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Roadmap
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• (SVD)
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‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS, SALSA

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. (/SALSA)
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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PageRank (google)

•Brin, Sergey and Lawrence 
Page (1998). Anatomy of a 
Large-Scale Hypertextual Web 
Search Engine. 7th Intl World 
Wide Web Conf.
•Page, Brin, Motwani, and 
Winograd (1999). The PageRank 
citation ranking: Bringing order 
to the web. Technical ReportLarry

Page
Sergey
Brin
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)
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Problem: PageRank - solution

Given a directed graph, find its most 
interesting/central node

Proposed solution: Random walk; spot most 
‘popular’ node (-> steady state prob. (ssp))

A node high ssp,
if its parents have high ssp
(recursive, but OK!)
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(Simplified) PageRank algorithm

• Let A be the adjacency matrix;
• let B be the transition matrix: transpose, column-normalized - then
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DETAILS
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(Simplified) PageRank algorithm
• B p = p
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Definitions

A Adjacency matrix (from-to)
D Degree matrix = (diag ( d1, d2, …, dn) )
B Transition matrix: to-from, column 

normalized
B = AT D-1

DETAILS

15
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(Simplified) PageRank algorithm
• B p = 1 * p
• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized)

• Why does such a p exist? 
– p exists if B is nxn, nonnegative, irreducible 

[Perron–Frobenius theorem]

DETAILS
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

PageRank = PR
= Random Walk with Restarts = RWR
= Random surfer

22
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1

DETAILS
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1 2

664

1
1
. . .
1

3

775

DETAILS
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Notice:
• pageRank ~ in-degree
• (and HITS, also: ~ in-degree)
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance

• PageRank and Personalized PR
• HITS
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?

A

B

27
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Personalized P.R.

Taher H. Haveliwala. 2002. Topic-sensitive 
PageRank. (WWW '02). 517-526. 
http://dx.doi.org/10.1145/511446.511513 

Page L., Brin S., Motwani R., and Winograd
T. (1999). The PageRank citation ranking: 
Bringing order to the web. Technical Report

Gov. of India Copyright (C) 2019 C. Faloutsos 29
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5

31
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5

High score (A -> B) if
• Many
• Short
• Heavy
paths A->B

33
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Extension: Personalized P.R.
• With probability 1-c, fly-out to a random 

node(s)
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1 2

664

1
1
. . .
1

3

775

your favorite

𝒆
𝒆

𝒆
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’

1 2 3

4
5

35
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’ – Related to
– ‘escape’ probability
– ‘round trip’ probability
– …

36
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance

• PageRank and Personalized PR
– Fast computation - ‘Pixie’

• HITS

Gov. of India

?
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Extension: Personalized P.R.
• Q: Faster computation than:

p = (1-c)/n [I - c B] -1 1

2

664

1
1
. . .
1

3

775

DETAILS
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Pixie algorithm

Chantat Eksombatchai, Pranav Jindal, Jerry
Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, Jure Leskovec:
Pixie: A System for Recommending 3+ Billion
Items to 200+ Million Users in Real-Time.
WWW 2018: 1775-1784
https://dl.acm.org/citation.cfm?doid=3178876.
3186183
Gov. of India Copyright (C) 2019 C. Faloutsos 39
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Pixie algorithm
• Q: Faster computation than:

p = (1-c)/n [I - c B] -1 1
• A: simulate a few R.W.

– keep visit counts   Ci

– fast and nimble 2

664

1
1
. . .
1

3

775
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Personalized PageRank algorithm
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Personalized PageRank algorithm
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Personalized PageRank algorithm
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Personalized PageRank algorithm
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Personalized PageRank algorithm
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Personalized PageRank algorithm

46



Faloutsos

16

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 47

Personalized PageRank algorithm

..

..
…

…
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance

• PageRank and Personalized PR
– Fast computation - ‘Pixie’
– Other applications

• HITS
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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…

…
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Fast Algorithms for Querying and Mining Large Graphs
Hanghang Tong, PhD dissertation, CMU, 2009. TR: CMU-
ML-09-112.

54
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance

• PageRank and Personalized PR
• HITS
• SVD
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Kleinberg’s algo (HITS)

Kleinberg, Jon (1998). 
Authoritative sources in a 
hyperlinked environment. 
Proc. 9th ACM-SIAM 
Symposium on Discrete 
Algorithms.

56

CMU SCS

Gov. of India Copyright (C) 2019 C. Faloutsos 57

Recall: problem dfn

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

57

CMU SCS

Why not just PageRank?
1. HITS (and its derivative, SALSA), 

differentiate between “hubs” and 
“authorities”

2. HITS can help to find the largest community
3. (SVD: powerful tool)

Gov. of India Copyright (C) 2019 C. Faloutsos 58

fans

idols

58
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Kleinberg’s algorithm
• Problem dfn: given the web and a query
• find the most ‘authoritative’ web pages for 

this query

59
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

60
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

HITS

``wise’’

AND: A node is ``wise’’ 
if its children are important

61
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Kleinberg’s algorithm
• Step 0: find nodes with query word(s)
• Step 1: expand by one move forward and 

backward

62
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Kleinberg’s algorithm
• on the resulting graph, give high score (= 

‘authorities’) to nodes that many ``wise’’ 
nodes point to

• give high wisdom score (‘hubs’) to nodes 
that point to good ‘authorities’

hubs authorities

63
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Kleinberg’s algorithm
Then:

ai = hk + hl + hm

that is
ai = Sum (hj)     over all j that 

(j,i) edge exists
or
a = AT h

k
l
m

i

=

64
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k
l
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Kleinberg’s algorithm
symmetrically, for the ‘hubness’:

hi = an + ap + aq

that is
hi = Sum (qj)     over all j that 

(i,j) edge exists
or
h = A a

p

n

q

i

=

66
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Kleinberg’s algorithm
symmetrically, for the ‘hubness’:

hi = an + ap + aq

that is
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or
h = A a

p

n

q
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=
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
In short, the solutions to

h = A a
a = AT h

are the left- and right- singular-vectors of the 
adjacency matrix A.

Starting from random a’ and iterating, we’ll 
eventually converge
… to the vector of strongest singular value.

Dfn: in 
+2

72
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Kleinberg’s algorithm - results
Eg., for the query ‘java’:
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com (“the java 

developer”)
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance

• PageRank and Personalized PR
• HITS
• (SVD)
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SVD properties
• Hidden/latent variable detection
• Compute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding

Gov. of India Copyright (C) 2019 C. Faloutsos 75
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

Copyright (C) 2019 C. Faloutsos 76Gov. of India
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

Copyright (C) 2019 C. Faloutsos 79Hub scores

Authority 
scores

HITS: first singular vector, ie, fixates 
on largest group

Gov. of India

79
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Crush intro to SVD
• Basis for anomaly detection – P1.4
• Basis for tensor/PARAFAC – P2.5

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
• Dimensionality reduction
• Embedding

Gov. of India Copyright (C) 2019 C. Faloutsos 81

u0 u1

v0 v1

81
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SVD - intuition

Gov. of India Copyright (C) 2019 C. Faloutsos 82

#retweets for Byonce

#r
et
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r …

u1 u2

v1 v2
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
• Embedding

Gov. of India Copyright (C) 2019 C. Faloutsos 83

u0 u1

v0 v1
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Crush intro to SVD

Copyright (C) 2019 C. Faloutsos 84Gov. of India

scores

• SVD compression is a linear autoencoder

N 
fans

M idols

row 𝑖 (500 dim)

reconstructed row 𝑖

…

…
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Crush intro to SVD
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• SVD compression is a linear autoencoder

N 
fans

M idols

≈ 𝑀×3
idol 

matrix
row 𝑖 (500 dim)

reconstructed row 𝑖

…

…

scores

85
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’

Gov. of India Copyright (C) 2019 C. Faloutsos 86

u0 u1

v0 v1
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS, SALSA

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. (/SALSA)

87
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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u0 u1

v0 v1
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’

Gov. of India Copyright (C) 2019 C. Faloutsos 89

u0 u1

v0 v1

Matrix?        
  SVD!

89
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection

• Algorithm
• Warning: ‘no good cuts’

– P1.4: fraud/anomaly detection
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Problem

• Given a graph, and k
• Break it into k (disjoint) communities
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Short answer

• METIS [Karypis, Kumar]
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Solution#1: METIS

• Arguably, the best algorithm
• Open source, at

– http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz

• and *many* related papers, at same url
• Main idea: 

– coarsen the graph; 
– partition; 
– un-coarsen
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Solution #1: METIS

• G. Karypis and V. Kumar. METIS 4.0: 
Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998.

• <and many extensions>
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Solutions #2,3…

• Fiedler vector (2nd singular vector of Laplacian).
• Modularity: Community structure in social and 

biological networks M. Girvan and M. E. J. Newman, PNAS 
June 11, 2002. 99 (12) 7821-7826; 
https://doi.org/10.1073/pnas.122653799

• Co-clustering: [Dhillon+, KDD’03]
• Clustering on the A2 (square of adjacency matrix) 

[Zhou, Woodruff, PODS’04]
• Minimum cut / maximum flow [Flake+, KDD’00]
• ….
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection

• Algorithm
• Warning: ‘no good cuts’

– P1.4: fraud/anomaly detection
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A word of caution

• BUT: often, there are no good cuts:
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A word of caution

• BUT: often, there are no good cuts:
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08]
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08]

? ?
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R1: Jellyfish model [Tauro+]

…

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. 
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L 
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006. 
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R1: Jellyfish model [Tauro+]

…

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. 
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L 
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006. 
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R1: Jellyfish model [Tauro+]

…

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. 
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L 
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-
350, Sept. 2006. 
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R2: 'Familiar strangers’
• Bipartite graph (‘heterophily’)
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R3: ``Core-periphery’’
• Bipartite graph + clique
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satellites
?
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Strange behavior of min cuts

• ‘negative dimensionality’ (!)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, 
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy
Statistical Properties of Community Structure in Large Social and 
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. 
WWW 2008. 
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Strange behavior of min cuts

• ‘negative dimensionality’ (!)
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Short answer

• METIS [Karypis, Kumar]
• (but: maybe NO good cuts exist!)
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Roadmap

• Introduction – Motivation
• Part#1: Graphs

– P1.1: properties/patterns in graphs
– P1.2: node importance
– P1.3: community detection
– P1.4: fraud/anomaly detection
– P1.5: belief propagation
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