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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Conclusions
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Graphs - why should we care?

>$10B; ~1B users
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Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]
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Graphs - why should we care?
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic and 

anomaly detection
• Recommendation systems
• ....

• Many-to-many db relationship -> graph

eBay 2022
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns & fraud detection
• Part#2: time-evolving graphs; tensors
• Conclusions

eBay 2022
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Part 1:
Patterns, & 

fraud detection



CMU SCS

Christos Faloutsos 10

Laws and patterns
• Q1: Are real graphs random?

eBay 2022
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Laws and patterns
• Q1: Are real graphs random?
• A1: NO!!

– Diameter (‘6 degrees’; ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

eBay 2022
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

eBay 2022
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

eBay 2022
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S2: connected component sizes
• Connected Components – 4 observations:

Size

Count

Christos FaloutsoseBay 2022

1.4B nodes
6B edges
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsoseBay 2022

1) 10K x 
larger
than next
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsoseBay 2022

2) ~0.7B 
singleton
nodes
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsoseBay 2022

3) SLOPE!
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S2: connected component sizes
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?1100-size cmpt

X 65.
Why?

Christos FaloutsoseBay 2022

4) Spikes!
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S2: connected component sizes
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

Christos FaloutsoseBay 2022
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns: Degree; Triangles
– P1.2: Anomaly/fraud detection

• Part#2: time-evolving graphs; tensors
• Conclusions

eBay 2022
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 

eBay 2022
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?
– 2x the friends, 2x the triangles ?

eBay 2022
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Triangle Law: #S.3 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

eBay 2022
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

24eBay 2022 24Christos Faloutsos

? ?
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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MORE Graph Patterns

eBay 2022 Christos Faloutsos 29

✔
✔
✔

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09. 
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MORE Graph Patterns
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• Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal)

• Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool. 

http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions

eBay 2022

Patterns            anomalies
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How to find ‘suspicious’ groups?
• ‘blocks’ are normal, right?

eBay 2022 Christos Faloutsos 32

fans

idols
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Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

eBay 2022 Christos Faloutsos 33
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

eBay 2022 Christos Faloutsos 34

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]
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Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

eBay 2022 Christos Faloutsos 36

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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M
products
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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~ + +

DETAILS

M
timestamps

‘cancer’ ‘alzheimer’ ‘Parkinson’

N genes
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
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M
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‘sports lovers’
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‘citizens’
‘politicians’

~ + +

DETAILS

Even if shuffled!
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)
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Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

eBay 2022 43Christos Faloutsos
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Real Data

“Pearls” “Staircase”

“Rays” “Block”

eBay 2022 44Christos Faloutsos
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Real Data
• Spikes on the out-degree distribution

´

´
eBay 2022 45Christos Faloutsos
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral
• No labels – dense-block detection (FRAUDAR)
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions
eBay 2022

Patterns            anomalies
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FRAUDAR: Bounding Graph Fraud in 
the Face of Camouflage

Knowledge Discovery and Data Mining (KDD) 2016

Bryan Hooi, Hyun Ah Song, Alex Beutel, 
Neil Shah, Kijung Shin, Christos Faloutsos

Carnegie Mellon University
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Experiments: Amazon data

48eBay 2022 Christos Faloutsos
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Detecting Review Spam
Many existing methods detect dense 
subgraphs.

Spectral 
methods

Belief 
propagation

Clustering

Users

Products

Edges = reviews
eBay 2022 Christos Faloutsos
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Evading Detection
Attackers use camouflage to evade 

detection.

Random camouflage Hijacked user accounts
eBay 2022 Christos Faloutsos
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Problem Definition
Given:

• Bipartite graph between 
users and products 

• (optional: prior node susp. ai ) 0

2

2

0 1 1 1

Node 
scores ai

Products

Users

eBay 2022 Christos Faloutsos
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Dfn: Average suspiciousness 

B

A

`Average suspiciousness’ g(A,B) = 

(sum of node susp.) + (sum of edge susp.)

0
0
1

2
2
2

0 1 1 1 1 1 1 1

2
2

22
2
23

3
23

2

52

Node 
scores ai

g(A,B) 
= (12+23)/7

= 35/7

|A| + |B|

Users

Products

eBay 2022 Christos Faloutsos
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Greedy Algorithm

Start with sets A, B as all users / products 

53
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Details
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Delete rows / columns greedily to maximize g 
(average suspiciousness) 

54
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Greedy Algorithm
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Delete rows / columns greedily to maximize g 
(average suspiciousness) 
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Delete rows / columns greedily to maximize g 
(average suspiciousness) 
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Delete rows / columns greedily to maximize g 
(average suspiciousness) 
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Continue until A and B are empty

58
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Details
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Return the best subsets A and B seen so far 
(based on g)

59
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Details
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Theoretical guarantee

Thm 1: The subgraph (A,B) returned by 
FRAUDAR satisfies

FRAUDAR 
subgraph

Optimum value of 
g

60eBay 2022 Christos Faloutsos

Details
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FRAUDAR - Conclusion

• Suspiciousness metric

• Theoretical guarantees

• Effectiveness 

eBay 2022 61Christos Faloutsos
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral methods
• No labels – dense subgraphs
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions
eBay 2022
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E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU
[www’07]
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E-bay Fraud detection
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E-bay Fraud detection
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E-bay Fraud detection - NetProbe



CMU SCS

Popular press

And less desirable attention:
• E-mail from ‘Belgium police’ (‘copy of 

your code?’)
eBay 2022 Christos Faloutsos 67
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Summary of Part#1
• *many* patterns in real graphs

– Power-laws everywhere
– Long (and growing) list of tools for 

anomaly/fraud detection

eBay 2022 Christos Faloutsos 68

Patterns            anomalies



CMU SCS

Christos Faloutsos 69

Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs

– P2.1: tools/tensors
– P2.2: other patterns

• Conclusions

eBay 2022



CMU SCS

eBay 2022 Christos Faloutsos 70

Part 2:
Time evolving 
graphs; tensors
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

eBay 2022 Christos Faloutsos 71

smith

johnson
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Mon
Tue
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

eBay 2022 Christos Faloutsos 74
callee

caller

tim
e



CMU SCS

Graphs over time -> tensors!
• Problem #2.1’:

– Given author-keyword-date
– Find patterns / anomalies

eBay 2022 Christos Faloutsos 75
keyword

author

da
te

MANY more settings,
with >2 ‘modes’
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Graphs over time -> tensors!
• Problem #2.1’’:

– Given subject – verb – object facts
– Find patterns / anomalies

eBay 2022 Christos Faloutsos 76
object

subject

ve
rb MANY more settings,

with >2 ‘modes’
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Graphs over time -> tensors!
• Problem #2.1’’’:

– Given <triplets>
– Find patterns / anomalies

eBay 2022 Christos Faloutsos 77
mode2

mode1
mod

e3
MANY more settings,
with >2 ‘modes’
(and 4, 5, etc modes)
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Answer : tensor factorization
• Recall: (SVD) matrix factorization: finds 

blocks

eBay 2022 Christos Faloutsos 78

N 
users

M
products

‘meat-eaters’
‘steaks’
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~ + +
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

eBay 2022 Christos Faloutsos 79

N 
fans

M
idols
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‘singers’

‘sports lovers’
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‘citizens’
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Answer: tensor factorization
• PARAFAC decomposition

eBay 2022 Christos Faloutsos 80

= + +subject

object

ve
rb

politicians artists athletes
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Answer: tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days

eBay 2022 Christos Faloutsos 81

= + +caller

callee

tim
e

?? ?? ??
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

eBay 2022 82Christos Faloutsos
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
eBay 2022 84Christos Faloutsos

=

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann,
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
Evangelos Papalexakis, Danai Koutra. Com2: Fast
Automatic Discovery of Temporal (Comet) Communities.
PAKDD 2014, Tainan, Taiwan.
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Part 2: Conclusions

• Time-evolving / heterogeneous graphs -> 
tensors

• PARAFAC finds patterns
• Surprising temporal patterns

eBay 2022 85Christos Faloutsos

=
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Acknowledgements and Conclusions

eBay 2022
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Thanks

eBay 2022

Thanks to: NSF IIS-0705359, IIS-0534205, 
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies
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CONCLUSION#1 – Big data
• Patterns          Anomalies
• Large datasets reveal patterns/outliers that 

are invisible otherwise

eBay 2022
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CONCLUSION#2 – tensors

• powerful tool

eBay 2022

=

1 caller 5 receivers 4 days of activity
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TAKE HOME MESSAGE:

Cross-disciplinarity
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Cross-disciplinarity
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Thank you! 
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Bonus material
• Human trafficking detection
• == near-duplicate document detection

eBay 2022 Christos Faloutsos 95
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InfoShield: Generalizable 
Information-Theoretic Human 

Trafficking Detection
ICDE 2021

Catalina 
Vajiac*

Meng-Chieh
Lee*

Aayushi
Kulshrestha

Sacha Levy

Namyong
Park

Cara Jones Reihaneh
Rabbany

Christos 
Faloutsos



CMU SCS

• Pervasive: Millions exploited every 
year

• Room for Improvement: law 
enforcement looks at ads manually

• How can we separate HT ads from 
the rest?

97

Motivation

eBay 2022 Christos Faloutsos
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Background: INTUITION• Insight: controllers write ads 
for all their victims, which 
makes the text similar.

• What can we do?
– - Group ads into micro-clusters 

based on text
– - Visualize each micro-cluster for ease 

of interpretability by law enforcement

98

Problem definition:

eBay 2022 Christos Faloutsos
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Background: Example

99

Toy example

eBay 2022 Christos Faloutsos
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Background: INTUITION

100

Problem definition:

eBay 2022 Christos Faloutsos

How?
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Infoshield-Coarse: overview

• 1. Given a document: Extract tf-idf
scores for each phrase

• 2. Create a bipartite graph of 
documents and top 10% of phrases

• 3. Once all documents are processed, 
return connected components

101eBay 2022 Christos Faloutsos

Details
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Infoshield-Fine

• Group similar documents
• To minimize ‘Description length’ (MDL)

102eBay 2022 Christos Faloutsos

Details
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Results:: Interpretability

103eBay 2022 Christos Faloutsos
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Results: Interpretability

104eBay 2022 Christos Faloutsos
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Results: Scalability

105eBay 2022 Christos Faloutsos
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Conclusions

• Graph mining / anomaly detection 
helps here, too

• Explainability is a must

• Visualization is extremely helpful

• Slots contain similar information.
106eBay 2022 Christos Faloutsos


