
Faloutsos

1

CMU SCS

Mining graphs and time series: 
patterns, anomalies, and fraud 

detection

Christos Faloutsos
CMU SCS

Part 2: Time Series -
Forecasting & Tensors

https://www.cs.cmu.edu/~christos/TALKS/19-GoI

1

CMU SCS

Copyright (C) 2019 C. Faloutsos 2

Roadmap

• Introduction 
• Part#1: Graphs and Tensors
• Part#2: Time series
• Part#3: extras (visualization, etc)
• Conclusions

Gov. of India

2

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 3

Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Non-linear forecasting
• Tensors
• Conclusions

3

https://www.cs.cmu.edu/~christos/TALKS/19-GoI


Faloutsos

2

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 4

4

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 5

Forecasting

"Prediction is very difficult, especially about 
the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/thoughts.ht
ml
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Problem#2: Forecast
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• given xt-1, xt-2, …, 
• Q: forecast xt
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Solution: AR(IMA)
• given xt-1, xt-2, …, 
• Q: forecast xt

• A: AR(IMA) = Box-Jenkins (< Holt-Winters, 
Kalman)
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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Problem#2: Forecast

• Example: give xt-1, xt-2, …, forecast xt
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Forecasting: Preprocessing

MANUALLY: 
remove trends                    spot periodicities
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Problem#2: Forecast

• Solution: try to express 
xt

as a linear function of the past: xt-2, xt-2, …, 
(up to a window of w)

Formally:
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??noisexaxax wtwtt +++» -- !11
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(Problem: Back-cast; interpolate)

• Solution - interpolate: try to express 
xt

as a linear function of the past AND the future:
xt+1, xt+2, … xt+wfuture; xt-1, … xt-wpast

(up to windows of wpast , wfuture)
• EXACTLY the same algo’s
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Linear Regression: idea
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• express what we don’t know (= ‘dependent variable’)
• as a linear function of what we know (= ‘indep. variable(s)’)

Body height
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Linear Auto Regression:

Time Packets
Sent (t-1)

Packets
Sent(t)

1 - 43
2 43 54
3 54 72

…
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…

N 25 ??
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Linear Auto Regression:
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• lag w=1
• Dependent variable = # of packets sent (S [t])
• Independent variable = # of packets sent (S[t-1])

‘lag-plot’
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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More details:
• Q1: Can it work with window w>1?
• A1: YES! 

xt-2

xt

xt-1
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More details:
• Q1: Can it work with window w>1?
• A1: YES! (we’ll fit a hyper-plane, then!)

xt-2

xt

xt-1
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More details:
• Q1: Can it work with window w>1?
• A1: YES! (we’ll fit a hyper-plane, then!)

xt-2

xt-1

xt
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More details:
• Q1: Can it work with window w>1?
• A1: YES! The problem becomes:

X[N ´w] ´ a[w ´1] = y[N ´1]
• OVER-CONSTRAINED

– a is the vector of the regression coefficients

– X has the N values of the w indep. variables
– y has the N values of the dependent variable

Skip

20

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 21

More details:

• X[N ´w] ´ a[w ´1] = y[N ´1]

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

´

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

N

w

NwNN

w

w

y

y
y

a

a
a

XXX

XXX
XXX

!

!

!

!

"

!

!

!

"

#

2

1

2

1

21

22221

11211

,,,

,,,
,,,

Ind-var1 Ind-var-w

time

Skip

21



Faloutsos

8

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 22

More details:

• X[N ´w] ´ a[w ´1] = y[N ´1]
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More details
• Q2: How to estimate a1, a2, … aw = a?
• A2: with Least Squares fit

• (Moore-Penrose pseudo-inverse)
• a is the vector that minimizes the RMSE 

from y

a = ( XT ´ X )-1´ (XT ´ y)

Skip
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Even more details
• Q3: Can we estimate a incrementally?
• A3: Yes, with the brilliant, classic method 

of ‘Recursive Least Squares’ (RLS) (see, 
e.g., [Yi+00], for details) - pictorially:

Skip
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Even more details
• Given:

Independent Variable
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Even more details

Independent Variable

D
ep
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nt
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new point
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Even more details

Independent Variable

D
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RLS: quickly compute new best fit

new point
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Even more details

• Straightforward Least 
Squares
– Needs huge matrix

(growing in size)   
O(N×w)

– Costly matrix operation           
O(N×w2)

• Recursive LS
– Need much smaller, fixed 

size matrix           
O(w×w)

– Fast, incremental 
computation 
O(1×w2)

N = 106,     w = 1-100

Skip
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Even more details
• Q4: can we ‘forget’ the older samples?
• A4: Yes - RLS can easily handle that 

[Yi+00]:

Skip
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Adaptability - ‘forgetting’

Independent Variable
eg., #packets sent
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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Co-Evolving Time Sequences

• Given: A set of correlated time sequences
• Forecast ‘Repeated(t)’
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Solution:
Q: what should we do? 

33
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Solution:
Least Squares, with
• Dep. Variable: Repeated(t) 
• Indep. Variables: Sent(t-1) … Sent(t-w); 

Lost(t-1) …Lost(t-w); Repeated(t-1), ...
• (named: ‘MUSCLES’ [Yi+00])
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Time Series Analysis - Outline
• Auto-regression
• Least Squares; recursive least squares
• Co-evolving time sequences
• Examples
• Conclusions
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Conclusions - Practitioner’s guide
• AR(IMA) methodology: prevailing method 

for linear forecasting
• Brilliant method of Recursive Least Squares 

for fast, incremental estimation.
• See [Box-Jenkins]

36
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Solution: AR(IMA)
• given xt-1, xt-2, …, 
• Q: forecast xt

• A: AR(IMA) = Box-Jenkins (< Holt-Winters, 
Kalman)
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Resources: software and urls

• MUSCLES: Prof. Byoung-Kee Yi:
http://www.postech.ac.kr/~bkyi/
or christos@cs.cmu.edu

• free-ware: ‘R’ for stat. analysis 
(clone of Splus)
http://cran.r-project.org/

38
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Books
• George E.P. Box and Gwilym M. Jenkins and Gregory C. 

Reinsel, Time Series Analysis: Forecasting and Control, 
Prentice Hall, 1994 (the classic book on ARIMA, 3rd ed.)

• Brockwell, P. J. and R. A. Davis (1987). Time Series: 
Theory and Methods. New York, Springer Verlag.
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Additional Reading
• [Papadimitriou+ vldb2003] Spiros Papadimitriou, Anthony 

Brockwell and Christos Faloutsos Adaptive, Hands-Off 
Stream Mining VLDB 2003, Berlin, Germany, Sept. 2003

• [Yi+00] Byoung-Kee Yi et al.: Online Data Mining for 
Co-Evolving Time Sequences, ICDE 2000. (Describes 
MUSCLES and Recursive Least Squares)

40

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 41

41

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 42

Outline

• Motivation
• Similarity Search and Indexing 
• DSP
• Linear Forecasting
• Non-linear forecasting
• Tensors
• Conclusions
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Detailed Outline
• Non-linear forecasting

– Problem
– Idea
– How-to
– Experiments
– Conclusions
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Problem: Forecast
• given xt-1, xt-2, …,    (‘chaotic’/non-linear) 
• Q: forecast xt

44
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Solution
• given xt-1, xt-2, …,    (‘chaotic’/non-linear) 
• Q: forecast xt

• A: lag-plots + sim. search (= ‘Delayed 
Coordinate Embedding’)

Xt-1

xt

45
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Recall: Problem #1

Given a time series {xt}, predict its future 
course, that is, xt+1, xt+2, ...

Time

Value
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How to forecast?
• ARIMA - but: linearity assumption

• ANSWER: ‘Delayed Coordinate 
Embedding’ =  Lag Plots [Sauer92]

47
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ARIMA pitfall
Example: logistic parabola

Models population of flies [R. May/1976]

Gov. of India Copyright (C) 2019 C. Faloutsos 48
Time t

xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)
xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

Logistic 
mapTime-series plot

48
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ARIMA pitfall
Example: logistic parabola

Models population of flies [R. May/1976]
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xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

Logistic 
map• = SI virus prop. model

• ~ Bass equation (market penetration)
• Special case of Lotka-Volterra

49
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ARIMA pitfall

Linear equations, e.g., AR, ARIMA, …

Gov. of India Copyright (C) 2019 C. Faloutsos 50

xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

50
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Linear equations, e.g., AR, ARIMA, …
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xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

e.g., AR(1)
xt+1 = axt + ϵ

51
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ARIMA pitfall

Linear equations, e.g., AR, ARIMA, …

Gov. of India Copyright (C) 2019 C. Faloutsos 52

xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)

AR fit: failse.g., AR(1)
xt+1 = axt + ϵ

52
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Solution?

“Delayed Coordinate Embedding”
=  Lag Plots 

[Sauer92]
k-nearest neighbor search

Gov. of India Copyright (C) 2019 C. Faloutsos 53

xt+1 = axt · (1− xt)

xt+1 = axt · (1− xt)
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General Intuition (Lag Plot)

xt-1

xt

4-NN
New Point

Interpolate 
these…

To get the final 
prediction

Lag = 1,
k = 4 NN

54
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Q: How to interpolate?

How do we interpolate between the
k nearest neighbors?

A1: Average

A2: Weighted average (weights drop with 
distance - how?)

55
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Q: How to interpolate?

A3: Using SVD - seems to perform best 
([Sauer94] - first place in the Santa Fe 
forecasting competition)

Xt-1

xt
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Q: Any theory behind it?
A: YES!

57
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Theoretical foundation

• Based on the “Takens’ Theorem” 
[Takens81]

• which says that long enough delay vectors 
can do prediction, even if there are 
unobserved variables in the dynamical 
system (= diff. equations)

58
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Theoretical foundation

Example: Lotka-Volterra equations

dH/dt = r H – a H*P 
dP/dt = b H*P – m P

H is count of prey (e.g., hare)
P is count of predators (e.g., lynx)

Suppose only P(t) is observed (t=1, 2, …). 
H

P

59
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Theoretical foundation
• But the delay vector space is a faithful 

reconstruction of the internal system state
• So prediction in delay vector space is as 

good as prediction in state space

H

P

P(t-1)

P(t)

60
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Solution to Volterra-Lotka eq.

Gov. of India Copyright (C) 2019 C. Faloutsos 61from wikipedia

time
# prey

# predators

prey

predators
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Notice: LV are vital!

Example: Lotka-Volterra equations

dH/dt = r H – a H*P 
dP/dt = b H*P – m P

• Prey-predator

• Competing animals (rabbits/goats)

• Self-competition (Bass model)

• Competing products (stocks/bonds)

H

P
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The Web as a Jungle: 
Non-Linear Dynamical Systems 
for Co-evolving Online Activities

Yasuko Matsubara (Kumamoto University)

Yasushi Sakurai       (Kumamoto University)

Christos Faloutsos  (CMU)

Open source code: here
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Given: online user activities
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Xbox, PlayStation, Wii, Android

64
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Kids Teens Adults

PlayStation AndroidXbox Wii

The Web as a jungle
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Ecosystem 
on the

Web

65
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Spider
monkeys Capybaras

Squirrel 
monkeys Macaws

Fruits Nuts Grass

Kids Teens Adults

The Web as a jungle

Gov. of India Copyright (C) 2019 C. Faloutsos 66

Ecosystem in 
the

Jungle

Ecosystem on the

Web
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LV equations

Interaction between multiple (‘d’) 
species/products/viruses

Gov. of India Copyright (C) 2019 C. Faloutsos 67

- effect of species j on species i
• (positive: hurts)

aij

…

67
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EcoWeb at work - forecasting

Gov. of India Copyright (C) 2019 C. Faloutsos 68

Train: 
2/3 sequences

Forecast:
1/3 following years

?

68

CMU SCS

EcoWeb at work - forecasting

Gov. of India Copyright (C) 2019 C. Faloutsos 69
EcoWeb can capture  future patterns

Train: 
2/3 sequences

Forecast:
1/3 following years

69
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EcoWeb at work - forecasting

Gov. of India Copyright (C) 2019 C. Faloutsos 70

Open source code: here
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Detailed Outline
• Non-linear forecasting

– Problem
– Idea
– How-to
– Experiments
– Conclusions
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Datasets

Logistic Parabola:
xt = axt-1(1-xt-1) + noise 
Models population of flies [R. May/1976]

time

x(
t)

Lag-plot

72
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Datasets

Logistic Parabola:
xt = axt-1(1-xt-1) + noise 
Models population of flies [R. May/1976]

time

x(
t)

Lag-plot
ARIMA: fails
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Logistic Parabola

Timesteps

Value

Our Prediction from 
here
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Logistic Parabola

Timesteps

Value

Comparison of prediction 
to correct values

75
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Datasets

LORENZ: Models convection 
currents in the air
dx / dt = a (y - x) 
dy / dt = x (b - z) - y 
dz / dt = xy - c z

76
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LORENZ

Timesteps

Value

Comparison of prediction 
to correct values
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Datasets

Time

Value

• LASER: fluctuations in 
a Laser over time (used 
in Santa Fe 
competition)

Skip
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Laser

Timesteps

Value

Comparison of prediction 
to correct values

Skip
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Solution
• given xt-1, xt-2, …,    (‘chaotic’/non-linear) 
• Q: forecast xt

• A: lag-plots + sim. search (= ‘Delayed 
Coordinate Embedding’)

Xt-1

xt
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Outline
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• Similarity Search and Indexing 
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• Non-linear forecasting
• Tensors
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Binary relationships: graph
• Who – buys - what
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Ternary relationships – model?
• Who – buys – what - when
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A: tensors
• … for ternary and higher –order 

relationships

Gov. of India Copyright (C) 2019 C. Faloutsos 87

87



Faloutsos

30

CMU SCS

Problem: co-evolving graphs
• How to forecast?

– 4M x 4M x 15 days
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A: tensors

• Q: what is a tensor?

Gov. of India Copyright (C) 2019 C. Faloutsos

89

CMU SCS

90

Tensor examples

• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

KDD’17
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Tensor examples

• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

KDD’18

KDD’19

KDD’17

Gov. of India Copyright (C) 2019 C. Faloutsos

91

CMU SCS

92

Tensors are useful for 3 or more 
modes 

Terminology: ‘mode’ (or ‘aspect’):

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...

Mode#2

Mode#3

Gov. of India Copyright (C) 2019 C. FaloutsosMode (== aspect) #1
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Tensor Basics
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Tensor factorization
• Recall: (SVD) matrix factorization: finds 

blocks
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Tensor factorization
• PARAFAC decomposition
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Tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days
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Tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days
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Tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days
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Forecast in, eg, 3,
instead of 1M*1M 

series
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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Applications
• TA1: Phonecall
• TA2: Network traffic
• TA3: FaceBook
• TA4: KG Search/Annotation
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CMU SCS TA1: Anomaly detection in 
time-evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

=
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CMU SCS TA1: Anomaly detection in 
time-evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

=
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CMU SCS TA1: Anomaly detection in 
time-evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

=

Copyright (C) 2019 C. Faloutsos 104Gov. of India

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann,
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
Evangelos Papalexakis, Danai Koutra. Com2: Fast
Automatic Discovery of Temporal (Comet) Communities.
PAKDD 2014, Tainan, Taiwan.

104

CMU SCS

Applications
• TA1: Phonecall
• TA2: Network traffic
• TA3: FaceBook
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ParCube: Sparse Parallelizable 
Tensor Decompositions

Evangelos E. Papalexakis, Christos Faloutsos, Nikos 
Sidiropoulos, ECML/PKDD 2012

Evangelos E. Papalexakis
Email: epapalex@cs.ucr.edu
Web: http://www.cs.ucr.edu/~epapalex
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TA2: LBNL Network Data

• Modes: src IP, dst IP, port #
• ~ Port Scanning Attack
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LBNL Network Tra�c This dataset consists of (source, destination, port #)
triplets, where each value of the corresponding tensor is the number of packets
sent. The snapshot of the dataset we used, formed a 65170 � 65170 � 65327
tensor of 27269 non-zeros. We ran Algorithm 3 using s = 5 and r = 10 and we
were able to identify what appears to be a port-scanning attack: The component
shown in Fig. 9 contains only one source address (addr. 29571), contacting one
destination address (addr. 30483) using a wide range of near-consecutive ports
(while sending the same amount of packets to each port), a behaviour which
should certainly raise a flag to the network administrator, indicating a possible
port-scanning attack.
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Fig. 9. Anomaly on the Lbnl data: We have one source address (addr. 29571), con-
tacting one destination address (addr. 30483) using a wide range of near-consecutive
ports, possibly indicating a port scanning attack.

Facebook Wall posts This dataset 5 first appeared in [25]; the specific part
of the dataset we used consists of triplets of the form (Wall owner, Poster,
day), where the Poster created a post on the Wall owner’s Wall on the specified
timestamp. By choosing daily granularity, we formed a 63891 � 63890 � 1847
tensor, comprised of 737778 non-zero entries; subsequently, we ran Algorithm 3
using s = 100 and r = 10. In Figure 10 we present our most surprising findings:
On the left subfigure, we demonstrate what appears to be the Wall owner’s
birthday, since many posters posted on a single day on this person’s Wall; this
event may well be characterized as an ”anomaly”. On the right subfigure, we
demonstrate what ”normal” Facebook activity looks like.

NELL This dataset consists of triplets of the form (noun-phrase, noun-phrase,
context). which form a tensor with assorted modes of size 14545�14545�28818
and 76879419 non-zeros, and as values the number of occurrences of each triplet.
The context phrase may be just a verb or a whole sentence. After computing the
Parafac decomposition of the tensor using ParCube with s = 500, and r = 10
repetitions, we computed the noun-phrase similarity matrix AAT + BBT and

5 Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.
html

1 src 1 dst
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TA3: FACEBOOK Wall posts

• Modes: wall-owner, poster, timestamp
• Discovery: birthday-like event.
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Fig. 10. Results for Facebook using s = 100, r = 10, F = 15. Subfigure (a): Facebook
”anomaly”: One Wall, many posters and only one day. This possibly indicates the
birthday of the Wall owner. Subfigure(b): Facebook ”normal” activity: Many users
post on many users’ Walls, having a continuous daily activity

out of that, we were able to discover potential synonyms to noun-phrases, that
we report on Table 2.

Noun-phrase Potential Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students

Table 2. Nell: Potential synonym discovery

5 Related Work

Tensor applications Tensors and tensor decompositions have gained increasing
popularity in the last few years, in the data mining community [14]. The list of
tensor applications in data mining is long, however we single out a few that we
deemed representative: In [13], the authors extend the well known link analysis
algorithm HITS, incorporating textual/topical information. In [7] and [6] the
authors use tensors for social network analysis on the Enron dataset. In [22],
the authors propose a sampling-based Tucker3 decomposition in order to perform
content based network analysis and visualization. The list continues, including
applications such as [10] [16] [3]. Apart from Data Mining, tensors have been
and are still being applied in a multitude of fields such as Chemometrics [9] and
Signal Processing [21].

1 day

1 Wall
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Conclusions (P2.5)
• Tensor analysis finds latent variables 

(market-segments, lockstep-groups, etc
– Deviations à anomalies

• Extends SVD/factorization, to higher-
modes
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Overall conclusions for time 
series:
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Overall conclusions
• P2.1. Similarity search: Euclidean/time-

warping; feature extraction and SAMs
• P2.2. Signal processing: DFT, DWT are 

powerful tools
• P2.3. Linear Forecasting: AR (Box-Jenkins)
• P2.4. Non-linear forecasting: lag-plots

(Takens)
• P2.5. Tensors: PARAFAC etc
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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P2 – Tensors - More references
Tensor survey
• Tamara G. Kolda and Brett W. Bader 

Tensor Decompositions and Applications 
SIAM Rev., 51(3), pp 455–500, 2009.
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P2 – Tensors - More references
Tensor survey #2
• Nicholas D. Sidiropoulos, Lieven De 

Lathauwer,, Xiao Fu,, Kejun Huang, 
Evangelos E. Papalexakis, and Christos 
Faloutsos, Tensor Decomposition for Signal 
Processing and Machine Learning, IEEE 
TSP, 65(13), July 1, 2017
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