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Q: mine/forecast (one, or more)
time sequences
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Answers

• Similarity search: Euclidean/time-warping; 
feature extraction and SAMs

• Periodicities: DFT/DWT
• Linear Forecasting: AR (Box-Jenkins)
• Non-linear forecasting: lag-plots
• Gray-box modeling: Lotka-Volterra
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Outline

• Introduction 
• Part#1: Graphs and Tensors
• Part#2: Time series
• Part#3: extras (visualization, etc)
• Conclusions

Gov. of India
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Detailed Outline

• Motivation
• Similarity Search and Indexing 
• DSP (Digital Signal Processing)
• Linear Forecasting
• Non-linear forecasting
• Tensors
• Conclusions
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Problem definition
• Given: one or more sequences 

x1 ,  x2 ,  … ,  xt ,  …
(y1, y2, … , yt, …
… )

• Find
– Forecast; similar sequences
– patterns; clusters; outliers
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Motivation - Applications

• Financial, sales, economic series

• Medical

– reactions to new drugs

– elderly care
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ECG - physionet.org
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EEG - epilepsy

Gov. of India Copyright (C) 2019 C. Faloutsos 9from wikipedia

9



Faloutsos

4

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 10

Motivation - Applications 
(cont’d)

• ‘Smart house’

– sensors monitor temperature, humidity, 
air quality

• video surveillance
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Motivation - Applications 
(cont’d)

• civil/automobile infrastructure

– bridge vibrations [Oppenheim+02]

– road conditions / traffic monitoring
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Motivation - Applications (cont’d)
• Weather, environment/anti-pollution

– volcano monitoring

– air/water pollutant monitoring
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Motivation - Applications 
(cont’d)

• Computer systems

– ‘Active Disks’ (buffering, prefetching)

– web servers (ditto)

– network traffic monitoring

– ...
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Problem #1:

Goal: given a signal (eg., #packets over time)
Find: patterns, periodicities, and/or compress

year

count lynx caught per year
(packets per day;
temperature per day)
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Problem#2: Forecast

Given xt, xt-1, …, forecast xt+1
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Problem#2’: Similarity search

Eg., Find a 3-tick pattern, similar to the last one
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Problem #3:

• Given: A set of correlated time sequences
• Forecast ‘Sent(t)’
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)

18



Faloutsos

7

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 19

Outline
• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Non-linear forecasting
• Tensors
• Conclusions
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions: Euclidean;Time-warping
– indexing
– feature extraction

• DSP
• ...
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Q: How similar are two sequences?

x(t) y(t)
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Q: How similar are two sequences?
A: Euclidean distance (<-> cosine similarity)

x(t) y(t)
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Importance of distance functions
Subtle, but absolutely necessary:
• A ‘must’ for similarity indexing (-> 

forecasting)
• A ‘must’ for clustering
Two major families

– Euclidean and Lp norms
– Time warping and variations
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Euclidean and Lp
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•L1: city-block = Manhattan
•L2 = Euclidean
•L¥
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Observation #1

• Time sequence -> n-d 
vector

...

Day-1

Day-2

Day-n
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Observation #2

Euclidean distance is 
closely related to 
– cosine similarity
– dot product
– ‘cross-correlation’ 

function

...

Day-1

Day-2

Day-n

26

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 27

Time Warping
• allow accelerations - decelerations

– (with or w/o penalty)
• THEN compute the (Euclidean) distance (+ 

penalty)
• related to the string-editing distance

27
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Time Warping

‘stutters’:

28

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 29

Other Distance functions
• piece-wise linear/flat approx.; compare 

pieces [Keogh+01] [Faloutsos+97]
• ‘cepstrum’ (for voice [Rabiner+Juang])

– do DFT; take log of amplitude; do DFT again!
• Allow for small gaps [Agrawal+95]
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More distance functions.
• Chen + Ng [vldb’04]: ERP ‘Edit distance 

with Real Penalty’: give a penalty to stutters
• Keogh+ [kdd’04]: VERY NICE, based on 

information theory: compress each 
sequence (quantize + Lempel-Ziv), using 
the other sequences’ LZ tables
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On The Marriage of Lp-norms and Edit Distance, Lei Chen,
Raymond T. Ng:, VLDB’04
Towards Parameter-Free Data Mining, E. Keogh, S. Lonardi,
C.A. Ratanamahatana, KDD’04
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Conclusions
Prevailing distances: 

– Euclidean and 
– time-warping
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DSP
• ...
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DSP
• ...
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Q: find quickly stocks like ‘C’ (or customers like ‘smith’)
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Q: find quickly stocks like ‘C’ (or customers like ‘smith’)
A: summarize seq. to a few numbers/features (eg., avg, 
stdv, Fourier coeff.)
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Indexing
Problem:
• given a set of time sequences,
• find the ones similar to a desirable query 

sequence
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day

$price

1 365

day

$price

1 365

day

$price

1 365

distance function: by expert

38

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 39

Idea: ‘GEMINI’
Eg., ‘find stocks similar to MSFT’
Seq. scanning: too slow
How to accelerate the search? 
[Faloutsos96]
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day

1 365

day
1 365

S1

Sn

‘GEMINI’ - Pictorially

F(S1)

F(Sn)

eg, avg

eg,. std
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GEMINI
Solution: Quick-and-dirty' filter: 
• extract n features (numbers, eg., avg., etc.)
• map into a point in n-d feature space
• organize points with off-the-shelf spatial 

access method (‘SAM’)
• discard false alarms

F(S1)

F(Sn)

41
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Examples of GEMINI
• Time sequences: DFT (up to 100 times 

faster) [SIGMOD94];
• [Kanellakis+], [Mendelzon+]
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Conclusions
• Fast indexing: through GEMINI

– feature extraction and
– (off the shelf) Spatial Access Methods 

[Gaede+98]
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DSP
• ...
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD, etc (data dependent)
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Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD etc (data dependent)
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Q: how to extract features (commonalities)? (given the data)
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Q: how to extract features (commonalities)? (given the data)
A: SVD, ICA
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SVD
• THE optimal method for dimensionality 

reduction
– (under the Euclidean metric)
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Motivation: 
Find hidden variables

Dow Jones Industrial Average

Alcoa

American 
Express

Boeing

Caterpillar

Citi Group

Find common 
hidden variables, 
and weights.

51
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Singular Value Decomposition 
(SVD)

• SVD (~LSI ~ KL ~ PCA ~ spectral 
analysis...) LSI: S. Dumais; M. Berry

KL: eg, Duda+Hart

PCA: eg., Jolliffe

Details: [Press+], 

[Faloutsos96]

day1

day2
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SVD
• Extremely useful tool

– (also behind PageRank/google and Kleinberg’s 
algorithm for hubs and authorities)
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SVD

t 1 t n

~

U VTS

AA
AXP
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SVD

t 1 t n

~

U VTS

AA
AXP

1st behavior
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SVD

t 1 t n

~

U VTS

AA
AXP

1st behavior

2nd behavior
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SVD

t 1 t n

~

U VTS

AA
AXP

1st behavior

2nd behavior

Participation weight of
row i to behavior j
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Outline
• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD etc (data dependent), ICA
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ICA = BSS
• Independent Component Analysis =
• Blind Source Separation =
• ‘cocktail party problem’
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Motivation: 
(Q1) Find patterns in data

• Motion capture data (broad jumps)

Left Knee

Right Knee

Energy exerted

Take-off
Landing
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PCA sometimes misses essential 
features

• Best SVD axis: not always meaningful!
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Motivation: 
(Q1) Find patterns in data

• Human would say
– Pattern 1: along 

diagonal
– Pattern 2: along 

vertical axis

• How to find these 
automatically? Left Knee

Right Knee

60:1

1:1
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Motivation: 
(Q2) Find hidden variables

Dow Jones Industrial Average

Alcoa

American 
Express

Boeing

Caterpillar

Citi 
Group

Find common 
hidden variables, 
and weights.

64
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Motivation:
(Q2) Find hidden variables

Hidden variable 1 Hidden variable 2

B1,CAT
B1,INTC B2,CAT

B2,INTC?

? ?

Caterpillar Intel

65
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Motivation:
(Q2) Find hidden variables

“Hidden variable 1” “Hidden variable 2”

0.94
0.63 0.03

0.64

Caterpillar Intel

66
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Motivation:
(Q2) Find hidden variables

“General trend” “Internet bubble”

0.94
0.63 0.03

0.64

Caterpillar Intel
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ICA: Like SVD, but sparse

~

1st behavior

2nd behavior

General trend Internet bubble

Stock#1 Stock#2
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ICA: Like SVD, but sparse

~

1st behavior

2nd behavior

General trend Internet bubble

Stock#1 Stock#2
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ICA: Like SVD, but sparse

~

1st behavior

2nd behavior

General trend Internet bubble

Stock#1 Stock#2
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ICA: Like SVD, but sparse

~

1st behavior

2nd behavior

General trend Internet bubble

Stock#1 Stock#2
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Q: how to extract features (commonalities)?
A: SVD, ICA
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Outline

• Motivation
• Similarity Search and Indexing
• DSP (DFT, DWT)
• Linear Forecasting
• Non-linear forecasting
• Tensors
• Conclusions
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Outline

• DFT
– Definition of DFT and properties
– how to read the DFT spectrum

• DWT
– Definition of DWT and properties
– how to read the DWT scalogram

87



Faloutsos

30

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 88

Important observations

Patterns, rules, forecasting and similarity 
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– compress
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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Problem

S1

Sn

Q: How to summarize / extract few features
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Answer:

S1

Sn

Q: How to summarize / extract few features
A1: Data dep.: SVD, ICA

A2: Data indep.: Fourier; Wavelets

actual mean mean+freq12

🇭

90



Faloutsos

31

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 91

Introduction - Problem#1

Goal: given a signal (eg., packets over time)
Find: patterns and/or compress

year

count

lynx caught per year
(packets per day;
automobiles per hour)

-2000
0

2000

4000
6000
8000

1 14 27 40 53 66 79 92 105
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What does DFT do?
A: highlights the periodicities

92
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DFT: definition
• For a sequence x0, x1, … xn-1

• the (n-point) Discrete Fourier Transform is
• X0, X1, … Xn-1 :
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inverse DFT

Skip
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DFT: Amplitude spectrum

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

year

count

Freq.

Ampl.

freq=12

freq=0

)(Im)(Re 222
fff XXA +=Amplitude:
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DFT: Amplitude spectrum

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

year

count

Freq.

Ampl.

freq=12

freq=0
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1 12 23 34 45 56 67 78 89 10
0

11
1

DFT: Amplitude spectrum

actual mean mean+freq12

year

count

Freq.

Ampl.

freq=12

freq=0
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DFT: Amplitude spectrum
• excellent approximation, with only 2 

frequencies!
• so what?

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

Freq.
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DFT: Amplitude spectrum
• excellent approximation, with only 2 

frequencies!
• so what?
• A1: (lossy) compression
• A2: pattern discovery

1 12 23 34 45 56 67 78 89 10
0

11
1
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DFT: Amplitude spectrum
• excellent approximation, with only 2 

frequencies!
• so what?
• A1: (lossy) compression
• A2: pattern discovery

actual mean mean+freq12
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DFT - Conclusions

• It spots periodicities (with the 
‘amplitude spectrum’)

• can be quickly computed (O( n log n)), 
thanks to the FFT algorithm.

• standard tool in signal processing 
(speech, image etc signals)

• (closely related to DCT and JPEG)

100
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Outline
• Motivation
• Similarity Search and Indexing
• DSP

– DFT
– DWT

• Definition of DWT and properties
• how to read the DWT scalogram
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Problem #1:

Goal: given a signal (eg., #packets over time)
Find: patterns, periodicities, and/or compress

year

count lynx caught per year
(packets per day;
virus infections per month)
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Wavelets - DWT

• DFT is great - but, how about compressing 
a spike?

value

time
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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0
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0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wavelets - DWT

• DFT is great - but, how about compressing 
a spike?

• A: Terrible - all DFT coefficients needed!

0
0.2
0.4
0.6
0.8
1

1.2

1 3 5 7 9 11 13 15

Freq.

Ampl.value

time
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Wavelets - DWT

• DFT is great - but, how about compressing 
a spike?

• A: Terrible - all DFT coefficients needed!
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Wavelets - DWT

• Similarly, DFT suffers on short-duration 
waves (eg., baritone, silence, soprano)

time

value
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Wavelets - DWT

• Solution#1: Short window Fourier 
transform (SWFT)

• But: how short should be the window?

time

freq

time

value
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Wavelets - DWT

• Answer: multiple window sizes! -> DWT

time

freq

Time
domain DFT SWFT DWT
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Haar Wavelets

• subtract sum of left half from right half
• repeat recursively for quarters, eight-ths, ...
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Wavelets - construction

x0  x1  x2  x3  x4  x5  x6  x7

Skip
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Wavelets - construction

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......level 1

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0level 2

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0

etc ...

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0

Q: map each coefficient 

on the time-freq. plane

t

f

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0

Q: map each coefficient 

on the time-freq. plane

t

f

Skip
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Haar wavelets - code
#!/usr/bin/perl5 
# expects a file with numbers
# and prints the dwt transform
# The number of time-ticks should be a power of 2
# USAGE 
#    haar.pl <fname> 

my @vals=();
my @smooth; # the smooth component of the signal
my @diff;   # the high-freq. component

# collect the values into the array @val
while(<>){

@vals = ( @vals ,  split );
}

my $len = scalar(@vals);
my $half = int($len/2);
while($half >= 1 ){

for(my $i=0; $i< $half; $i++){
$diff [$i] = ($vals[2*$i] - $vals[2*$i + 1] )/ sqrt(2);
print "\t", $diff[$i];
$smooth [$i] = ($vals[2*$i] + $vals[2*$i + 1] )/ sqrt(2);

}
print "\n";
@vals = @smooth;
$half = int($half/2);

}
print "\t", $vals[0], "\n" ;      # the final, smooth component

116
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Wavelets - construction

Observation1:
‘+’ can be some weighted addition
‘-’ is the corresponding weighted difference 

(‘Quadrature mirror filters’)
Observation2: unlike DFT/DCT,

there are *many* wavelet bases: Haar, Daubechies-
4, Daubechies-6, Coifman, Morlet, Gabor, ...
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Wavelets - how do they look like?

• E.g., Daubechies-4

118
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Wavelets - how do they look like?

• E.g., Daubechies-4

?

?
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Wavelets - how do they look like?

• E.g., Daubechies-4
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Outline
• Motivation
• Similarity Search and Indexing
• DSP

– DFT
– DWT

• Definition of DWT and properties
• how to read the DWT scalogram
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Wavelets - Drill#1:

t

f

• Q: baritone/silence/soprano - DWT?

time

value
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Wavelets - Drill#1:

t

f

• Q: baritone/silence/soprano - DWT?

time

value
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Wavelets - Drill#2:

• Q: spike - DWT?

t

f

1 2 3 4 5 6 7 8
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Wavelets - Drill#2:

t

f

• Q: spike - DWT?

1 2 3 4 5 6 7 8

0.00    0.00    0.71 0.00

0.00    0.50
-0.35
0.35
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f

129



Faloutsos

44

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 130

Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: DFT?

t

f

t

f

DWT DFT
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BGP-lens: Patterns and Anomalies in Internet Routing 

Updates B. Aditya Prakash et al, SIGKDD 2009

time

#updates
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BGP-lens: Patterns and Anomalies in Internet Routing 

Updates B. Aditya Prakash et al, SIGKDD 2009

time

#updates
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BGP-lens: Patterns and Anomalies in Internet Routing 

Updates B. Aditya Prakash et al, SIGKDD 2009

time

#updates
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BGP-lens: Patterns and Anomalies in Internet Routing 

Updates B. Aditya Prakash et al, SIGKDD 2009

time

#updates

Given a time series: 1) PLOT 

IT

136

CMU SCS

More examples (BGP updates)

Gov. of India Copyright (C) 2019 C. Faloutsos 137

Given a time series: 1) PLOT IT

2) DFT / 

DWT
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freq.

Low freq.:
omitted t

f
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freq.

??
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‘Prolonged 
spike’

t
ffreq.
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freq.

15K msgs, for several hours: 6pm-4am
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freq.

15K msgs, for several hours: 6pm-4am

Given a time series: 1) PLOT IT

2) DFT / 

DWT
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Advantages of Wavelets

• Better compression (better RMSE with same 
number of coefficients - used in JPEG-2000)

• fast to compute (usually: O(n)!)
• good for ‘spikes’ 
• good for de-noising
• mammalian eye and ear: Gabor wavelets

143
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Overall Conclusions

• DFT spots periodicities
• DWT : multi-resolution - matches 

processing of mammalian ear/eye better
• Both: powerful tools for compression, 

pattern detection in real signals
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Resources: software and urls

• xwpl: open source wavelet package from 
Yale, with excellent GUI

• http://monet.me.ic.ac.uk/people/gavin/java
/waveletDemos.html : wavelets and 
scalograms
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Books
• William H. Press, Saul A. Teukolsky, William T. 

Vetterling and  Brian P. Flannery: Numerical Recipes in C,   
Cambridge University Press, 1992, 2nd Edition. (Great 
description, intuition and code for DFT, DWT)

• C. Faloutsos: Searching Multimedia Databases by Content, 
Kluwer Academic Press, 1996 (introduction to DFT, 
DWT)
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Additional Reading
• [Gilbert+01] Anna C. Gilbert, Yannis Kotidis and S. 

Muthukrishnan and Martin Strauss, Surfing Wavelets on 
Streams: One-Pass Summaries for Approximate Aggregate 
Queries, VLDB 2001
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