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explanation, influence propagation
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Roadmap

• Introduction 
• Part#1: Graphs and Tensors
• Part#2: Time series
• Part#3: extras (visualization, etc)
• Conclusions
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Outline - Extras
• 3.1: Visualization / Explanation

– 3.1.1 SVD
– 3.1.2 Social network
– 3.1.3 point processes

• 3.2: Virus/influence propagation
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PCA - Ratio RulesNBA dataset
~500 players;
~30 attributes

Any patterns?
Clusters?
Outliers?
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PCA - ‘Ratio Rules’
[Korn+98]
Typically: ‘Association Rules’ (eg.,

{bread, milk} -> {butter}
But, can we discover more details? like:

$-bread : $-milk : $-butter ~ $2 : $4 : $3

Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and Christos 
Faloutsos. Ratio Rules: A New Paradigm for Fast, 

Quantifiable Data Mining. (VLDB '98), 582-593. 
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PCA - Ratio Rules
NBA dataset
~500 players;
~30 attributes
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Ratio Rules - example

• RR1: minutes:points = 2:1
• corresponding concept?

v1
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PCA - Ratio Rules
• PCA: get singular vectors v1, v2, ...
• ignore entries with small abs. value
• try to interpret the rest
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PCA - Ratio Rules

NBA dataset - V matrix (term to ‘concept’ similarities)

v1
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Ratio Rules - example
• RR1: minutes:points = 2:1
• corresponding concept?

v1
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Ratio Rules - example

• RR1: minutes:points = 2:1
• corresponding concept?

v1
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Ratio Rules - example
• RR1: minutes:points = 

2:1
• corresponding 

concept?

v1
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Ratio Rules - example
• RR1: minutes:points = 2:1
• corresponding concept? 
• A: ‘goodness’ of player
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Ratio Rules - example
• RR2: points: rebounds negatively 

correlated(!) 
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Ratio Rules - example
• RR2: points: rebounds negatively 

correlated(!) - concept?

v2
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Ratio Rules - example
• RR2: points: rebounds negatively 

correlated(!) - concept?
• A: position: offensive/defensive
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More datasets
• Customer activity over time
• Stock prices over time
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Compression - Visualization

• no Gaussian clusters; Zipf-like distribution
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Solutions
• SVD helps with visualization (2-d  - low-

dim scatterplots)
• … and finds rules (minutes : points = 2:1 )
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Outline - Extras
• 3.1: Visualization / Explanation

– 3.1.1 SVD
– 3.1.2 Social network
– 3.1.3 point processes

• 3.2: Virus/influence propagation
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Catchsync:
catch synchronized behavior in 

large directed graphs
Meng Jiang

Joint work with Peng Cui, Alex Beutel,
Christos Faloutsos and Shiqiang Yang

August 26, 2014 – NYC, USA
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Fraud Detection: Graph Analysis 
Problem
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[www.buyfollowz.org]

[buymorelikes.com]

Gov. of India Copyright (C) 2019 C. Faloutsos

22

CMU SCS

Fraud Detection: Graph Analysis 
Problem
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[buycheaplikes.com]

[reviewsteria.com]
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Behavior-based Features
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Out-degree
1st left singular vector
(Hubness)
2nd left singular vector
…

In-degree
1st right singular vector
(Authoritativeness)
2nd right singular vector
…

Follower
behavior

Followee
behavior

≈ ≈
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Behavior-based Feature Space
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Follower
behavior

Followee
behavior
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Before CatchSync
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After CatchSync
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Outline - Extras
• 3.1: Visualization / Explanation

– 3.1.1 SVD
– 3.1.2 Social network
– 3.1.3 point processes

• 3.2: Virus/influence propagation
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RSC: Mining and Modeling Temporal 
Activity in Social Media

Alceu F. Costa* Yuto Yamaguchi    Agma J. M. Traina

Caetano Traina Jr.    Christos Faloutsos

Universidade
de São Paulo

KDD 2015 – Sydney, 
Australia

*alceufc@icmc.usp.br
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Reddit Dataset
Time-stamp from comments
21,198 users
20 Million time-stamps

Twitter Dataset
Time-stamp from tweets
6,790 users
16 Million time-stamps

Pattern Mining: Datasets

For each user we have: 
Sequence of postings time-stamps: T = (t1, t2, t3, …)
Inter-arrival times (IAT) of postings: (∆1, ∆2, ∆3, …)

t1 t2 t3 t4

∆1 ∆2 ∆3

time
Copyright (C) 2019 C. Faloutsos 30Gov. of India
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Human? Robots?

log

linear
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Human? Robots?

log

linear
2’ 3h 1day
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IAT heatmaps
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Twitter

x y

Gov. of India
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IAT heatmaps
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sensitivity (Recall)

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sensitivity (Recall)

Pr
ec

is
io

n

 
 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94%
Sensitivity > 
70%

With strongly 
imbalanced 
datasets
# humans >> # 
bots

Twitter
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96%
Sensitivity > 
47%
With strongly 
imbalanced 
datasets
# humans >> # 
bots

Reddit
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Outline - Extras
• 3.1: Visualization / Explanation

– 3.1.1 SVD
– 3.1.2 Social network
– 3.1.3 point processes

• 3.2: Virus/influence propagation
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Cascades & 
Immunization
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Why do we care?
• Information Diffusion
• Viral Marketing
• Epidemiology and Public Health
• Cyber Security
• Human mobility 
• Games and Virtual Worlds 
• Ecology
• ........

Copyright (C) 2019 C. Faloutsos 39Gov. of India
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Roadmap

• P3.1: visualization
• P3.2: Cascade analysis

– (Fractional) Immunization
– Epidemic thresholds

• Conclusions

Gov. of India
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Fractional Immunization of Networks
B. Aditya Prakash, 

Lada Adamic, 
Theodore Iwashyna (M.D.), 

Hanghang Tong, 
Christos Faloutsos
SDM 2013, Austin, TX 
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Whom to immunize?
• Dynamical Processes over networks

• Each circle is a hospital
• ~3,000 hospitals
• More than 30,000 patients 
transferred  

[US-MEDICARE 
NETWORK 2005]

Problem: Given k units of 
disinfectant, whom to immunize?

Copyright (C) 2019 C. Faloutsos 42Gov. of India
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Whom to immunize?

CURRENT PRACTICE OUR METHOD

[US-MEDICARE 
NETWORK 2005]

~6x 
fewer!

Copyright (C) 2019 C. Faloutsos 43Gov. of India

Hospital-acquired inf. : 99K+ lives, $5B+ per year
43

CMU SCS

Fractional Asymmetric Immunization

Hospital Another 
Hospital

Drug-resistant Bacteria 
(like XDR-TB) 

Copyright (C) 2019 C. Faloutsos 44Gov. of India

30%
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Fractional Asymmetric Immunization

Hospital Another 
Hospital
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30%
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Fractional Asymmetric Immunization

Hospital Another 
Hospital
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15%
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Fractional Asymmetric Immunization

Hospital Another 
Hospital

Problem: 
Given k units of disinfectant, 
distribute them 
to maximize hospitals saved
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15%
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Fractional Asymmetric Immunization

Hospital Another 
Hospital

Problem: 
Given k units of disinfectant, 
distribute them 
to maximize hospitals saved @ 365 days

Copyright (C) 2019 C. Faloutsos 48Gov. of India
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Running Time

Simulations SMART-ALLOC

> 1 week
Wall-Clock 

Time≈

14 secs

> 30,000x 
speed-up!

better
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49

CMU SCS

Experiments 

K = 120

better
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# epochs

# infected
uniform

SMART-ALLOC
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Roadmap

• P3.1: visualization
• P3.2: Cascade analysis

– (Fractional) Immunization
– Epidemic thresholds

• Conclusions
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What is the ‘silver bullet’?
A: Try to decrease connectivity of graph

Q: how to measure connectivity?
– Avg degree? Max degree?
– Std degree / avg degree ?
– Diameter?
– Modularity?
– ‘Conductance’ (~min cut size)?
– Some combination of above?

Gov. of India Copyright (C) 2019 C. Faloutsos 52

≈
14 

secs

> 
30,000x 
speed-

up!
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What is the ‘silver bullet’?
A: Try to decrease connectivity of graph

Q: how to measure connectivity?
A: first eigenvalue of adjacency matrix

Q1: why??
(Q2: dfn & intuition of eigenvalue ? )

Gov. of India Copyright (C) 2019 C. Faloutsos 53

Avg degree
Max degree
Diameter
Modularity
‘Conductance’
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Why eigenvalue?
A1: ‘G2’ theorem and ‘eigen-drop’:

• For (almost) any type of virus
• For any network
• -> no epidemic, if small-enough first 

eigenvalue  (λ1 ) of adjacency matrix

• Heuristic: for immunization, try to min λ1

• The smaller λ1, the closer to extinction.
Gov. of India Copyright (C) 2019 C. Faloutsos 54

Threshold Conditions for Arbitrary Cascade Models on 
Arbitrary Networks, B. Aditya Prakash, Deepayan 
Chakrabarti, Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos, ICDM 2011, Vancouver, Canada

54



Faloutsos

19

CMU SCS

Why eigenvalue?
A1: ‘G2’ theorem and ‘eigen-drop’:

• For (almost) any type of virus
• For any network
• -> no epidemic, if small-enough first 

eigenvalue  (λ1 ) of adjacency matrix

• Heuristic: for immunization, try to min λ1

• The smaller λ1, the closer to extinction.
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Threshold Conditions for Arbitrary Cascade 
Models on Arbitrary Networks
B. Aditya Prakash, Deepayan Chakrabarti, 
Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos
IEEE ICDM 2011, Vancouver

extended version, in arxiv
http://arxiv.org/abs/1004.0060

G2 theorem

~10 pages proof
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Our thresholds for some models
• s = effective strength
• s < 1 : below threshold
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Models Effective Strength 
(s)

Threshold (tipping 
point)

SIS, SIR, SIRS, 
SEIR s = λ .   

s = 1
SIV, SEIV s = λ .   
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Our thresholds for some models
• s = effective strength
• s < 1 : below threshold
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Models Effective Strength 
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Threshold (tipping 
point)
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Roadmap

• P3.1: visualization
• P3.2: Cascade analysis

– (Fractional) Immunization
– Epidemic thresholds
– Intuition behind 𝜆"

• Conclusions
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Intuition for λ

“Official” definitions:
• Let A be the adjacency 

matrix. Then λ is the root 
with the largest magnitude of 
the characteristic polynomial 
of A [det(A – lI)].

• Also:  A x = l x

Neither gives much intuition!

“Un-official” Intuition 
• For ‘homogeneous’ 

graphs, λ == degree

• λ ~ avg degree
– done right, for 

skewed degree 
distributions

Copyright (C) 2019 C. Faloutsos 60Gov. of India
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Largest Eigenvalue (λ)

λ ≈ 2 λ =   N λ = N-1

N = 1000 nodes
λ ≈ 2 λ= 31.67 λ= 999

better connectivity         higher λ

Copyright (C) 2019 C. Faloutsos 61Gov. of India
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Largest Eigenvalue (λ)

λ ≈ 2 λ =   N λ = N-1

N = 1000 nodes
λ ≈ 2 λ= 31.67 λ= 999

better connectivity         higher λ

Copyright (C) 2019 C. Faloutsos 62Gov. of India

62

CMU SCS

Examples: Simulations – SIR (mumps) 
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(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodes
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Examples: Simulations – SIRS 
(pertusis) 
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(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodes
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Part3: Immunization - conclusion
In (almost any) immunization setting,
• Allocate resources, to
• Minimize λ1
• (regardless of virus specifics)

• Conversely, in a market penetration 
setting
– Allocate resources to
– Maximize  λ1Gov. of India Copyright (C) 2019 C. Faloutsos 65
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Overall conclusions
• Graphs
• Time series
• (visualization, immunization)
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P1: Graphs
Over-arching conclusion

• MANY, time-tested, algorithms for graph 
mining

• (more, are needed)
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Pro
blem

s

(so
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P1: Graphs
Over-arching conclusion
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P2: Time series - Answers

• Similarity search: Euclidean/time-warping; 
feature extraction and SAMs

• Periodicities: DFT/DWT
• Linear Forecasting: AR (Box-Jenkins)
• Non-linear forecasting: lag-plots
• Gray-box modeling: Lotka-Volterra
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P3: visualization etc
• Plots help explain (and also they catch 

errors)
• SVD: super-useful tool
• Immunization: reduce  𝜆"
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THANK YOU
christos@cs.cmu.edu
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