

Graph Mining & Multi-Relational Learning Tools and Applications Part I

Shobeir Fakhraei Amazon

Christos Faloutsos CMU / Amazon

Bird's eye view

Task	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking									
1.1' Link Prediction									
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

Part 1: Plain Graphs

Part 2: |Complex Graphs|

Faloutsos

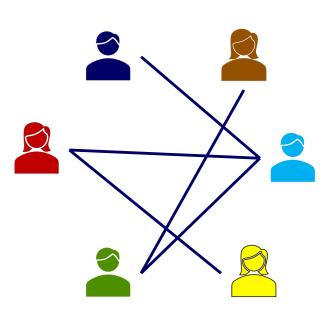
Bird's eye view

- Introduction motivation
- Part#1: (plain) Graphs (with 10' break)

- 20' break
- Part#2: MRL, Tensors etc (with 10' break)

Conclusions

Social networks

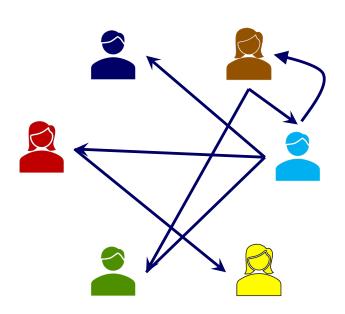


Social networks

Who-friends-whom

Who-follows-whom

Who-retweets-whom

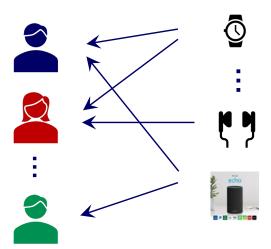


Biology/medicine

- Protein-protein interaction networks
- Drugs and side-effects
- Symptoms and disease

e-commerce examples

Who-buys-what ←

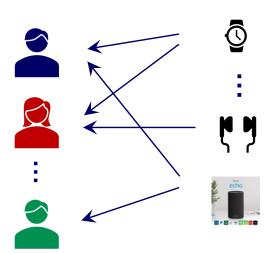


e-commerce examples

Who-buys-what

Who sells what

Who reviews what

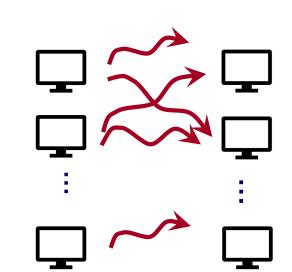


Cyber-security

Who-buys-what ←

Who-sells-what

Who-reviews-what



Which_machine - connects_to - what ~~

• • •

<subject> related-to <object> : graph

Examples on complex graphs?

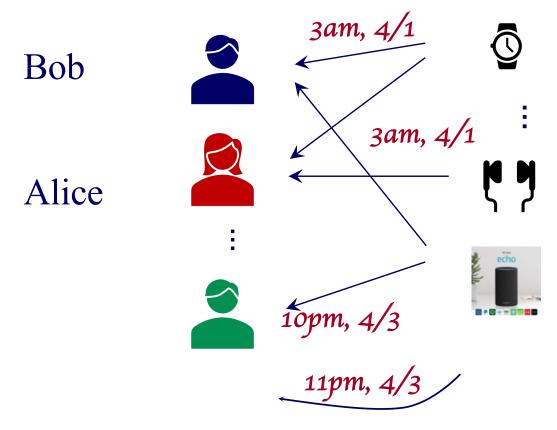
(all the previous examples, are on 'plain' graphs)

Bird's eye view

Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking									
1.1' Link Prediction									
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									
			Part 1 n Gra			Con		t 2: x Gr	aphs
ECML/PKDD'22	S.	Fakhrae	I I	Faloutso	S				11

Complex, e.g., time-evolving graphs

• What is 'normal'? suspicious? Groups?

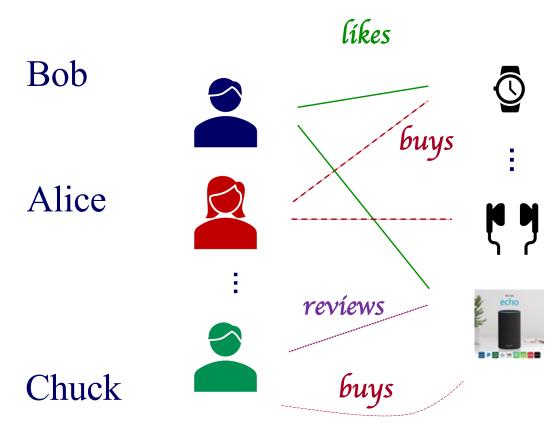


ECML/PKDD'22

S. Fakhraei and C. Faloutsos

Complex, e.g., MultiView Graph

• What is 'normal'? suspicious? Groups?

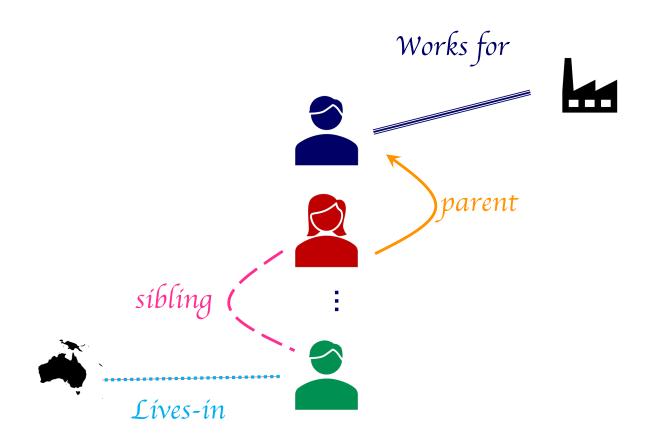


ECML/PKDD'22

S. Fakhraei and C. Faloutsos

In general, Knowledge Graph

• What is 'normal'? suspicious? Groups?

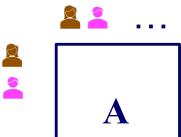


plain

plain



plain

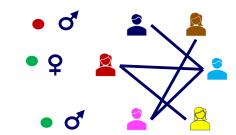


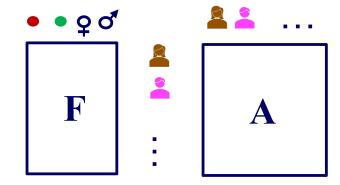
Matrix ECML/PKDD'22

S. Fakhraei and C. Faloutsos

Complex

Node-attr.





Coupled Matrices

S. Fakhraei and C. Faloutsos

plain

2 ...

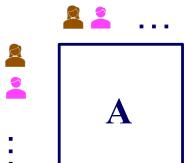
9

:

Matrix

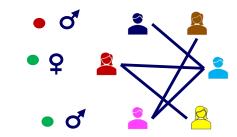
ECML/PKDD'22

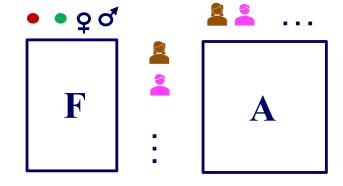
plain



Matrix
ECML/PKDD'22

Node-attr.



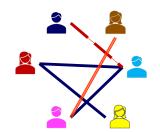


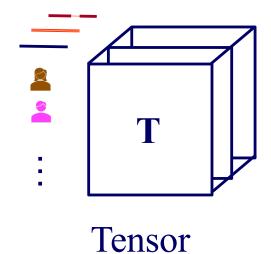
Coupled Matrices

S. Fakhraei and C. Faloutsos

Edge-attr.

Complex



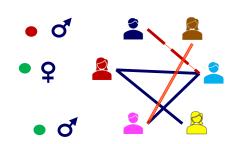


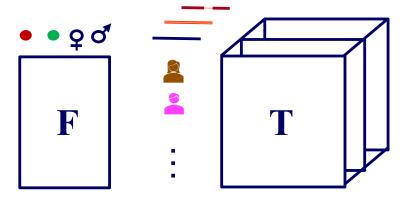
19

'Complex' include any combination:

- Edge AND node attributes
- Timestamps
- Locations

- ...

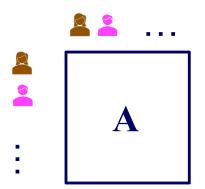




Coupled Matrix-Tensor

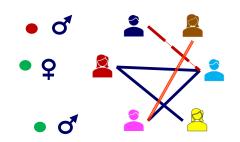
PART 1

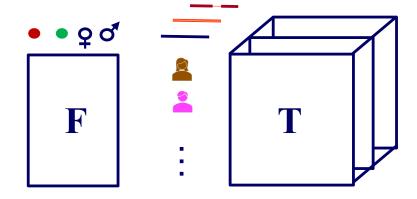
Plain graphs



PART 2

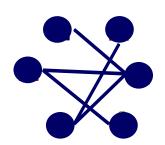
Complex graphs

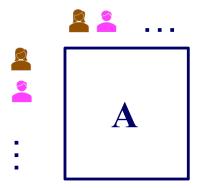




PART 1

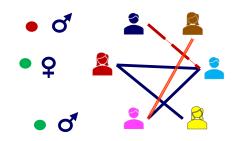
Plain graphs

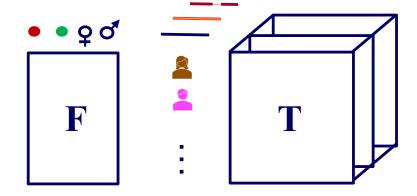




PART 2

Complex graphs





'Recipe' Structure:

• Problem definition

Short answer/solution

• LONG answer – details

Conclusion/short-answer

NOT covered here

- Deep Learning / GNN
- See, eg., www.dgl.ai/
 - w/ tutorials and s/w
 - from aws colleagues

Bird's eye view

Task	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking									
1.1' Link Prediction									
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

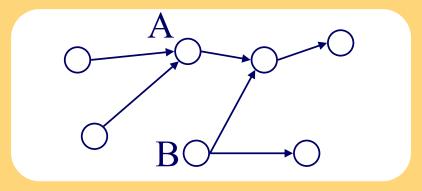
Part 1: Part 2:
Plain Graphs Complex Graphs

→

0

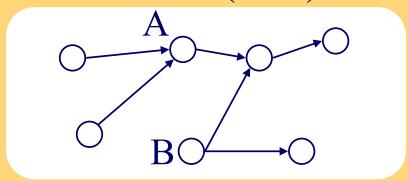
Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?
- Q2: How close is node 'A' to node 'B'?



Node importance - Motivation:

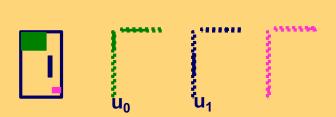
- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?
 - PageRank (PR = RWR), HITS (SVD)
- Q2: How close is node 'A' to node 'B'?
 - Personalized P.R. (PPR)

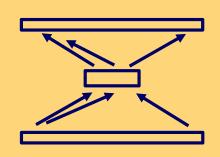


SVD properties

(Singular Value Decomposition)

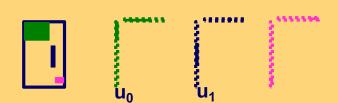
- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- ✓ Block detection
- ✓ Dimensionality reduction
- ✓ Embedding (linear)
 - SVD is a special case of 'deep neural net'





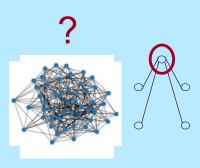
SVD properties

- ✓ Hidden/latent variable detection
- ✓ Compute node importance
- ✓ Block detection
- √ Dimer
- VEm Matrix
 - SV a special case of 'deep neural net'



Bird's eye view

- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - PageRank and Personalized PR
 - HITS
 - SVD

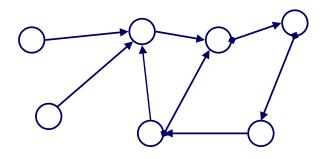


PageRank

- •Brin, Sergey and Lawrence Page (1998). *Anatomy of a Large-Scale Hypertextual Web Search Engine*. 7th Intl World Wide Web Conf.
- •Page, Brin, Motwani, and Winograd (1999). *The PageRank citation ranking: Bringing order to the web*. Technical Report

Problem: PageRank

Given a directed graph, find its most interesting/central node

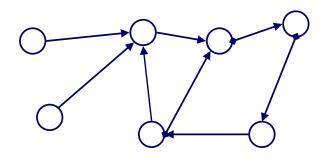


A node is important, if its parents are important (recursive, but OK!)

Problem: PageRank - solution

Given a directed graph, find its most interesting/central node

Proposed solution: Random walk; spot most 'popular' node (-> steady state prob. (ssp))

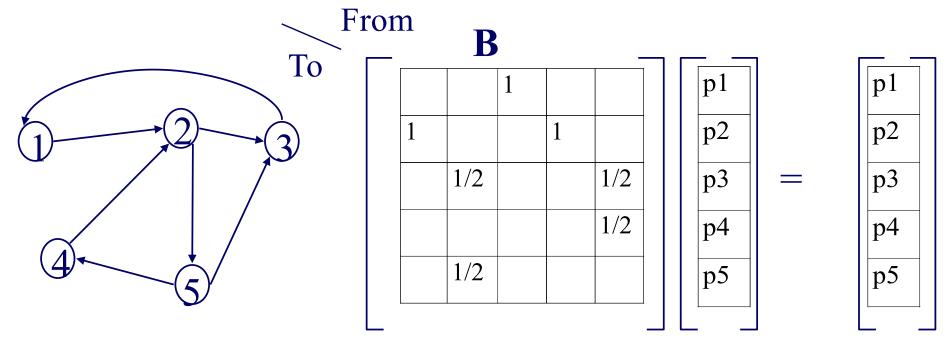


A node high ssp, if its parents have high ssp (recursive, but OK!)

(Simplified) PageRank algoritm.

amazon

- Let A be the adjacency matrix;
- let **B** be the transition matrix: transpose, column-normalized then



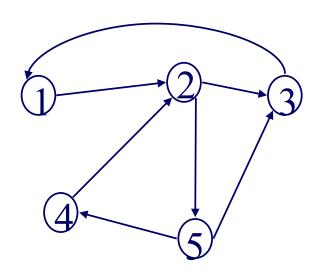
(Simplified) PageRank algoritm.

• $\mathbf{B} \mathbf{p} = \mathbf{p}$

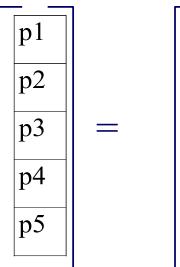
amazon

B

p =



		1		
1			1	
	1/2			1/2
				1/2
	1/2			



p1
p2
p3
p4
p5

p

- A Adjacency matrix (from-to)
- **D** Degree matrix = (diag (d1, d2, ..., dn))
- B Transition matrix: to-from, column normalized

$$\mathbf{B} = \mathbf{A}^{\mathrm{T}} \mathbf{D}^{-1}$$

- B p = 1 * p
- thus, **p** is the **eigenvector** that corresponds to the highest eigenvalue (=1, since the matrix is column-normalized)
- Why does such a **p** exist?
 - p exists if B is nxn, nonnegative, irreducible[Perron–Frobenius theorem]

• In short: imagine a particle randomly moving along the edges

compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

• In short: imagine a particle randomly moving along the edges

compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

• In short: imagine a particle randomly moving along the edges

compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

• In short: imagine a particle randomly moving along the edges

• compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

• In short: imagine a particle randomly moving along the edges

compute its steady-state probabilities (ssp)

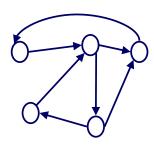
Full version of algo: with occasional random jumps

• In short: imagine a particle randomly moving along the edges

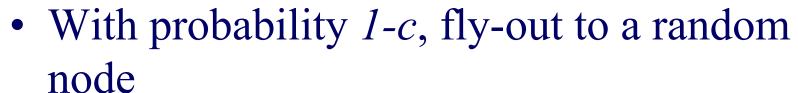
compute its steady-state probabilities (ssp)

PageRank = PR

- = Random Walk with Restarts = RWR
- = Random surfer



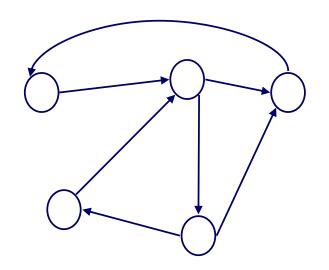
Full Algorithm

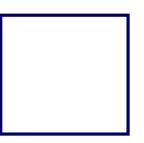


• Then, we have

$$p = c B p + (1-c)/n 1 =>$$

$$p = (1-c)/n [I - c B]^{-1} 1$$





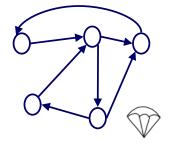
Full Algorithm

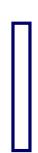
• With probability *1-c*, fly-out to a random node

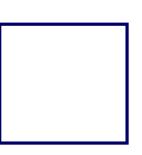
• Then, we have

$$p = c B p + (1-c)/n 1 =>$$

 $p = (1-c)/n [I - c B]^{-1} 1$

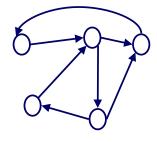






Notice:

- pageRank ~ in-degree
- (and HITS, also: ~ in-degree)



Task	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction									
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

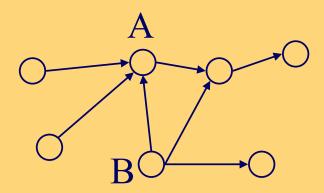
Part 1: Part 2:
Plain Graphs Complex Graphs

0

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?

• Q2: How close is node 'A' to node 'B'?

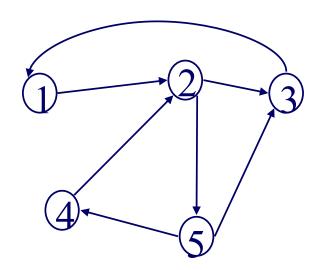


Personalized P.R.

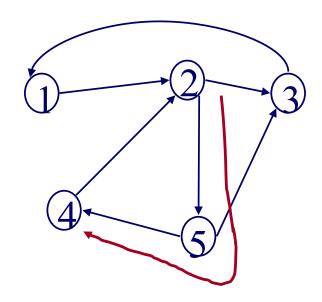
• Taher H. Haveliwala. 2002. *Topic-sensitive PageRank*. (WWW '02). 517-526.

http://dx.doi.org/10.1145/511446.511513

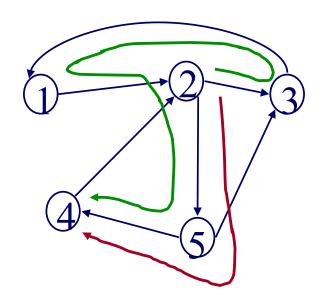
- How close is '4' to '2'?
- (or: if I like page/node '2', what else would you recommend?)



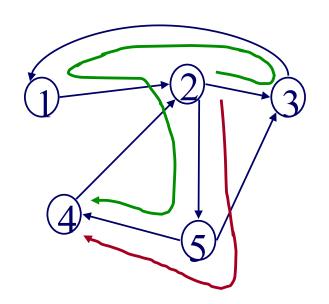
- How close is '4' to '2'?
- (or: if I like page/node '2', what else would you recommend?)



- How close is '4' to '2'?
- (or: if I like page/node '2', what else would you recommend?)



- How close is '4' to '2'?
- (or: if I like page/node '2', what else would you recommend?)



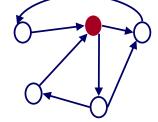
High score (A -> B) if

- Many
- Short
- Heavy paths A->B

Extension: Personalized P.R. your favorite

• With probability 1-c, fly-out to a random node(s)

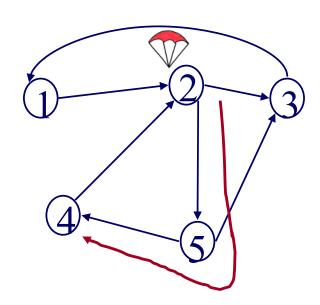
• Then, we have $p = c B p + (1-c)/n 1 = > \overrightarrow{e}$ $p = (1-c)/n [I - c B]^{-1} 1$



S. Fakhraei and C. Faloutsos

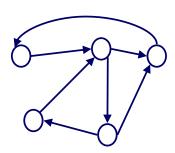
• How close is '4' to '2'?

• A: compute Personalized P.R. of '4', restarting from '2'



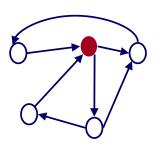
- How close is '4' to '2'?
- A: compute Personalized P.R. of '4', restarting from '2' Related to
 - 'escape' probability
 - 'round trip' probability

— ...



Applications of node proximity

- Recommendation
- Link prediction



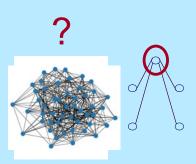
Fast Algorithms for Querying and Mining Large Graphs Hanghang Tong, PhD dissertation, CMU, 2009. TR: CMU-ML-09-112.

Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

Part 1: Part 2:
Plain Graphs Complex Graphs

Task	1.1 PR HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - PageRank and Personalized PR
 - HITS
 - SVD (Singular Value Decomposition)

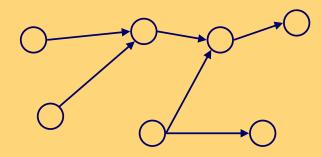


Kleinberg's algo (HITS)

Kleinberg, Jon (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

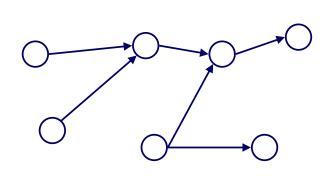
Recall: problem dfn

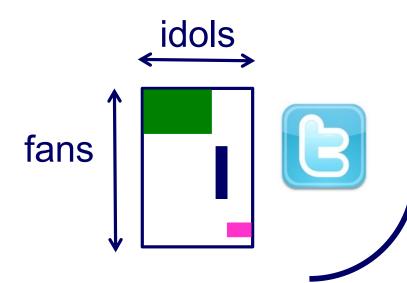
- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?



Why not just PageRank?

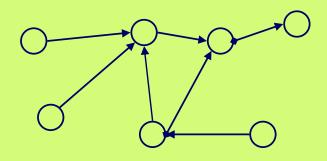
- 1. HITS (and its derivative, SALSA), differentiate between "hubs" and "authorities"
- 2. HITS can help to find the largest community
- 3. (SVD: powerful tool)





Problem: PageRank

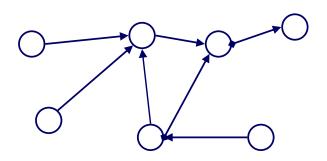
Given a directed graph, find its most interesting/central node



A node is important, if its parents are important (recursive, but OK!)

Problem: PageRank

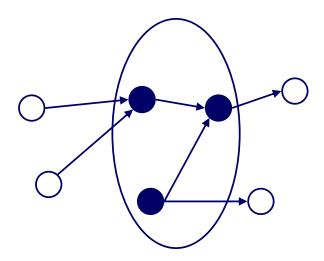
Given a directed graph, find its most interesting/central node



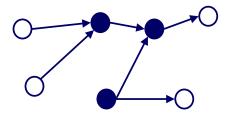
A node is important, if its parents are important (recursive, but OK!)

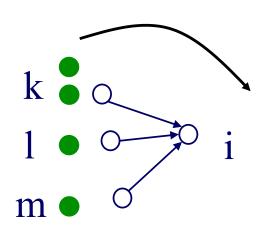
AND: A node is ``wise'' if its children are important

- Step 0: find nodes with query word(s)
- Step 1: expand by one move forward and backward



- on the resulting graph, give high score (= 'authorities') to nodes that many `wise'' nodes point to
- give high wisdom score ('hubs') to nodes that point to good 'authorities'





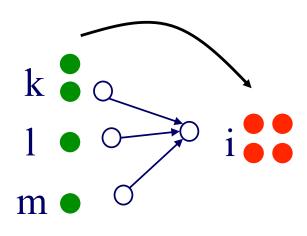
$$a_i = h_k + h_l + h_m$$

that is

$$a_i = \text{Sum}(h_j)$$
 over all j that (j,i) edge exists

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

Then:

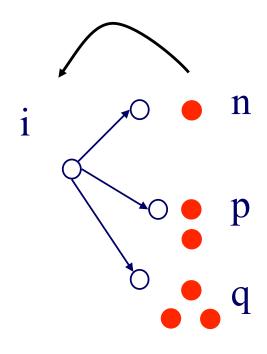


$$a_i = h_k + h_l + h_m$$

that is

$$a_i = \text{Sum}(h_j)$$
 over all j that (j,i) edge exists

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$



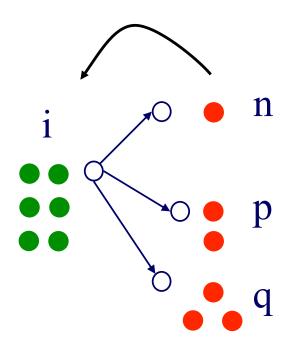
symmetrically, for the 'hubness':

$$h_i = a_n + a_p + a_q$$

that is

$$h_i = \text{Sum}(q_j)$$
 over all j that (i,j) edge exists

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$



symmetrically, for the 'hubness':

$$h_i = a_n + a_p + a_q$$

that is

$$h_i = \text{Sum}(q_j)$$
 over all j that (i,j) edge exists

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

In conclusion, we want vectors **h** and **a** such that:

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

In conclusion, we want vectors **h** and **a** such that:

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

In conclusion, we want vectors **h** and **a** such that:

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

In conclusion, we want vectors **h** and **a** such that:

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

In short, the solutions to

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

 $\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$

are the <u>left- and right- singular-vectors</u> of the adjacency matrix **A**.

Starting from random a' and iterating, we'll eventually converge

... to the vector of strongest singular value.

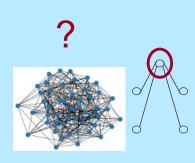
Kleinberg's algorithm - results

Eg., for the query 'java':

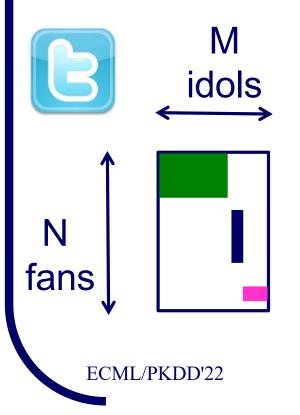
- 0.328 www.gamelan.com
- 0.251 java.sun.com
- 0.190 www.digitalfocus.com ("the java developer")

Bird's eye view

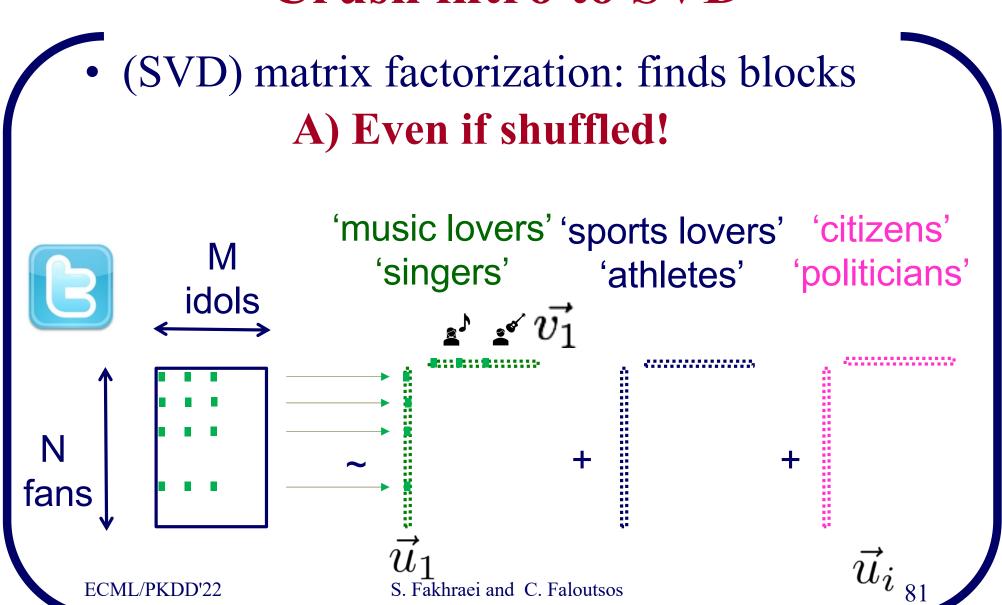
- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - PageRank and Personalized PR
 - HITS
 - SVD (Singular Value Decomposition)



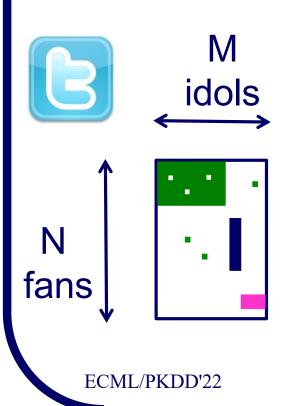
- Hidden/latent variable detection
- Compute node importance (HITS)
- Block detection
- Dimensionality reduction
- Embedding



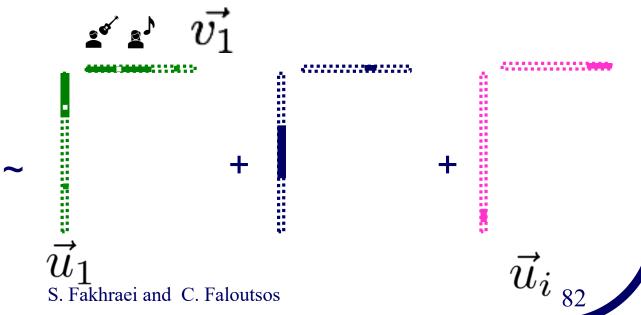
'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' \vec{v}_1 + \vec{v}_1 + \vec{v}_1 + \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4 \vec{v}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4 \vec{v}_4



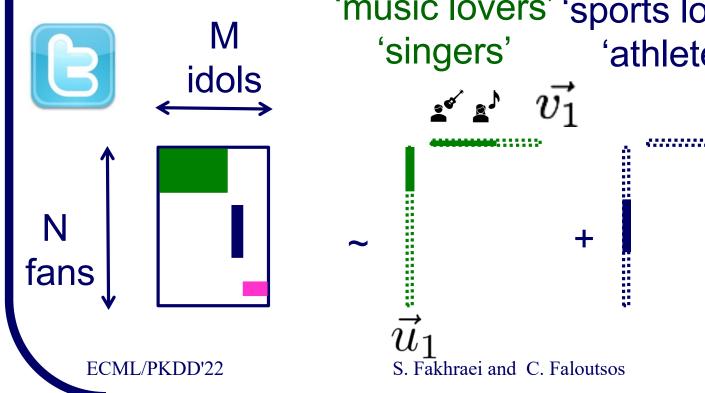
(SVD) matrix factorization: finds blocksB) Even if 'salt+pepper' noise



'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians'

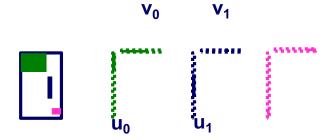


- Basis for anomaly detection P1.3
- Basis for tensor/PARAFAC P2.1

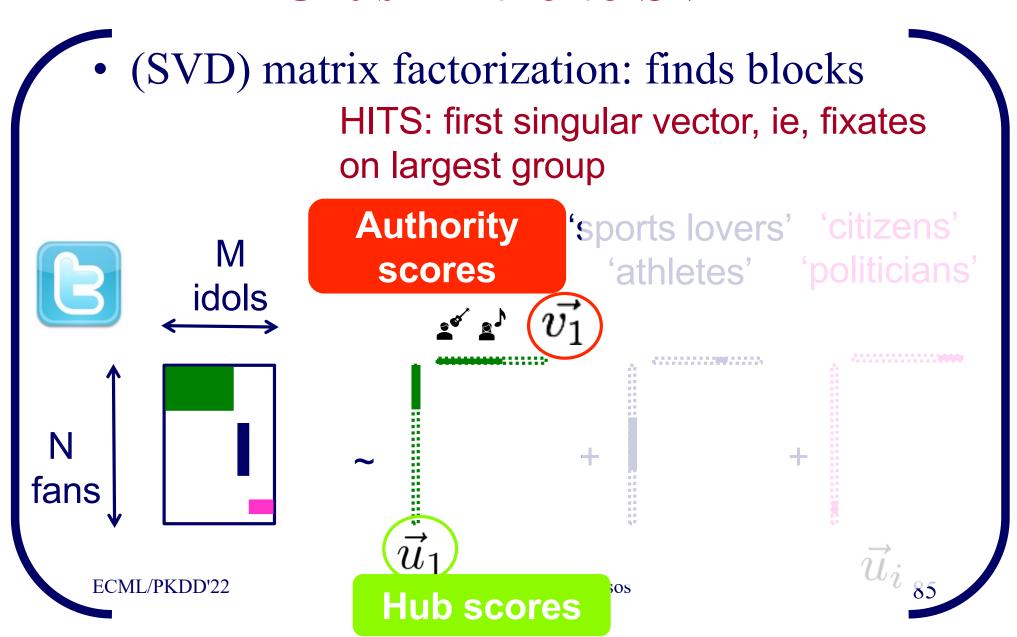


'music lovers' 'sports lovers' 'citizens' 'athletes' 'politicians'

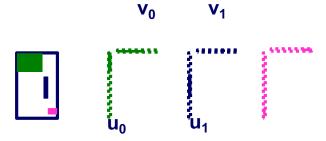
- ✓ Hidden/latent variable detection
- Compute node importance (HITS)
- Block detection
- Dimensionality reduction
- Embedding



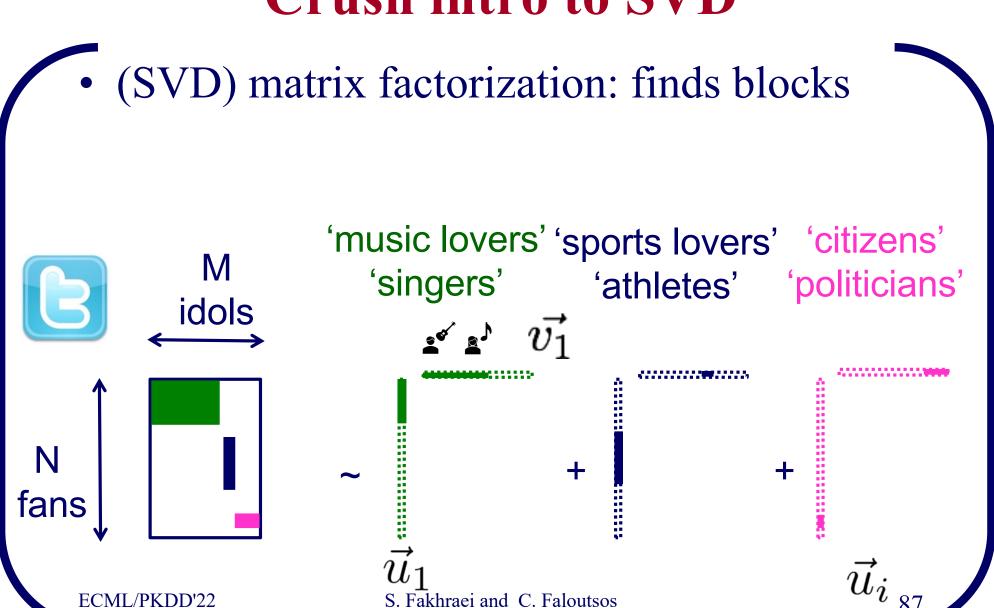
ECML/PKDD'22



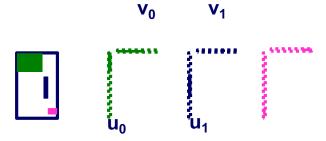
- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- Block detection
- Dimensionality reduction
- Embedding



ECML/PKDD'22

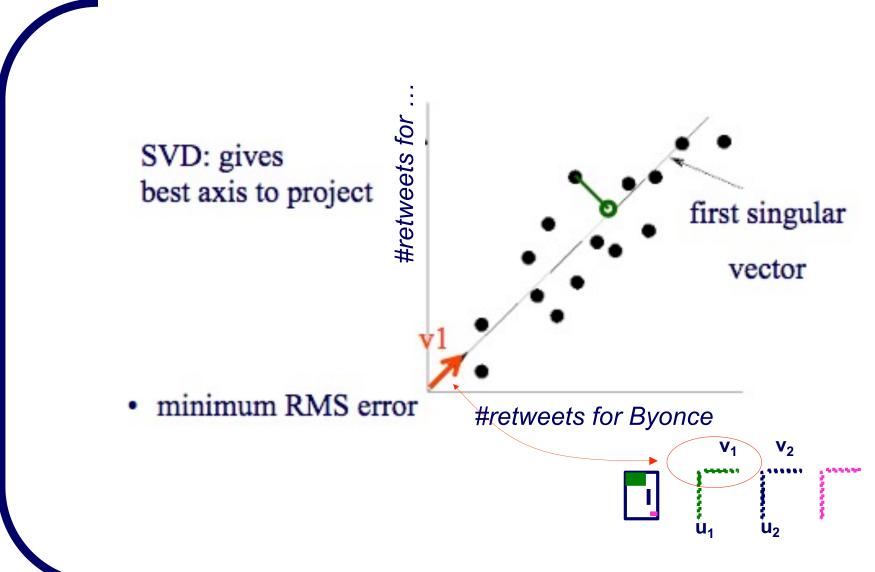


- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- ✓ Block detection
- Dimensionality reduction
- Embedding



ECML/PKDD'22

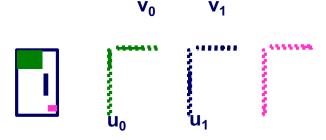
SVD - intuition



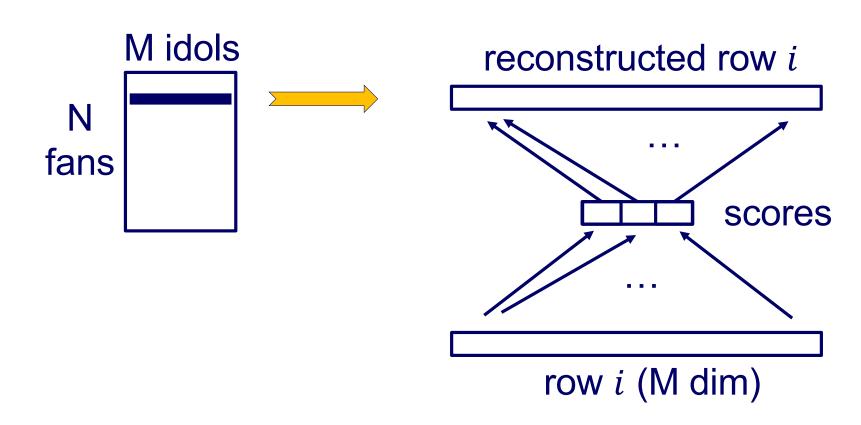
LCML/PKDD'22

S. Fakhraei and C. Faloutsos

- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- ✓ Block detection
- ✓ Dimensionality reduction / projection
- Embedding



SVD compression is a linear autoencoder

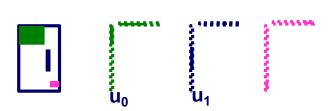


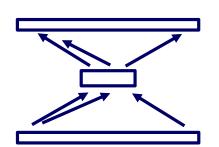
Independent Component Analysis, Aapo Hyvarinen, Erkki Oja, and Juha Karhunen (Wiley, 2001) – sec 6.2.4, p. 136.

- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- ✓ Block detection
- ✓ Dimensionality reduction
- ✓ Embedding (linear)

 V_0

SVD is a special case of 'deep neural net'



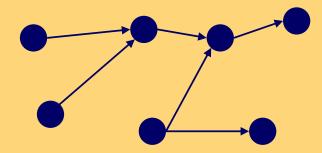


ECML/PKDD'22

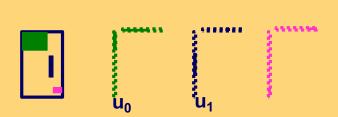
S. Fakhraei and C. Faloutsos

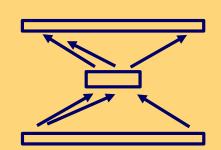
Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?
 - PageRank (PR = RWR), HITS
- Q2: How close is node 'A' to node 'B'?
 - Personalized P.R.

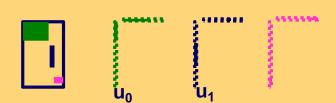


- ✓ Hidden/latent variable detection
- ✓ Compute node importance (HITS)
- ✓ Block detection
- ✓ Dimensionality reduction
- ✓ Embedding (linear)





- ✓ Hidden/latent variable detection
- ✓ Compute node importance
- ✓ Block detection
- √ Dimer
- Em Matrix
 - SV a special case of 'deep neural net'



Bird's eye view

- Introduction motivation
- Part#1: (plain) Graphs (with 10' break)

- 20' break
- Part#2: MRL, Tensors etc (with 10' break)

Conclusions

10' Break

Bird's eye view

Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection									
1.3 Anomaly Detection									
1.4 Propagation									

Part 1: Part 2:
Plain Graphs Complex Graphs

6

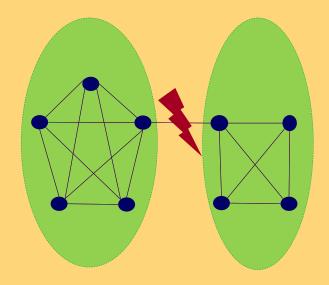
Problem

- Given a graph, and k
- Break it into k (disjoint) communities



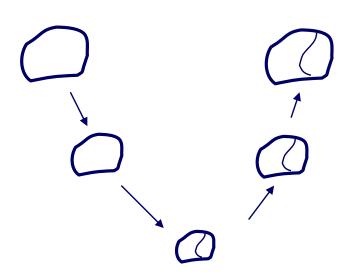
Short answer

• METIS [Karypis, Kumar]



Solution#1: METIS

- Arguably, the best algorithm
- Open source, at
 - http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz
- and *many* related papers, at same url
- Main idea:
 - coarsen the graph;
 - partition;
 - un-coarsen



Solution #1: METIS

- G. Karypis and V. Kumar. *METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system*. TR, Dept. of CS,

 Univ. of Minnesota, 1998.
- <and many extensions>

Solutions #2,3...

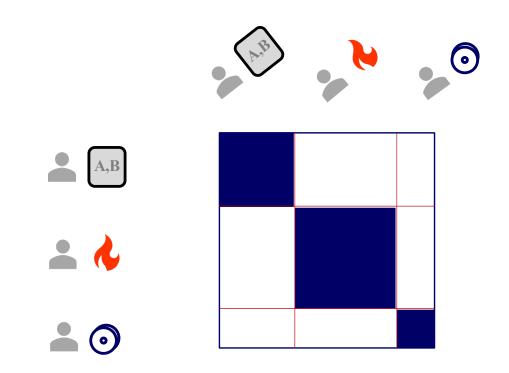
- Fiedler vector (2nd singular vector of Laplacian).
- **Modularity**: *Community structure in social and biological networks* M. Girvan and M. E. J. Newman, PNAS June 11, 2002. 99 (12) 7821-7826;

https://doi.org/10.1073/pnas.122653799

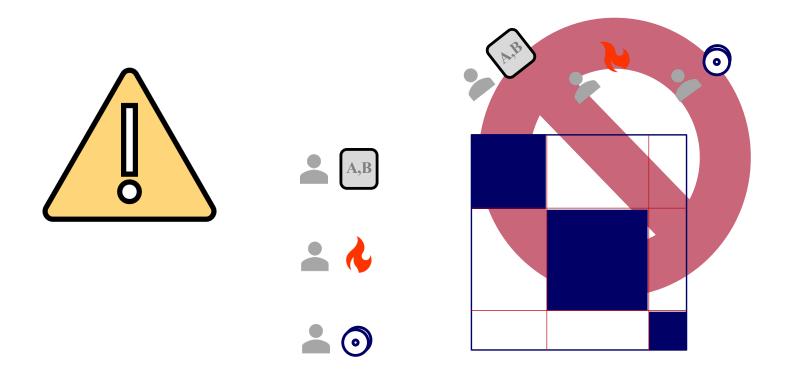
- Co-clustering: [Dhillon+, KDD'03]
- Clustering on the A² (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD'00]

•

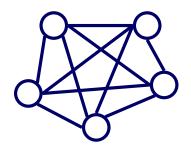
• BUT: often, there are **no good cuts**:

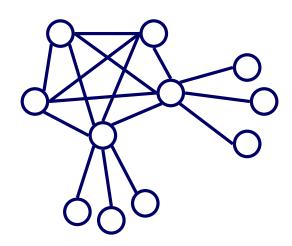


• BUT: often, there are **no good cuts**:

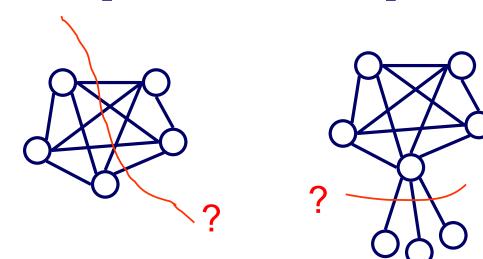


• Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+'04], [Leskovec+,'08]





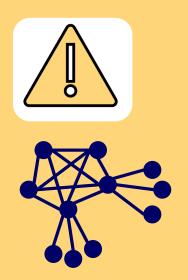
• Maybe there are no good cuts: `'jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+,'04], [Leskovec+,'08]

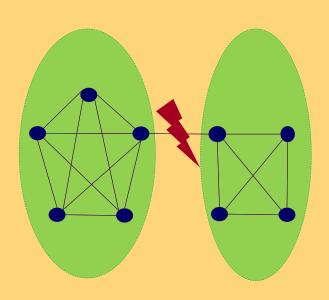


D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch: *NetMine: New Mining Tools for Large Graphs*, in SDM 2004 Workshop

Short answer

- METIS [Karypis, Kumar]
- (but: maybe NO good cuts exist!)





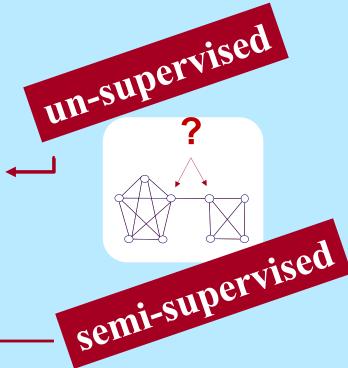
Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection			16						
1.3 Anomaly Detection									
1.4 Propagation									

Part 1: Part 2:
Plain Graphs Complex Graphs

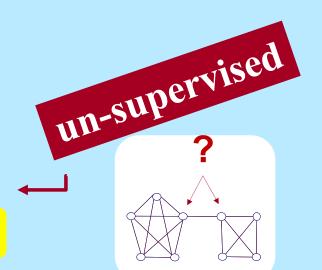
Task	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection			16						
1.3 Anomaly Detection									
1.4 Propagation									

Part 1: Part 2: Plain Graphs Complex Graphs

- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - P1.2: community detection
 - P1.3: fraud/anomaly detection
 - P1.4: belief propagation



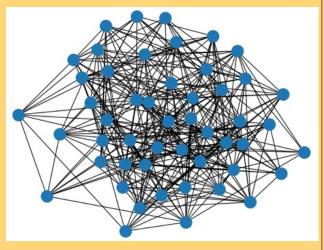
- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - P1.2: community detection
 - P1.3: fraud/anomaly detection
 - P1.3.1. Outliers
 - P1.3.2. Lock-step behavior
 - P1.4: belief propagation



6

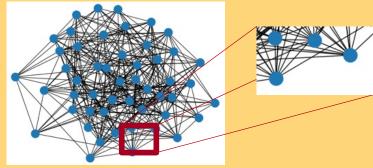
Problem

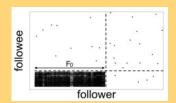
Given:



Find:

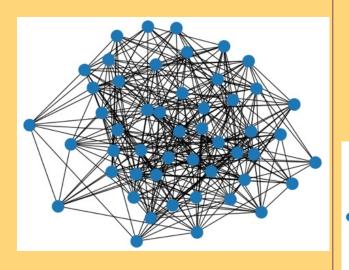
- 1) Outliers
- 2) Lock-step

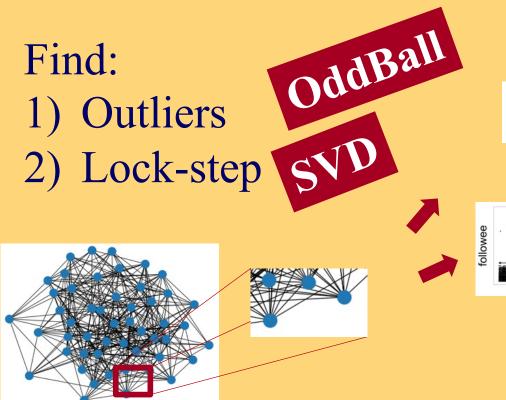


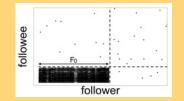


Solution

Given:

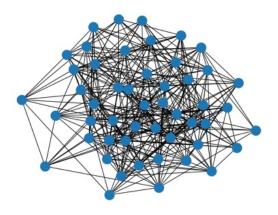






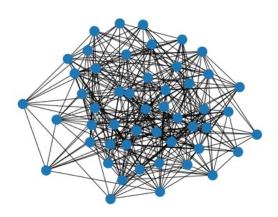
P1.3.1. Outliers

- Which node(s) are strange?
 - − Q: How to start?

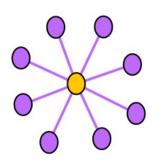


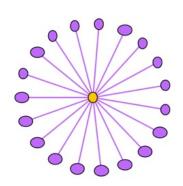
P1.3.1. Outliers

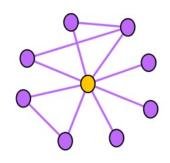
- Which node(s) are strange?
 - − Q: How to start?
 - A1: egonet; and extract node features

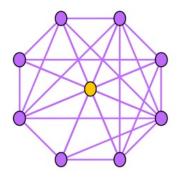


Ego-net Patterns: Which is strange?









P1.3.1. Outliers

- Which node(s) are strange?
 - − Q: How to start?
 - A: egonet; and extract node features
 - Q': which features?
 - A': ART! Infinite! Pick a few, e.g.:

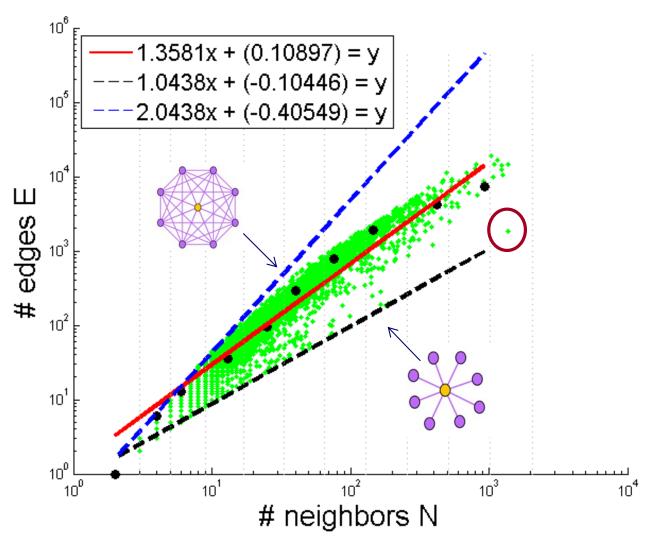
KDD2020 ADS Panel: In ML 'feature engineering is the hardest part'

Ego-net Patterns

- N_i : number of neighbors (degree) of ego i
- lacksquare E_i : number of edges in egonet i

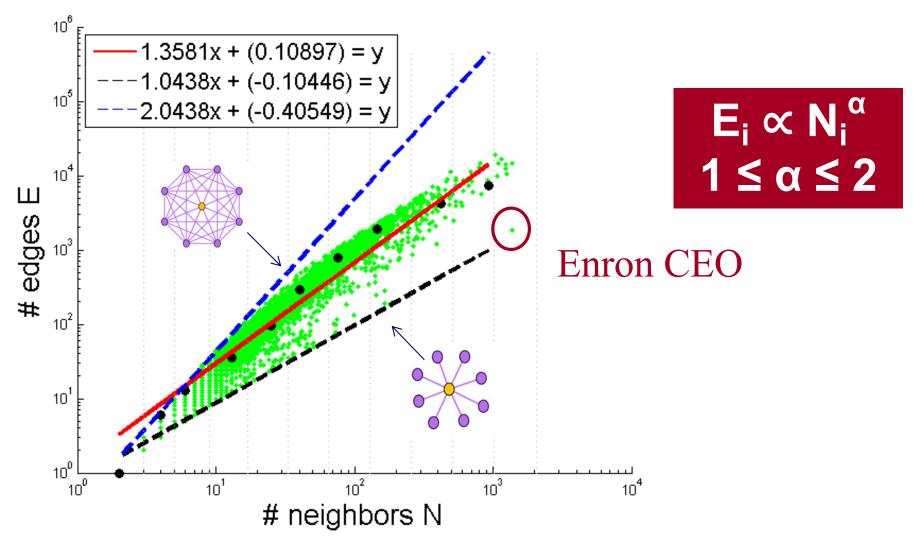
- W_i : total weight of egonet i
- $\lambda_{w,i}$: principal eigenvalue of the weighted adjacency matrix of egonet i

Pattern: Ego-net Power Law Density

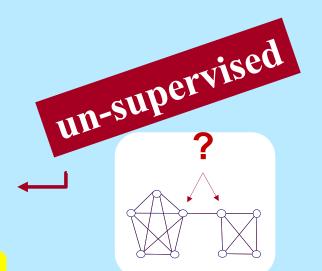


 $E_i \propto N_i^{\alpha}$ $1 \leq \alpha \leq 2$

Pattern: Ego-net Power Law Density



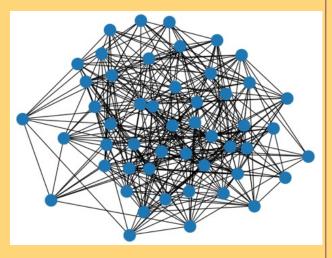
- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - P1.2: community detection
 - P1.3: fraud/anomaly detection
 - P1.3.1. Outliers
 - P1.3.2. Lock-step behavior
 - P1.4: belief propagation



6

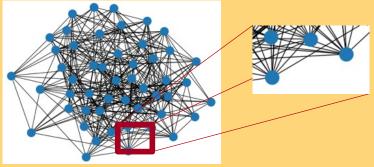
Problem

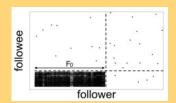
Given:



Find:

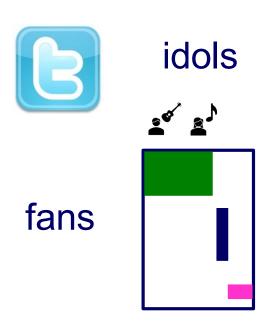
- 1) Outliers
- 2) Lock-step





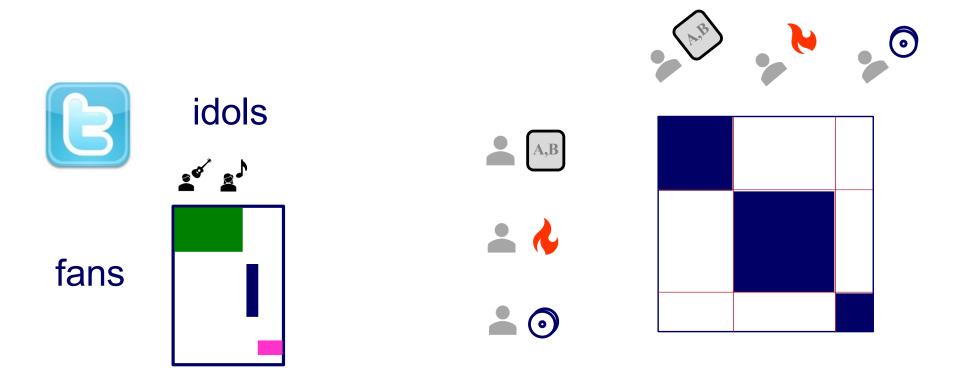
P1.3.1. How to find 'suspicious' groups?

• 'blocks' are normal, right?



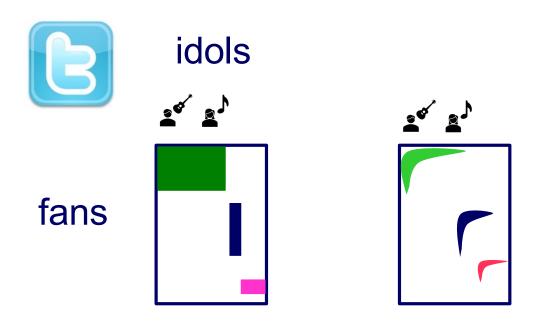
P1.3.1. How to find 'suspicious' groups?

• 'blocks' are normal, right?



Except that:

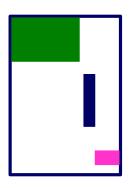
- 'blocks' are normal, igh?
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]



Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily?

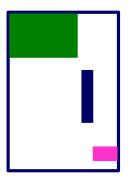


Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

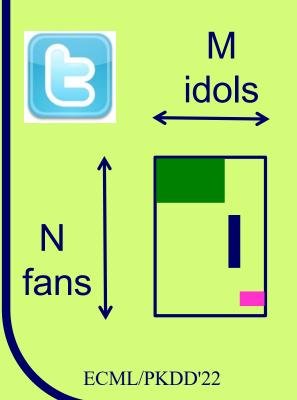
Q: Can we spot blocks, easily?

A: Silver bullet: SVD!

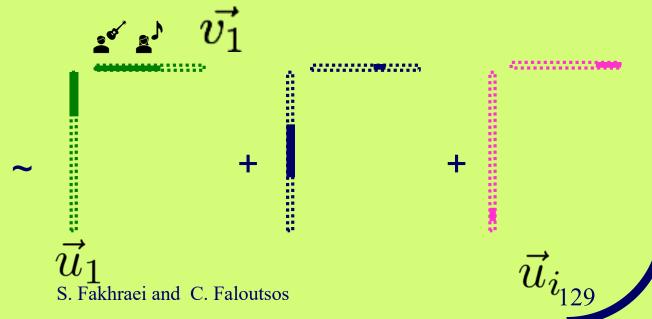


Reminder (from HITS) Crush intro to SVD

Recall: (SVD) matrix factorization: finds blocks



'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians'



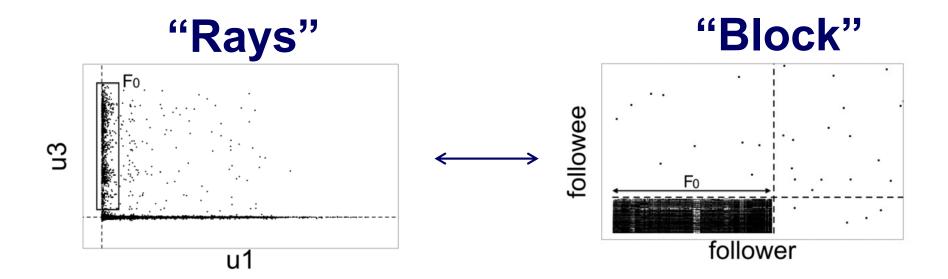
Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)

Dataset

- Tencent Weibo
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

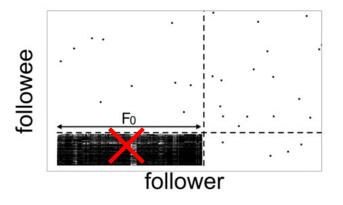
Real Data

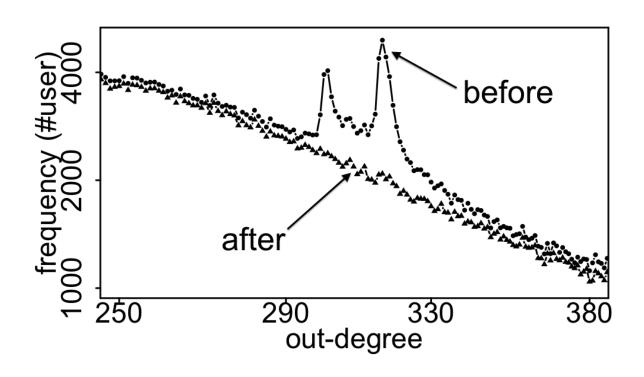


'blocks' create 'spokes'

Real Data

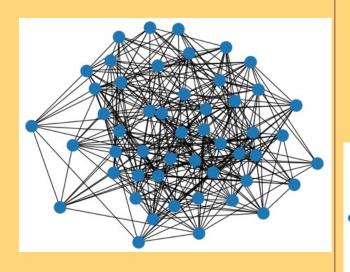
• Spikes on the out-degree distribution

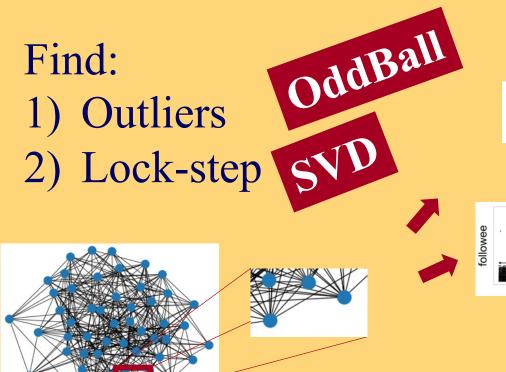


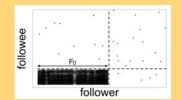


Solution

Given:



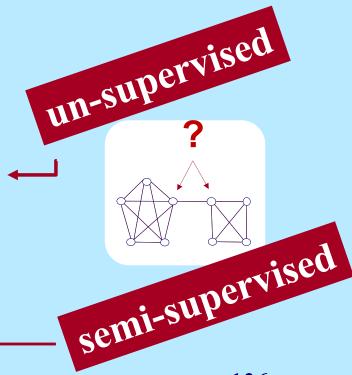




Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction		16							
1.2 Comm. Detection			16						
1.3 Anomaly Detection				16					
1.4 Propagation									

Part 1: Part 2:
Plain Graphs Complex Graphs

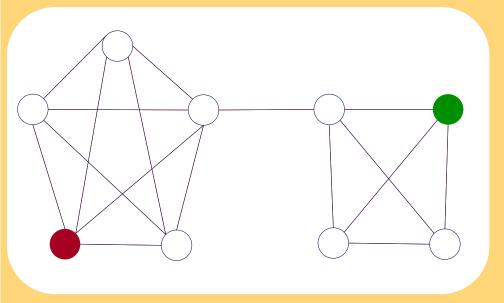
- Introduction Motivation
- Part#1: (simple) Graphs
 - P1.1: node importance
 - P1.2: community detection
 - P1.3: fraud/anomaly detection
 - P1.4: belief propagation



6

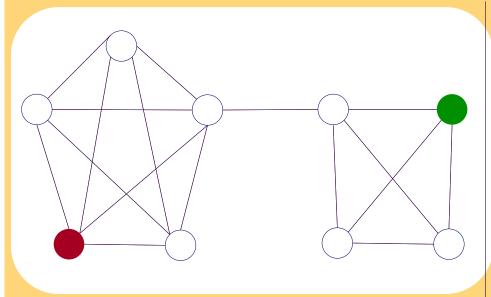
Problem

- What color, for the rest?
 - Given homophily (/heterophily etc)?

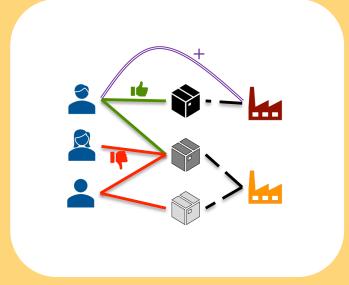


Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')



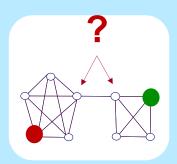
www.cs.cmu.edu/~deswaran/code/zoobp.zip



- Introduction Motivation
- Part#1: (simple) Graphs

— ...

- P1.4: belief propagation
 - Basics
 - Fast, linear approximation (FaBP)
 - Latest: zooBP
 - Success stories



Prof. Danai Koutra U. Michigan

Background

Belief Propagation

• Iterative message-based method

• "Propagation matrix":

♦ Homophily

class of sender

class of receiver

0.9 0.1

 $0.1 \mid 0.9$

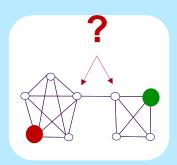
u**2ff roound**criterion

fulfilled

[Pearl '82][Yedidia+ '02] ... [Gonzalez+ '09][Chechetka+ '10]

Background

- Introduction Motivation
- Part#1: (simple) Graphs
 - **–** ...
 - P1.4: belief propagation
 - Basics
 - Fast, linear approximation (FaBP)
 - Latest: zooBP
 - Success stories

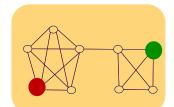


Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke Duen Horng (Polo) Chau Christos Faloutsos

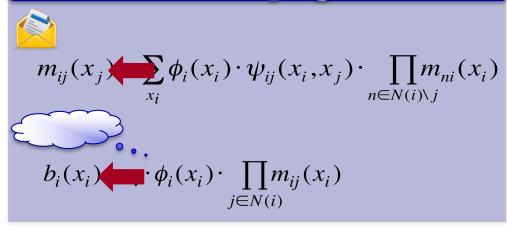
ECML PKDD, 5-9 September 2011, Athens, Greece



BP vs. Linearized BP

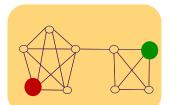
Original [Yedidia+]:

Belief Propagation



\ non-linear

- Closed-form formula?
- Convergence?

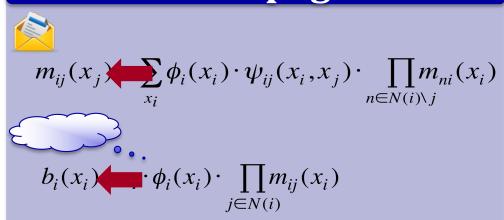


BP vs. Linearized BP

Original [Yedidia+]:

Our proposal:

Belief Propagation



Linearized BP BP is approximated by

$$[\mathbf{I} + a\mathbf{D} - c'\mathbf{A}] \mathbf{b}_h = \phi_h$$

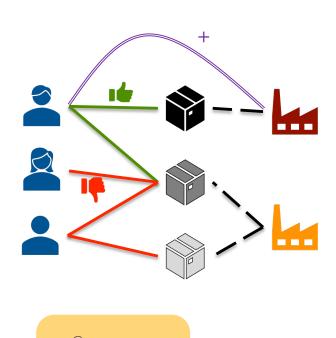
$$\begin{array}{c}
0 \\
-10^{-2} \\
10^{-2}
\end{array}$$

non-linear

Closed-form formula?

Convergence?

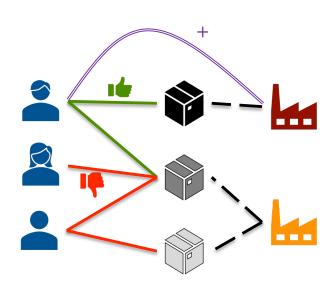
Problem: anomalies in ratings



- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most anomalous users, products and sellers

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

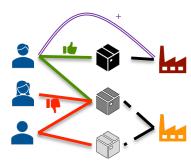
Problem: anomalies in ratings



- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most anomalous users, products and sellers

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

Problem: anomalies in ratings



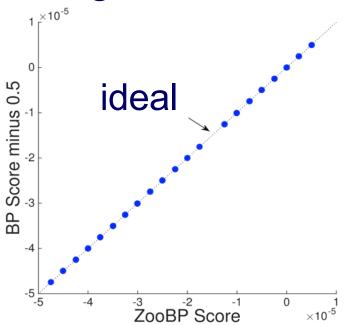
Theorem 1 (ZooBP). If **b**, **e**, **P**, **Q** are constructed as described above, the linear equation system approximating the final node beliefs given by BP is:

$$\mathbf{b} = \mathbf{e} + (\mathbf{P} - \mathbf{Q})\mathbf{b} \qquad (ZooBP) \tag{10}$$

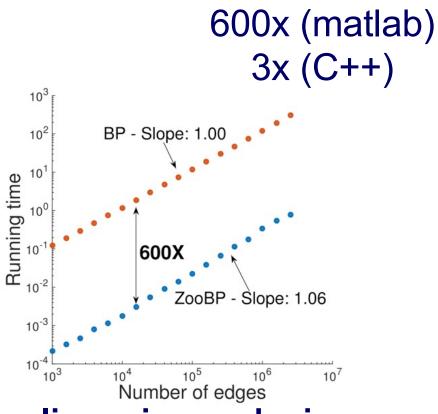
<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "*ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

ZooBP: features

Fast; convergence guarantees.



Near-perfect accuracy



linear in graph size

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "*ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

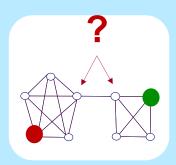
ZooBP: code etc

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "*ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

Bird's eye view

- Introduction Motivation
- Part#1: (simple) Graphs
 - **–** ...
 - P1.4: belief propagation
 - Basics
 - Fast, linear approximation (FaBP)
 - Latest: zooBP
 - Success stories

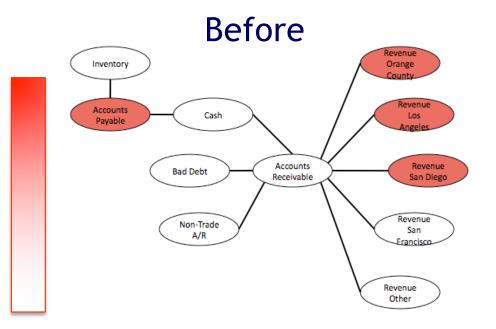


Other 'success stories'?

- Accounting fraud
- Malware detection

Network Effect Tools: SNARE

• Some accounts are sort-of-suspicious – how to combine weak signals?



Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, Christos Faloutsos: *SNARE: a link analytic system for graph labeling and risk detection*. KDD 2009: 1265-1274

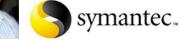
Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

SDM 2011, Mesa, Arizona

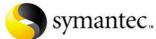
Polo Chau Machine Learning Dept

symantec.

Carey Nachenberg
Vice President & Fellow



Jeffrey Wilhelm
Principal Software Engineer

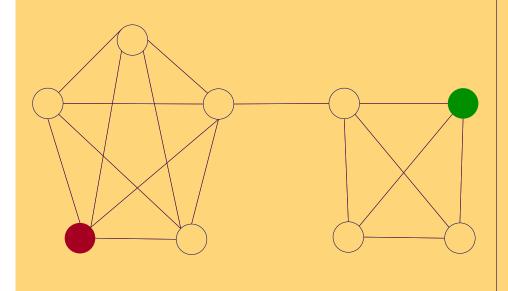


Adam Wright
Software Engineer

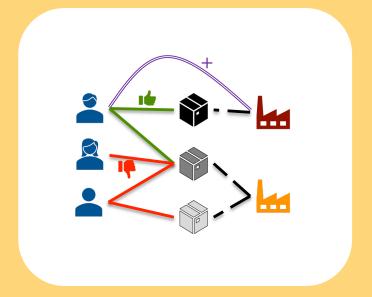
Prof. Christos FaloutsosComputer Science Dept

Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')



www.cs.cmu.edu/~deswaran/code/zoobp.zip



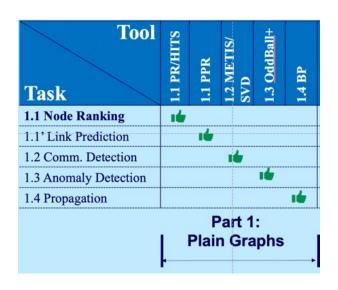
Bird's eye view

Task	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking									
1.1' Link Prediction		16							
1.2 Comm. Detection			16						
1.3 Anomaly Detection				16					
1.4 Propagation					16				

Part 1: Part 2:
Plain Graphs Complex Graphs

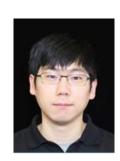
Conclusions for Part P1

- Over-arching conclusion:
 - Many, time-tested tools for plain graphs (PR, SVD, BP)



Thanks to

Danai Koutra U. Michigan



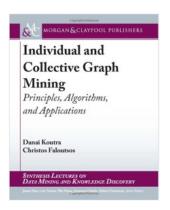
Dhivya Eswaran CMU -> Amazon

Hyun Ah Song CMU -> Amazon

Vagelis
Papalexakis
UCR

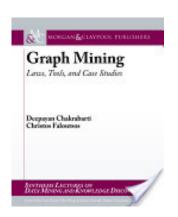
P1 – Graphs - More references

Danai Koutra and Christos Faloutsos, *Individual and Collective Graph Mining: Principles, Algorithms, and Applications*October 2017, Morgan Claypool



P1 – Graphs - More references

Deepayan Chakrabarti and Christos Faloutsos, *Graph Mining: Laws, Tools, and Case Studies*Oct. 2012, Morgan Claypool.



P1 – Graphs - More references

Anomaly detection

 Leman Akoglu, Hanghang Tong, & Danai Koutra, <u>Graph based anomaly detection</u> <u>and description: a survey</u> Data Mining and Knowledge Discovery (2015) 29: 626.

• Arxiv version:

https://arxiv.org/abs/1404.4679

Bird's eye view

Tool	1.1 PR/HITS	1.1 PPR	1.2 METIS/ SVD	1.3 OddBall+	1.4 BP	2.1 FM	2.1 Tensor	2.2 HIN	2.3 SRL
1.1 Node Ranking	16								
1.1' Link Prediction	16								
1.2 Comm. Detection	ıė								
1.3 Anomaly Detection	ıė								
1.4 Propagation	16				• 07				
	Part 1: Plain Graphs				Part 2: Complex Graphs				
ECML/PKDD'22	S. 1	Fakhrae	i and C. I	Faloutso	S		C		163

20' Break

