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Bird’s eye view

• Introduction - motivation
• Part#1: (plain) Graphs (with 10’ break)
• 20’ break
• Part#2: MRL, Tensors etc (with 10’ break)
• Conclusions

ECML/PKDD'22



Social networks
Who-friends-whom
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Social networks
Who-friends-whom
Who-follows-whom
Who-retweets-whom
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Biology/medicine
• Protein-protein interaction networks
• Drugs and side-effects
• Symptoms and disease
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e-commerce examples
Who-buys-what
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…

…



e-commerce examples
Who-buys-what
Who sells what
Who reviews what
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…

…



Cyber-security
Who-buys-what
Who-sells-what
Who-reviews-what

Which_machine - connects_to - what
…
<subject>  related-to <object> : graph
ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 9

… …



Examples on complex graphs?
(all the previous examples, are on ‘plain’ 
graphs)
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



Complex, e.g.,  time-evolving graphs
• What is ‘normal’? suspicious? Groups?
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3am, 4/1

3am, 4/1

10pm, 4/3

ECML/PKDD'22

11pm, 4/3

Alice

Bob

…

…



Complex, e.g.,  MultiView Graph
• What is ‘normal’? suspicious? Groups?
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likes

buys

reviews

ECML/PKDD'22

buys

Alice

Bob

Chuck

…

…



In general, Knowledge Graph
• What is ‘normal’? suspicious? Groups?
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…

Works for

parent

sibling

Lives-in



Definitions
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plain

Node-attr. Edge-attr.

F

…

Complex

Coupled Matrices TensorMatrix

…

…

A …
…
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Definitions
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…Coupled Matrix-Tensor

‘Complex’ include any combination:
- Edge AND node attributes
- Timestamps
- Locations
- …

… TF



Definitions
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PART 1
Plain graphs

PART 2
Complex graphs

…

…

A … TF



Definitions

ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 22

PART 1
Plain graphs

PART 2
Complex graphs

…

…

A … TF



‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer

ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 23



NOT covered here
• Deep Learning / GNN
• See, eg.,  www.dgl.ai/

– w/ tutorials and  s/w
– from aws colleagues
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http://www.dgl.ai/
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?

A

B
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS (SVD)

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. (PPR)

A

B



SVD properties
(Singular Value Decomposition)
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’

ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 28
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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u0 u1

v0 v1

Matrix?        
  SVD

!



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
• PageRank and Personalized PR
• HITS
• SVD
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?
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PageRank

•Brin, Sergey and Lawrence Page (1998). Anatomy of 
a Large-Scale Hypertextual Web Search Engine. 7th 
Intl World Wide Web Conf.
•Page, Brin, Motwani, and Winograd (1999). The 
PageRank citation ranking: Bringing order to the web.
Technical Report
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)
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Problem: PageRank - solution

Given a directed graph, find its most 
interesting/central node

Proposed solution: Random walk; spot most 
‘popular’ node (-> steady state prob. (ssp))

A node high ssp,
if its parents have high ssp
(recursive, but OK!)
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(Simplified) PageRank algorithm

• Let A be the adjacency matrix;
• let B be the transition matrix: transpose, column-normalized - then

1 2 3

4
5
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p5

=

To
From B

1
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DETAILS
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(Simplified) PageRank algorithm
• B p = p

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

B                     p    =      p

1

1 1

1/2 1/2

1/2

1/2

1 2 3

4
5

DETAILS
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Definitions

A Adjacency matrix (from-to)
D Degree matrix = (diag ( d1, d2, …, dn) )
B Transition matrix: to-from, column 

normalized
B = AT D-1

DETAILS
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(Simplified) PageRank algorithm
• B p = 1 * p
• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized)

• Why does such a p exist? 
– p exists if B is nxn, nonnegative, irreducible 

[Perron–Frobenius theorem]

DETAILS
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

PageRank = PR
= Random Walk with Restarts = RWR
= Random surfer
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1

DETAILS
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1 2

664

1
1
. . .
1

3

775

DETAILS
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Notice:
• pageRank ~ in-degree
• (and HITS, also: ~ in-degree)
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?

A

B



Personalized P.R.

• Taher H. Haveliwala. 2002. Topic-sensitive 
PageRank. (WWW '02). 517-526. 
http://dx.doi.org/10.1145/511446.511513 
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http://dx.doi.org/10.1145/511446.511513


ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 50

Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5

High score (A -> B) if
• Many
• Short
• Heavy
paths A->B
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Extension: Personalized P.R.
• With probability 1-c, fly-out to a random 

node(s)
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1 2

664

1
1
. . .
1

3

775

your favorite

𝒆
𝒆

𝒆
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’ – Related to
– ‘escape’ probability
– ‘round trip’ probability
– …



Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Fast Algorithms for Querying and Mining Large Graphs
Hanghang Tong, PhD dissertation, CMU, 2009. TR: CMU-
ML-09-112.

http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-112.pdf
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
• PageRank and Personalized PR
• HITS
• SVD (Singular Value Decomposition)
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?
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Kleinberg’s algo (HITS)

Kleinberg, Jon (1998). Authoritative sources 
in a hyperlinked environment. Proc. 9th 
ACM-SIAM Symposium on Discrete 
Algorithms.



ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 62

Recall: problem dfn

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?



Why not just PageRank?
1. HITS (and its derivative, SALSA), 

differentiate between “hubs” and 
“authorities”

2. HITS can help to find the largest community
3. (SVD: powerful tool)
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fans

idols
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

From PR
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

HITS

``wise’’

AND: A node is ``wise’’ 
if its children are important
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Kleinberg’s algorithm
• Step 0: find nodes with query word(s)
• Step 1: expand by one move forward and 

backward
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Kleinberg’s algorithm
• on the resulting graph, give high score (= 

‘authorities’) to nodes that many ``wise’’ 
nodes point to

• give high wisdom score (‘hubs’) to nodes 
that point to good ‘authorities’

hubs authorities
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Kleinberg’s algorithm
Then:

ai = hk + hl + hm
that is
ai = Sum (hj)     over all j that 

(j,i) edge exists
or
a = AT h

k
l
m

i

=
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Kleinberg’s algorithm
symmetrically, for the ‘hubness’:

hi = an + ap + aq
that is
hi = Sum (qj)     over all j that 

(i,j) edge exists
or
h = A a

p

n

q

i

=
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Kleinberg’s algorithm
symmetrically, for the ‘hubness’:
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that is
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or
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n
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
In short, the solutions to

h = A a
a = AT h

are the left- and right- singular-vectors of the 
adjacency matrix A.

Starting from random a’ and iterating, we’ll 
eventually converge
… to the vector of strongest singular value.

Dfn: in 
+4



ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 77

Kleinberg’s algorithm - results
Eg., for the query ‘java’:
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com (“the java 

developer”)



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
• PageRank and Personalized PR
• HITS
• SVD (Singular Value Decomposition)
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?



SVD properties
• Hidden/latent variable detection
• Compute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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h = A a
a = AT h

Dfn: in 
+4



Crush intro to SVD
• (SVD) matrix factorization: finds blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

A) Even if shuffled!



Crush intro to SVD
• (SVD) matrix factorization: finds blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

B) Even if ‘salt+pepper’ noise



Crush intro to SVD
• Basis for anomaly detection – P1.3
• Basis for tensor/PARAFAC – P2.1

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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SVD properties
üHidden/latent variable detection
• Compute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
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M
idols

‘music lovers’
‘singers’

‘sports lovers’
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‘citizens’
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~ + +
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Authority 
scores

HITS: first singular vector, ie, fixates 
on largest group

ECML/PKDD'22

h = A a
a = AT h

Dfn: in 
+4



SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
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M
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‘singers’

‘sports lovers’
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~ + +

S. Fakhraei and  C. Faloutsos 87ECML/PKDD'22



SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
• Dimensionality reduction
• Embedding
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SVD - intuition
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction / projection
• Embedding
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Crush intro to SVD
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scores

• SVD compression is a linear autoencoder

N 
fans

M idols

row 𝑖 (M dim)

reconstructed row 𝑖

…

…

Independent Component Analysis,Aapo Hyvarinen, Erkki Oja, and
Juha Karhunen (Wiley, 2001) – sec 6.2.4, p. 136.



SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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u0 u1

v0 v1



Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. 
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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u0 u1

v0 v1

Matrix?        
  SVD

!
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Bird’s eye view

• Introduction - motivation
• Part#1: (plain) Graphs (with 10’ break)
• 20’ break
• Part#2: MRL, Tensors etc (with 10’ break)
• Conclusions

ECML/PKDD'22



10’ Break
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Bird’s eye view

ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 98

Tool

Task 1.
1 

PR
/H

IT
S

1.
1 

PP
R

1.
2 

M
E

T
IS

/
SV

D

1.
3 

O
dd

B
al

l+

1.
4 

B
P

2.
1 

FM

2.
1 

Te
ns

or

2.
2 

H
IN

2.
3 

SR
L

1.1 Node Ranking 
1.1’ Link Prediction
1.2 Comm. Detection
1.3 Anomaly Detection
1.4 Propagation

Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 99

Problem

• Given a graph, and k
• Break it into k (disjoint) communities



Short answer

• METIS [Karypis, Kumar]
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Solution#1: METIS

• Arguably, the best algorithm
• Open source, at

– http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz

• and *many* related papers, at same url
• Main idea: 

– coarsen the graph; 
– partition; 
– un-coarsen

http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz


CMU SCS
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Solution #1: METIS
• G. Karypis and V. Kumar. METIS 4.0: 

Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998.

• <and many extensions>



CMU SCS
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Solutions #2,3…
• Fiedler vector (2nd singular vector of Laplacian).
• Modularity: Community structure in social and biological 

networks M. Girvan and M. E. J. Newman, PNAS June 11, 
2002. 99 (12) 7821-7826; 
https://doi.org/10.1073/pnas.122653799

• Co-clustering: [Dhillon+, KDD’03]
• Clustering on the A2 (square of adjacency matrix) 

[Zhou, Woodruff, PODS’04]
• Minimum cut / maximum flow [Flake+, KDD’00]
• ….

https://doi.org/10.1073/pnas.122653799
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A word of caution

• BUT: often, there are no good cuts:

A,B

A,B
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A word of caution

• BUT: often, there are no good cuts:

A,B

A,B
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08]
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08]

? ?

D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch:
NetMine: New Mining Tools for Large Graphs, in SDM 2004 Workshop



Short answer

• METIS [Karypis, Kumar]
• (but: maybe NO good cuts exist!)
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Bird’s eye view
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
– P1.2: community detection
– P1.3: fraud/anomaly detection
– P1.4: belief propagation
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semi-supervised



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
– P1.2: community detection
– P1.3: fraud/anomaly detection

• P1.3.1. Outliers
• P1.3.2. Lock-step behavior

– P1.4: belief propagation
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?un-supervised



Problem
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Given: Find:
1) Outliers
2) Lock-step



Solution
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Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD



P1.3.1. Outliers
• Which node(s) are strange?

– Q: How to start?
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P1.3.1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A1: egonet; and extract node features
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Ego-net Patterns: Which is 
strange?

117ECML/PKDD'22 S. Fakhraei and  C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010



P1.3.1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A: egonet; and extract node features
– Q’: which features?
– A’: ART! Infinite! Pick a few, e.g.:

ECML/PKDD'22 S. Fakhraei and  C. Faloutsos 118

KDD2020 ADS Panel: In ML 

‘feature engineering is the hardest part’



§ Ni: number of neighbors (degree) of ego i
§ Ei: number of edges in egonet i

§ Wi: total weight of egonet i
§ λw,i: principal eigenvalue of the weighted

adjacency matrix of egonet i

119

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Ego-net Patterns 

ECML/PKDD'22 S. Fakhraei and  C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Ei ∝ Ni
α

1 ≤ α ≤ 2
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Ei ∝ Ni
α

1 ≤ α ≤ 2

ECML/PKDD'22 S. Fakhraei and  C. FaloutsosOddball: Spotting anomalies in weighted graphs, Leman
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

Enron CEO



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
– P1.2: community detection
– P1.3: fraud/anomaly detection

• P1.3.1. Outliers
• P1.3.2. Lock-step behavior

– P1.4: belief propagation
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?un-supervised



Problem
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Given: Find:
1) Outliers
2) Lock-step



P1.3.1. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans
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idols



P1.3.1. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans
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idols
A,B

A,B



Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]
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fans

idols



Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

S. Fakhraei and  C. Faloutsos 129ECML/PKDD'22

Reminder (from HITS)



Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)



Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges
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Real Data

“Rays” “Block”

S. Fakhraei and  C. Faloutsos 132ECML/PKDD'22

‘blocks’ create ‘spokes’



Real Data
• Spikes on the out-degree distribution

´
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Solution
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Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– P1.1: node importance
– P1.2: community detection
– P1.3: fraud/anomaly detection
– P1.4: belief propagation
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?un-supervised

semi-supervised



Problem
• What color, for the rest?

– Given homophily (/heterophily etc)?
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip


Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– …
– P1.4: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP
• Success stories
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?



Background

Prof. Danai Koutra
U. Michigan
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Belief  Propagation
• Iterative message-based method

1st
round

2nd
round

...
until 
stop 

criterion 
fulfilled

• “Propagation matrix”:
² Homophily

0.9 0.1
0.1 0.9

PL

AI

class of
sender

class of receiver

[Pearl ‘82][Yedidia+ ’02] … [Gonzalez+ ‘09][Chechetka+ ‘10]
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Background
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Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– …
– P1.4: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP
• Success stories
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?



Unifying	Guilt-by-Association	Approaches:	
Theorems	and	Fast	Algorithms

Danai Koutra
U Kang

Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece



BP  vs.  Linearized BP

BP is approximated by
Linearized	BP

0  1  0
1  0  1
0  1  0

?
0

-10-2
10-
2

1
1 
1

d1
d2 
d3

linearnon-linear

Belief Propagation

Our proposal:Original [Yedidia+]:
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DETAILS

• Closed-form formula?
• Convergence?
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DETAILS

• Closed-form formula?
• Convergence?



Problem: anomalies in ratings 
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
anomalous users, 
products and sellers

S. Fakhraei and  C. Faloutsos 147ECML/PKDD'22

+

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for
Heterogeneous Networks”, VLDB 2017



Problem: anomalies in ratings
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
anomalous users, 
products and sellers
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Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for
Heterogeneous Networks”, VLDB 2017



Problem: anomalies in ratings
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DETAILS
+

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for
Heterogeneous Networks”, VLDB 2017



ZooBP: features
Fast; convergence 
guarantees.

Near-perfect accuracy linear in graph size

ideal

600x (matlab)
3x (C++)
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Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for
Heterogeneous Networks”, VLDB 2017



ZooBP: code etc

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos,
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for
Heterogeneous Networks”, VLDB 2017

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip


Bird’s eye view

• Introduction – Motivation
• Part#1: (simple) Graphs

– …
– P1.4: belief propagation

• Basics
• Fast, linear approximation (FaBP)
• Latest: zooBP
• Success stories
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?



Other ‘success stories’?
• Accounting fraud
• Malware detection
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Network Effect Tools: SNARE
• Some accounts are sort-of-suspicious – how to combine weak 

signals?
Before

S. Fakhraei and  C. Faloutsos 154ECML/PKDD'22

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M.
Steier, Christos Faloutsos: SNARE: a link analytic system for
graph labeling and risk detection. KDD 2009: 1265-1274



Polo Chau
Machine Learning Dept

Carey Nachenberg
Vice President & Fellow

Jeffrey Wilhelm
Principal Software Engineer

Adam Wright
Software Engineer

Prof. Christos Faloutsos
Computer Science Dept

Polonium: Tera-Scale Graph Mining and 
Inference for Malware Detection

PATENT PENDING

SDM 2011, Mesa, Arizona



Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Part 1: 
Plain Graphs

Part 2: 
Complex Graphs



Conclusions for Part P1
• Over-arching conclusion:

– Many, time-tested tools for plain graphs (PR, 
SVD, BP)
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Thanks to
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Danai Koutra
U. Michigan

Dhivya Eswaran
CMU -> Amazon

Vagelis
Papalexakis
UCR

Namyong Park
CMU

Hyun Ah Song
CMU -> Amazon



P1 – Graphs - More references
Danai Koutra and Christos Faloutsos, 
Individual and Collective Graph Mining: 
Principles, Algorithms, and Applications
October 2017, Morgan Claypool
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https://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006


P1 – Graphs - More references
Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies
Oct. 2012, Morgan Claypool.
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http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006


P1 – Graphs - More references
Anomaly detection
• Leman Akoglu, Hanghang Tong, & Danai 

Koutra, Graph based anomaly detection 
and description: a survey Data Mining and 
Knowledge Discovery (2015) 29: 626.

• Arxiv version: 
https://arxiv.org/abs/1404.4679
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https://doi.org/10.1007/s10618-014-0365-y
https://arxiv.org/abs/1404.4679
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Plain Graphs

Part 2: 
Complex Graphs



20’ Break
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