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Part 1: Graphs
Intro & patterns
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Roadmap

• Introduction 
• Part#1: Graphs
• Part#2: Time series
• Part#3: extras (visualization, etc)
• Conclusions
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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Why study graphs?
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Why study graphs?
• Fraud – money laundering etc
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Why study graphs?
• Fake followers/trends; botnets/trolls 
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Why study graphs?
• Fake friends
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By Melanie Rehak

7

CMU SCS

e-commerce examples
• Recommendation systems
• ....
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e-commerce examples
Who-buys-what
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e-commerce examples
Who-buys-what
Who-sells-what
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…
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e-commerce examples
Who-buys-what
Who-sells-what
Who-reviews-what
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Cyber-security
Who-buys-what
Who-sells-what
Who-reviews-what

Which_machine - connects_to - what
…
<subject>  related-to <object> : graph
Gov. of India Copyright (C) 2019 C. Faloutsos 12
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Why study graphs?

fb>$10B; ~1B users

Gov. of India
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Why study graphs?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

Protein Interactions 
[genomebiology.com]

Friendship Network 
[Moody ’01]

Gov. of India Copyright (C) 2019 C. Faloutsos 14
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Graphs - why should we care?
• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

D1

DN

T1

TM

... ...

Gov. of India
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Graphs - why should we care?
• ‘viral’ marketing
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic 

and anomaly detection
• ....

Gov. of India
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

? ?
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

?
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

19

CMU SCS

Copyright (C) 2019 C. Faloutsos 20

Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India

?
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India
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‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation

Gov. of India
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25

CMU SCS

Why care about patterns?
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Why care about patterns?
1. Anomalies

2. Faster algorithms

3. Graph generators (‘what if’ scenarios)
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Why care about patterns?
1. Anomalies

2. Faster algorithms

3. Graph generators (‘what if’ scenarios)
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Patterns            anomalies
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Why care about patterns?
1. Anomalies

2. Faster algorithms

3. Graph generators (‘what if’ scenarios)
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Patterns            anomalies
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Why care about patterns?
1. Anomalies

2. Faster algorithms

3. Graph generators (‘what if’ scenarios)
– Graph500.org

Gov. of India Copyright (C) 2019 C. Faloutsos 30

Patterns            anomalies
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)

31
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Problem definition
• Are real graphs random?

– S*: what do static graphs look like?
– T*: how do graphs evolve over time?

Gov. of India Copyright (C) 2019 C. Faloutsos 32

? ?

32

CMU SCS

Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– D*: how do graphs evolve over time?
• D.1: diameters
• D.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 33
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Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– T*: how do graphs evolve over time?
• T.1: diameters
• T.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 34

Power laws: y ~ xa

NOT Gaussians

Take logarithms

? ?

x (log scale)

y (log scale)

a

34
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Graph mining
• Are real graphs random?

Gov. of India
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Laws and patterns
• Are real graphs random?
• A: NO!!

– Diameter (‘6 degrees’, ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

Gov. of India
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Solution# S.1

• Power law in the degree distribution 
[SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

Gov. of India
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Solution# S.1

• Power law in the degree distribution 
[SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India
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Solution# S.1

• Q: So what?

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs:

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India

= friends of friends (F.O.F.)
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India

= friends of friends (F.O.F.)

41
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India

= friends of friends (F.O.F.)

42
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India

~0.8PB ->
a data center(!)

DCO @ CMU

Gaussian trap

= friends of friends (F.O.F.)

43
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

Gov. of India

~0.8PB ->
a data center(!)

Such patterns ->

New algorithms

Gaussian trap

44
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years (>2x age of 
universe)

Gov. of India Copyright (C) 2019 C. Faloutsos 45

1B

1B

45
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 1,000 machines

Gov. of India Copyright (C) 2019 C. Faloutsos 46

1B

31M
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 1M machines

Gov. of India Copyright (C) 2019 C. Faloutsos 47

1B

31K
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 10B machines ~ $10Trillion

Gov. of India Copyright (C) 2019 C. Faloutsos 48

1B

3

48
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 10B machines ~ $10Trillion

Gov. of India Copyright (C) 2019 C. Faloutsos 49

1B

3
And parallelism might not help

49
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Solution# S.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001

Gov. of India

A x = l x

50
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Solution# S.2: Eigen Exponent E

• [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001

Gov. of India

51



Faloutsos

18

CMU SCS

Copyright (C) 2019 C. Faloutsos 52

But:
How about graphs from other domains?

Gov. of India

52
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More power laws:
• web hit counts [w/ A. Montgomery]

Web Site Traffic

in-degree (log scale)

Count
(log scale)

Zipf

users
sites

``ebay’’

Gov. of India
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epinions.com
• who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001]

(out) degree

count

trusts-2000-people user

Gov. of India
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And numerous more
• # of sexual contacts
• Income [Pareto] –’80-20 distribution’
• Duration of downloads [Bestavros+]
• Duration of UNIX jobs (‘mice and 

elephants’)
• Size of files of a user
• …
• ‘Black swans’
Gov. of India Copyright (C) 2019 C. Faloutsos 55
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright (C) 2019 C. Faloutsos 56Gov. of India

✔

✔

56
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57

S.3 small diameters
• Small diameter (~ constant!) –

– six degrees of separation / ‘Kevin Bacon’
– small worlds [Watts and Strogatz]

Gov. of India Copyright (C) 2019 C. Faloutsos
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright (C) 2019 C. Faloutsos 58Gov. of India

✔

✔

✔
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Solution# S.4: Triangle ‘Laws’

• Real social networks have a lot of triangles 

Gov. of India
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Solution# S.4: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?

Gov. of India
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Triangle Law: #S.4 
[Tsourakakis ICDM 2008]

ASNHEP-TH

Epinions X-axis: # of  participating
triangles

Y: count (~ pdf)
Gov. of India
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Triangle Law: #S.4 
[Tsourakakis ICDM 2008]

ASNHEP-TH

Epinions

Gov. of India

X-axis: # of  participating
triangles

Y: count (~ pdf)

62
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Triangle Law: #S.5 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles

n friends -> ~n1.6 triangles

Gov. of India

63
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

64Gov. of India 64Copyright (C) 2019 C. Faloutsos

? ?

?
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

65Gov. of India 65Copyright (C) 2019 C. Faloutsos
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

66Gov. of India 66Copyright (C) 2019 C. Faloutsos
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

67Gov. of India 67Copyright (C) 2019 C. Faloutsos
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

68Gov. of India 68Copyright (C) 2019 C. Faloutsos

68

CMU SCS

List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright (C) 2019 C. Faloutsos 69Gov. of India

✔

✔

✔

✔
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Generalized Iterated Matrix 
Vector Multiplication (GIMV)

Copyright (C) 2019 C. Faloutsos 70

PEGASUS: A Peta-Scale Graph Mining 
System - Implementation and Observations. 

U Kang, Charalampos E. Tsourakakis, 
and Christos Faloutsos. 

(ICDM) 2009, Miami, Florida, USA. 
Best Application Paper (runner-up).

Gov. of India
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S.6: NLCC
• Connected Components – 4 observations:

Size

Count

Copyright (C) 2019 C. FaloutsosGov. of India
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S.6: NLCC
• Connected Components

Size

Count

Copyright (C) 2019 C. FaloutsosGov. of India

1) 10K x 
larger

than next

72

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.umbc.edu/ICDM09/
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S.6: NLCC
• Connected Components

Size

Count

Copyright (C) 2019 C. FaloutsosGov. of India

2) ~0.7B 
singleton

nodes

73
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S.6: NLCC
• Connected Components

Size

Count

Copyright (C) 2019 C. FaloutsosGov. of India

3) SLOPE!
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S.6: NLCC
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?

1100-size cmpt
X 65.
Why?

Copyright (C) 2019 C. FaloutsosGov. of India

4) Spikes!
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S.6: NLCC
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

Copyright (C) 2019 C. FaloutsosGov. of India
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S.6: persists over time
• Connected Components over Time
• LinkedIn: 7.5M nodes and 58M edges

Stable tail slope
after the gelling point

Copyright (C) 2019 C. FaloutsosGov. of India
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• S.6 NLCC non-largest conn. components
• S.7 eigen plots
• S.8 radius plot

Copyright (C) 2019 C. Faloutsos 78Gov. of India

✔

✔

✔

✔

✔

78



Faloutsos

27

CMU SCS

EigenSpokes
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010.

Copyright (C) 2019 C. Faloutsos 79Gov. of India

Useful for fraud detection!

79
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
80Copyright (C) 2019 C. FaloutsosGov. of India

N

N
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
81Copyright (C) 2019 C. FaloutsosGov. of India

N

N
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EigenSpokes
• EE plot:
• Scatter plot of 

scores of u1 vs u2
• One would expect

– Many points @ 
origin

– A few scattered 
~randomly

Copyright (C) 2019 C. Faloutsos 82

u1

u2

Gov. of India

1st Principal 
component

2nd Principal 
component

82
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EigenSpokes
• EE plot:
• Scatter plot of 

scores of u1 vs u2
• One would expect

– Many points @ 
origin

– A few scattered 
~randomly

Copyright (C) 2019 C. Faloutsos 83

u1

u2
90o

Gov. of India

83
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EigenSpokes - pervasiveness
• Present in mobile social graph

§ across time and space

• Patent citation graph

84Copyright (C) 2019 C. FaloutsosGov. of India
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

85Copyright (C) 2019 C. FaloutsosGov. of India
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

86Copyright (C) 2019 C. FaloutsosGov. of India
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

87Copyright (C) 2019 C. FaloutsosGov. of India
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

So what?
§ Extract nodes with high 

scores 
§ high connectivity
§ Good “communities”

spy plot of top 20 nodes

88Copyright (C) 2019 C. FaloutsosGov. of India
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Bipartite Communities!

magnified bipartite community

patents from
same inventor(s)

`cut-and-paste’
bibliography!

89Copyright (C) 2019 C. FaloutsosGov. of India

Useful for fraud detection!

89
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Bipartite Communities!

IP – port scanners

victims

90Copyright (C) 2019 C. Faloutsos

Useful for fraud detection!

Gov. of India

90
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• S.6 NLCC non-largest conn. components
• S.7 eigen plots
• S.8 radius plot

Copyright (C) 2019 C. Faloutsos 91Gov. of India

✔

✔

✔

✔

✔

✔
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HADI for diameter estimation
• Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10

• Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B)

• Our HADI: linear on E (~10B)
– Near-linear scalability wrt # machines
– Several optimizations -> 5x faster

Copyright (C) 2019 C. Faloutsos 92Gov. of India
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????

19+ [Barabasi+]

93Copyright (C) 2019 C. Faloutsos

Radius

Count

Gov. of India

~1999, ~1M nodes

93
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
Largest publicly available graph ever studied.

????

19+ [Barabasi+]
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Radius

Count

Gov. of India

??

~1999, ~1M nodes
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
Largest publicly available graph ever studied.

????

19+? [Barabasi+]
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Radius

Count

Gov. of India

14 (dir.)
~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
•7 degrees of separation (!)

•Diameter: shrunk

????

19+? [Barabasi+]
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Radius

Count

Gov. of India

14 (dir.)
~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
Q: Shape?

????

97Copyright (C) 2019 C. Faloutsos

Radius

Count

Gov. of India

~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
effective diameter: surprisingly small.

• Multi-modality (?!)
Gov. of India
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Radius Plot of GCC of YahooWeb.

99Copyright (C) 2019 C. FaloutsosGov. of India
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
effective diameter: surprisingly small.

Multi-modality: probably mixture of cores .
Gov. of India
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
effective diameter: surprisingly small.

Multi-modality: probably mixture of cores .
Gov. of India

EN

~7

Conjecture:
DE

BR
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
effective diameter: surprisingly small.

Multi-modality: probably mixture of cores .
Gov. of India

~7

Conjecture:

102
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Outline

• Introduction – Motivation
• Problem: Patterns in graphs

– Static graphs 
• degree, diameter, eigen, 
• Triangles

– Weighted graphs
– Time evolving graphs

Gov. of India
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Observations on  weighted 
graphs?

• A: yes - even more ‘laws’!

M. McGlohon, L. Akoglu, and C. Faloutsos 
Weighted Graphs and Disconnected 

Components: Patterns and a Generator.
SIG-KDD 2008 

Gov. of India
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Observation W.1: Fortification
Q: How do the weights 
of nodes relate to degree?

Gov. of India
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Observation W.1: Fortification

More donors, 
more $ ?

$10

$5

Gov. of India

‘Reagan’

‘Clinton’
$7

106

CMU SCS

Edges (# donors)

In-weights
($)

Copyright (C) 2019 C. Faloutsos 107

Observation W.1: fortification:
Snapshot Power Law

• Weight: super-linear on in-degree 
• exponent ‘iw’: 1.01 < iw < 1.26

Orgs-Candidates
e.g. John Kerry, 
$10M received,
from 1K donors

More donors, 
even more $
$10

$5

Gov. of India
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Outline

• Introduction – Motivation
• Problem: Patterns in graphs

– Static graphs 
– Weighted graphs
– Time evolving graphs

Gov. of India
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Problem: Time evolution
• with Jure Leskovec (CMU -> 

Stanford)

• and Jon Kleinberg (Cornell –
sabb. @ CMU)

Gov. of India
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 110Gov. of India
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D.1 Evolution of the Diameter
• Prior work on Power Law graphs hints 

at slowly growing diameter:
– [diameter ~ O( N1/3)]
– diameter ~ O(log N)
– diameter ~ O(log log N)

• What is happening in real data?

Gov. of India

diameter
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D.1 Evolution of the Diameter
• Prior work on Power Law graphs hints 

at slowly growing diameter:
– [diameter ~ O( N1/3)]
– diameter ~ O(log N)
– diameter ~ O(log log N)

• What is happening in real data?
• Diameter shrinks over time

Gov. of India

112
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D.1 Diameter – “Patents”

• Patent citation 
network

• 25 years of data
• @1999

– 2.9 M nodes
– 16.5 M edges

time [years]

diameter

Gov. of India
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 114Gov. of India

✔
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D.2 Temporal Evolution of the 
Graphs

• N(t) … nodes at time t
• E(t) … edges at time t
• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 
E(t+1) =? 2 * E(t)

Gov. of India
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D.2 Temporal Evolution of the 
Graphs

• N(t) … nodes at time t
• E(t) … edges at time t
• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 
E(t+1) =? 2 * E(t)

• A: over-doubled!
– But obeying the ``Densification Power Law’’

Gov. of India
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D.2 Densification – Patent 
Citations

• Citations among 
patents granted

• @1999
– 2.9 M nodes
– 16.5 M edges

• Each year is a 
datapoint

N(t)

E(t)

1.66

Gov. of India
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 118Gov. of India

✔

✔
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More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos 
Weighted Graphs and Disconnected 

Components: Patterns and a Generator.
SIG-KDD 2008 

Gov. of India
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D.3 Gelling Point
• Diameter, over time

Time

Diameter

IMDB

t=1914

Gov. of India Copyright (C) 2019 C. Faloutsos

??

diameter
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D.3 Gelling Point
• Most real graphs display a gelling point
• After gelling point, they exhibit typical behavior.  

This is marked by a spike in diameter.

Time

Diameter

IMDB
t=1914

Gov. of India Copyright (C) 2019 C. Faloutsos
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D.3 Gelling Point
• Most real graphs display a gelling point
• After gelling point, they exhibit typical behavior.  

This is marked by a spike in diameter.

Time

Diameter

IMDB
t=1914

Gov. of India Copyright (C) 2019 C. Faloutsos
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 123Gov. of India

✔

✔

✔
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?

Gov. of India

124
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?

Gov. of India
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?

Gov. of India

YES
YES

YES
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Observation D.4: NLCC behavior
• After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate).

IMDB

CC size

Time-stamp
Gov. of India
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 128Gov. of India

✔

✔

✔

✔
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Timing for Blogs

Cascading Behavior in Large Blog Graphs: 
Patterns and a model

Jure Leskovec, Mary McGlohon, Christos 
Faloutsos, Natalie Glance, Matthew Hurst

SDM’07

Gov. of India
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D.6 : popularity over time

Post popularity drops-off – exponentially?

lag: days after post

# in links

1 2 3

@t

@t + lag

Gov. of India
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D.6 : popularity over time

Post popularity drops-off – exponentially?
POWER LAW!

Exponent?

# in links
(log)

days after post
(log)

Gov. of India
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D.6 : popularity over time

Post popularity drops-off – exponentially?
POWER LAW!
Exponent? -1.6 

• close to -1.5: Barabasi’s stack model
• and like the zero-crossings of a random walk

# in links
(log) -1.6

days after post
(log)

Gov. of India
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-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The 
Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF] 

133
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright (C) 2019 C. Faloutsos 134Gov. of India

✔

✔

✔

✔

✔

134

CMU SCS

D.7: duration of phonecalls
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro

PKDD 2010
Gov. of India Copyright (C) 2019 C. Faloutsos 135
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http://www.nd.edu/~networks/HumanDynamics_20Oct05/correspondence_patterns.pdf
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Probably, power law (?)

Gov. of India Copyright (C) 2019 C. Faloutsos 136

??
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No Power Law!

Gov. of India Copyright (C) 2019 C. Faloutsos 137
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‘TLaC: Lazy Contractor’
• The longer a task (phonecall) has taken,
• The even longer it will take

Gov. of India Copyright (C) 2019 C. Faloutsos 138

Odds ratio=

Casualties(<x):
Survivors(>=x)

== power law

138



Faloutsos

47

CMU SCS

Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

Gov. of India Copyright (C) 2019 C. Faloutsos 139

Odds ratio=

Casualties(<x):
Survivors(>=x)

== power law

139
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Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

Gov. of India Copyright (C) 2019 C. Faloutsos 140

• PDF looks like hyperbola;
• and, if clipped, like power-law

OR(t)

140
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Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

Gov. of India Copyright (C) 2019 C. Faloutsos 141

OR(t)

Duration ( t )
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Log-logistic distribution
Nice 1 page description: section II of

Pravallika Devineni, Danai Koutra,  Michalis 
Faloutsos, and Christos Faloutsos. 
If walls could talk: Patterns and anomalies in 
Facebook wallposts. 
ASONAM 2015, pp 367-374. 

Gov. of India Copyright (C) 2019 C. Faloutsos 142

Attention:
Phase1
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Log-logistic: ~ power law

Gov. of India Copyright (C) 2019 C. Faloutsos 143
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Log-logistic: ~ power law

Gov. of India Copyright (C) 2019 C. Faloutsos 144
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http://www.cs.cmu.edu/~christos/PUBLICATIONS/15-asonam-powerWall.pdf
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Data Description

n Data from a private mobile operator of a large 
city
n 4 months of data
n 3.1 million users
n more than 1 billion phone records

n Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls)

Gov. of India Copyright (C) 2019 C. Faloutsos
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Outliers:

Gov. of India Copyright (C) 2019 C. Faloutsos 146
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Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– D*: how do graphs evolve over time?
• D.1: diameters
• D.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 147

? ?
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Short answer(s)
• Are real graphs random?

– S*: what do static graphs look like?
• S.0: ‘six degrees’
• S.1: skewed degree distribution
• S.2: skewed eigenvalues
• S.3: triangle power-laws
• S.4: GCC; and skewed distr. of conn. comp.

– T*: how do graphs evolve over time?
• T.1: diameters
• T.2: densification

Gov. of India Copyright (C) 2019 C. Faloutsos 148

Power laws: y ~ xa

• NOT Gaussians

• Take logarithms

? ?

x (log scale)

y (log scale)

a

148
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References
• Deepayan Chakrabarti and Christos 

Faloutsos Graph Mining: Laws, Tools and 
Case Studies, Morgan Claypool, 2012
– Part I (patterns)
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