Anomaly detection in large graphs

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Conclusions

Graphs - why should we care?

Graphs - why should we care?

Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! вLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

NETFLIX

Motivating problems

• P1: patterns? Fraud detection?

Ο

00 Ο 0

• P2: patterns in time-evolving graphs / tensors destination source

time

Motivating problems

😪 Patterns 📈 anomalies

• P1: patterns? Fraud detection?

P2: patterns in time-evolving graphs / tensors
 destination

source

time

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
 - Part#2: time-evolving graphs; tensors
 - Conclusions

Part 1: Patterns, & fraud detection

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

• Connected Components – 4 observations:

Connected Components

Connected Components

16

eBay 2022

• Connected Components

• Connected Components

Connected Components

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- P1.1: Patterns: Degree; Triangles
- P1.2: Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

eBay 2022

Yahoo!
Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

eBay 2022

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

eBay 2022

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

eBay 2022

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

eBay 2022

R

MORE Graph Patterns

	Unweighted	Weighted
Static	 Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]
TG: A Recursive Realistic Graph Generator using Random		

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. '05] L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] L07. Constant size 2 nd and 3 nd connected components [McGlohon et al. '08] L08. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. '08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. `08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns

- P1.2: Anomaly / fraud detection
 - No labels spectral Patterns
 - With labels: Belief Propagation

- Part#2: time-evolving graphs; tensors
- Conclusions

How to find 'suspicious' groups?

• 'blocks' are normal, right?

Except that:

• 'blocks' are normal, ish

 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily?

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily? A: Silver bullet: SVD!

Crush intro to SVD

• Recall: (SVD) matrix factorization: finds blocks

 Recall: (SVD) matrix factorization: finds blocks Even if shuffled!

Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)

Dataset

- Tencent Weibo
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

eBay 2022

follower

u1

• Spikes on the out-degree distribution

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral Patterns
 - No labels dense-block detection (FRAUDAR)
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Knowledge Discovery and Data Mining (KDD) 2016

FRAUDAR: Bounding Graph Fraud in the Face of Camouflage

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos

Carnegie Mellon University

Experiments: Amazon data

Carnegie Mellon

Detecting Review Spam

Many existing methods detect dense subgraphs.

49

Evading Detection

Attackers use *camouflage* to evade detection.

Random camouflage

Hijacked user accounts

eBay 2022

Christos Faloutsos

Carnegie Mellon

Problem Definition

Given:

- Bipartite graph between
 users and products
- (optional: prior node susp. a_i)

Products

Carnegie Mellon

Dfn: Average suspiciousness

`Average suspiciousness' g(A,B) =

Start with sets A, B as all users / products

54

Greedy Algorithm

Delete rows / columns greedily to maximize g (average suspiciousness)

Delete rows / columns greedily to maximize g (average suspiciousness)

eBay 2022

Christos Faloutsos

Delete rows / columns greedily to maximize g (average suspiciousness)

eBay 2022

Christos Faloutsos

Delete rows / columns greedily to maximize g (average suspiciousness)

Christos Faloutsos

eBay 2022

Continue until A and B are empty

eBay 2022

Christos Faloutsos

Return the best subsets A and B seen so far (based on g)

Christos Faloutsos

eBay 2022

Theoretical guarantee

Thm 1: The subgraph (A,B) returned by FRAUDAR satisfies

$$g(\mathcal{A} \cup \mathcal{B}) \geq \frac{1}{2}g_{OPT}$$
FRAUDARsubgraphOptimum value ofg

eBay 2022

Christos Faloutsos

FRAUDAR - Conclusion

Suspiciousness metric

Products B Users A

g(A,B) = f(A,B) / (|A| + |B|)

 $g(\mathcal{A} \cup \mathcal{B}) \geq \frac{1}{2}g_{OPT}$

- Theoretical guarantees
- Effectiveness

Carnegie Mellon

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral methods
 - No labels dense subgraphs
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

eBay 2022

Christos Faloutsos

E-bay Fraud detection - NetProbe

eBay 2022

Christos Faloutsos

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere
 - Long (and growing) list of tools for anomaly/fraud detection

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
 - P2.1: tools/tensors
 - P2.2: other patterns
- Conclusions

Part 2: Time evolving graphs; tensors

Graphs over time -> tensors!

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

Graphs over time -> tensors!

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

eBay 2022

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

object

MANY more settings, with >2 'modes'

- Problem #2.1''':
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 'modes' (and 4, 5, etc modes)

mode2

eBay 2022

Crush intro to SVD

• Recall: (SVD) matrix factorization: finds blocks

Answer: tensor factorization

• PARAFAC decomposition

Answer: tensor factorization

• PARAFAC decomposition

– 4M x 15 days

• Results for who-calls-whom-when

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

eBay 2022

Christos Faloutsos

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

eBay 2022

Christos Faloutsos

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns

eBay 2022

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Acknowledgements and Conclusions

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Miguel

Beutel, Alex

Kang, U

Danai

Koutra, Papalexakis, Vagelis

Shah,

Neil

Shin, Kijung

eBay 2022

Christos Faloutsos

88

CONCLUSION#1 – Big data

- Patterns X Anomalies
- Large datasets reveal patterns/outliers that are invisible otherwise

89

CONCLUSION#2 – tensors

• powerful tool

Christos Faloutsos

References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/S004 49ED1V01Y201209DMK006

Graph Mining Laws, Tools, and Case Studies

Deepayan Chakrabarti Christos Faloutsos

Synthesis Lectures on Data Mining and Knowledge Discovery

References

 Danai Koutra and Christos Faloutsos, Individual and Collective Graph Mining: Principles, Algorithms, and Applications, Morgan Claypool 2017 (https://doi.org/10.2200/S00796ED1V01Y201708DM K014)

Inc	lividual and	
Co	llective Graph	
Mi	ning	
Prin	ciples, Algorithms,	
and.	Applications	
Danai	Koutra	
Christ	tos Faloutsos	
Christ	tos Faloutsos	

TAKE HOME MESSAGE:

Cross-disciplinarity

eBay 2022

Christos Faloutsos

Thank you!

Cross-disciplinarity

Bonus material

- Human trafficking detection
- == near-duplicate document detection

InfoShield: Generalizable Information-Theoretic Human Trafficking Detection ICDE 2021

Meng-Chieh Lee*

Namyong Park

Catalina Vajiac*

Cara Jones

Aayushi Kulshrestha

Reihaneh Rabbany

Sacha Levy

Christos Faloutsos

Motivation

- *Pervasive:* Millions exploited every year
- *Room for Improvement:* law enforcement looks at ads manually
- *How can we separate* HT ads from the rest?

Problem definition:

- *Insight:* controllers write ads for all their victims, which makes the text similar.
- What can we do?
 - Group ads into micro-clusters based on text
 - - Visualize each

Toy example

Constant

nt Slot

Insertion

Deletion

Substitution

T_1	This is a great *	and the *	dollar price is	great
#1	This is a great soap,	and the 5	dollar price is	great
#2	This is a great chair,	and the 10	dollar price is	great
#3	This is a great hat,	and the 3	dollar price is	great
#4	This is great blue pen,	and the 3	dollar price is so	good
T_2	I made 30k working	* - ca	l * or	visit *
#5	I made 30k working on t	his job <mark>- cal</mark>	1 123-456.7890 or	visit scam.com
#6	I made 30k working from	n home <mark>- cal</mark>	1 123-456.7890 or	visit fraud.com

Problem definition:

How?

Infoshield-Coarse: overview

- 1. Given a document: *Extract tf-idf scores* for each phrase
- 2. *Create a bipartite graph* of documents and top 10% of phrases
- 3. Once all documents are processed, *return connected components*

Infoshield-Fine

- Group similar documents
- To minimize 'Description length' (MDL)

(Constant S	Slot	Insertio	n	Deletion Substitution
T_1		sismo	richter		km al sureste de puerto escondido oax lat lon pf km
#1		sismo	richter		km al sureste de puerto escondido oax lat lon pf km
Omit	21 Identical	Tweets	as #1		
#23	sismologicomx	sismo	magnitud	loc	km al sureste de puerto escondido oax lat lon pf km

Results: Interpretability

Results: Interpretability

Results: Scalability

Number of Tweets

Conclusions

- Graph mining / anomaly detection helps here, too
- Explainability is a must
- Visualization is extremely helpful

T_1	This is a great *	and the *	dollar price is	great
#1	This is a great soap,	and the 5	dollar price is	great
#2	This is a great chair,	and the 10	dollar price is	great
#3	This is a great hat,	and the 3	dollar price is	great
#4	This is great blue pen,	and the 3	dollar price is	so good
T_2	I made 30k working	* - ca	ll * o	r visit *
#5	I made 30k working on	this job - cal	l 123-456.7890 o	r visit scam.com
#6	I made 30k working from	m home - cal	l 123-456.7890 o	r visit fraud.com