward

Gov. of India Copyright (C) 2019 C. Faloutsos 62
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Kleinberg’s algorithm

* on the resulting graph, give high score (=
‘authorities”) to nodes that many "*wise’’
nodes point to

* give high wisdom score (‘hubs’) to nodes
that point to good ‘authorities’

7L

Gov. of India Copyright (C) 2019 C. Faloutsos 63
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Kleinberg’s algorithm
Then:
k'/—\ . a; = hy+ h + hy,
b that is
le i
! a;=Sum (h;) over all j that
me (j,i) edge exists
or
a=ATh
=[]
Gov. of India Copyright (C) 2019 C. Faloutsos 64
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CarnegieMellon

Kleinberg’s algorithm
Then:
° a; = hy + hy + hy,
ke that is
1o iee
. a;=Sum (h;) over all; that
m (j,i) edge exists
or
a=ATh
RE|
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CarnegieMellon

Kleinberg’s algorithm
/\ symmetrically, for the ‘hubness’:

i o I hi=a, + a,+ a,
o that is
® h;=Sum (q;) over all that
o ed  (iy)edge exists
or
h=Aa

-1
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Kleinberg’s algorithm
/\ symmetrically, for the ‘hubness’:

i e n h;=a,+a,+a,

oo i

oo o that is

e ®  h;=Sum(g) overalljthat

ool  (iy)edge exists
or
h=Aa
Gov. of India Copyright (C) 2019 C. Faloutsos 67
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Kleinberg’s algorithm

that:

h=Aa I
a=ATh

Gov. of India Copyright (C) 2019 C. Faloutsos

ﬂ

In conclusion, we want vectors h and a such

LI
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CarnegieMellon

Kleinberg’s algorithm
that:

| h=Aa I
a=ATh |

Gov. of India Copyright (C) 2019 C. Faloutsos

ﬂ

In conclusion, we want vectors h and a such

LI

69
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Kleinberg’s algorithm

that:

| h=Aa I
| a=ATh I

Gov. of India Copyright (C) 2019 C. Faloutsos
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In conclusion, we want vectors h and a such

LI
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Kleinberg’s algorithm

In conclusion, we want vectors h and a such

that:

| h-aa | |-

a=ATh
| |

Gov. of India Copyright (C) 2019 C. Faloutsos
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Kleinberg’s algorithm

In short, the solutions to

h=Aa
a=ATh
are the left- and right- singular-vectors of the
adjacency matrix A.

Starting from random a’ and iterating, we’ll
eventually converge

... to the vector of strongest singular value.

Gov. of India Copyright (C) 2019 C. Faloutsos
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Kleinberg’s algorithm - results

Eg., for the query ‘java’:
0.328 www.gamelan.com
0.251 java.sun.com

0.190 www.digitalfocus.com (“the java
developer™)

Gov. of India Copyright (C) 2019 C. Faloutsos
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Roadmap

¢ Introduction — Motivation

* Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance
* PageRank and Personalized PR
* HITS
- « (SVD)
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SVD properties

» Hidden/latent variable detection
» Compute node importance (HITS)
* Block detection

* Dimensionality reduction
* Embedding

\Uav. of India Copyright (C) 2019 C. Faloutsos Zy
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Crush intro to SVD

/: (SVD) matrix factorization: finds blocks \

‘music lovers’ ‘sports lovers’ ‘citizens’

il . ‘singers’ ‘athletes’  ‘politicians’
idols -
«—> & ﬁ (%1
N - + | +
fans i

i i
U1 U
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Crush intro to SVD

/: (SVD) matrix factorization: finds blocks \

M ‘music lovers’ ‘sports lovers’ ‘citizens’

i . ‘singers’ ‘athletes’  ‘politicians’
idols -
— :& @ U
g— g
N - | .
fans
i i
Gov. of India Copyright (C) 2019 C. Faloutsos
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Crush intro to SVD

/: (SVD) matrix factorization: finds blocks \

‘music lovers’ ‘sports lovers’ ‘citizens’

‘, . M ‘singers’ ‘athletes’ ‘politicians’
idols g ) -
— ﬁ_ﬁ (%1
8
N - + | +
fans :
Gov. of India Copyright (C) 2019 C. Faloutsos
78
Crush intro to SYVD

/: (SVD) matrix factorization: finds blocks \

HITS: first singular vector, ie, fixates
on largest group

Authority
(D | scores

N
fans i
o & o/
Gov. of India oo 9
79
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Crush intro to SVD
* Basis for anomaly detection — P1.4
* Basis for tensor/PARAFAC — P2.5
‘music lovers’ ‘sports lovers’ ‘citizens’
(2 | .dMI ‘singers’ ‘athletes’ ‘politicians’
1dols -
— 84 n
8 |
N _ . | .
fans
\ B
Gov. of India Copyright (C) 2019 C. Faloutsos
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SVD properties

/\-/ Hidden/latent variable detection \

v'Compute node importance (HITS)
v'Block detection

* Dimensionality reduction
* Embedding

\Uav. of India Copyright (C) 2019 C. Faloutsos _SJ
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CarnegieMellon

SVD - intuition \
5
SVD: gives ;r'g:‘ .: *
best axis t ject >
est axis o projee g . \9 first singular
13 o, *
= LA vector
.« ®
L]

vi®
.

¢ minimum RMS error etweets for Byonce
VI V2
El‘\,;‘:‘ e
\ of India Copyright (C) 2019 C. Faloutsos
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v» of India Copyright (C) 2019 C. Faloutsos y

SVD properties

v'Hidden/latent variable detection
v'Compute node importance (HITS)
v'Block detection
v'Dimensionality reduction
* Embedding

R

83
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Crush intro to SVD
* SVD compression is a linear autoencoder \

M idols reconstructed row i

N
Qes

row i (500 dim)

\Uav. of India Copyright (C) 2019 C. Faloutsos .SJ
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Crush intro to SVD
* SVD compression is a linear autoencoder \

M idols reconstructed row i

e %{ Mes
zig/lo>l<3 / \

matrix

row i (500 dim)

85
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SVD properties

v'Hidden/latent variable detection \

v'Compute node importance (HITS)

v'Block detection ~

v'Dimensionality reduction PN

v'Embedding (linear)

— SVD is a special case of *deep neural net’

vo %

&
I j
ﬂ H H i @
o ut
Q» of India Copyright (C) 2019 C. Faloutsos 36
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Node importance - Motivation:

» Given a graph (eg., web pages containing 7
the desirable query word)

* Q1: Which node is the most important?
— PageRank (PR = RWR), HITS, SALSA

* Q2: How close is node ‘A’ to node ‘B’?
— Personalized P.R. (/SALSA)

VL.
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SVD properties

v'Hidden/latent variable detection
v'Compute node importance (HITS)

v'Block detection —_
VD . . . ‘\l‘\:/
Dimensionality reduction AN
v'Embedding (linear)
— SVD is a special case of *deep neural net’ “
N m
TR P =
Gov. of India Copyright (C) 2019 C. Faloutsos 88
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SVD properties

v'Hidden/latent variable detection

Gov. of India Copyright (C) 2019 C. Faloutsos
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Roadmap

* Introduction — Motivation
* Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance
=) — P1.3: community detection
— P1.4: fraud/anomaly detection
— P1.5: belief propagation
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Roadmap

* Introduction — Motivation
* Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance
=) — P1.3: community detection
— P1.4: fraud/anomaly detection
— P1.5: belief propagation
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Roadmap
Wik

¢ Introduction — Motivation

* Part#1: Graphs
— P1.1: properties/patterns in graphs

?

— P1.2: node importance
— P1.3: community detection
- * Algorithm
» Warning: ‘no good cuts’
— P1.4: fraud/anomaly detection

Gov. of India Copyright (C) 2019 C. Faloutsos 9
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? @

Problem « 2 Tp
* Given a graph, and k& %

* Break it into & (disjoint) communities

Gov. of India Copyright (C) 2019 C. Faloutsos P2-93
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Short answer

* METIS [Karypis, Kumar]

Gov. of India Copyright (C) 2019 C. Faloutsos P2-94
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Solution#1: METIS

Arguably, the best algorithm

Open source, at

— http:/glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0 tar.gz

and *many* related papers, at same url

Main idea:
— coarsen the graph; Q @
— partition; \ !

— un-coarsen O @

Gov. of India Copyright (C) 2019 C. Faloutsos P2-95

95

CarnegieMellon

Solution #1: METIS

G. Karypis and V. Kumar. METIS 4.0:
Unstructured graph partitioning and sparse
matrix ordering system. TR, Dept. of CS,
Univ. of Minnesota, 1998.

<and many extensions>
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Solutions #2,3...

Fiedler vector (2" singular vector of Laplacian).

Modularity: Community structure in social and
biological networks M. Girvan and M. E. J. Newman, PNAS
June 11, 2002. 99 (12) 7821-7826;
https://doi.org/10.1073/pnas. 122653799

Co-clustering: [Dhillon+, KDD’03]

Clustering on the A? (square of adjacency matrix)
[Zhou, Woodruff, PODS’04]

Minimum cut / maximum flow [Flake+, KDD’00]
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http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz
https://doi.org/10.1073/pnas.122653799
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Roadmap

* Introduction — Motivation
* Part#1: Graphs

— P1.1: properties/patterns in graphs
— P1.2: node importance

» Algorithm
g » Warning: ‘no good cuts’

— P1.4: fraud/anomaly detection
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— P1.3: community detection * m
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A word of caution

» BUT: often, there are no good cuts:
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A word of caution

» BUT: often, there are no good cuts:
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A word of caution (52

* Maybe there are no good cuts: “jellyfish”’
shape [Tauro+’01], [Siganos+,’06], strange
behavior of cuts [Chakrabarti+’04],
[Leskovec+,’08]
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A word of caution \Q

» Maybe there are no good cuts: *jellyfish’’
shape [Tauro+’01], [Siganos+,’06], strange
behavior of cuts [Chakrabarti+,”04],
[Leskovec+,’08]
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R1: Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G.
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006.
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R1: Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G.
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006.
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R1: Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G.
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006.
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R2: 'Familiar strangers’ /\
* Bipartite graph (‘heterophily’) \/
'eng.’ ‘lawyers’
e(\g' ‘[
v S
\ta\I‘Ne‘
?
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R3: " Core-periphery” /\

( )

* Bipartite graph + clique \/
.
o |

sa\e\\“es

Gov. of India Copyright (C) 2019 C. Faloutsos 107

107

CarnegieMellon

Strange behavior of min cuts /\

* ‘negative dimensionality’ (!) N
J

Sope 045 1-1/d

log (mincut-size  edges)
LBobunet

DO

log (1 edges)

Clickstream graph

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
WWW 2008.
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Strange behavior of min cuts

* ‘negative dimensionality’ (!)

Sope- 045 1-1/d

Va

B
log (# edges)

log (mincutsize / fedges)
s EuBugsk

Clickstream graph

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
WWW 2008.
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Short answer

* METIS [Karypis, Kumar]
(but: maybe NO good cuts exist!)

£
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Roadmap
Wi

* Introduction — Motivation
* Part#1: Graphs
— P1.1: properties/patterns in graphs
— P1.2: node importance
— P1.3: community detection
=) — P1.4: fraud/anomaly detection
— P1.5: belief propagation
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