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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Conclusions
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Graphs – why should we care?

PNC 2023
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Graphs - why should we care?

>$10B; ~1B users
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Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]
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Graphs - why should we care?
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic and 

anomaly detection
• Recommendation systems
• ....

• Many-to-many db relationship -> graph

PNC 2023
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors

PNC 2023 Christos Faloutsos 8

time
source

destination



CMU SCS

Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns & fraud detection
• Part#2: time-evolving graphs; tensors
• Conclusions
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Part 1:
Patterns, & 

fraud detection
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Laws and patterns
• Q1: Are real graphs random?

PNC 2023
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Laws and patterns
• Q1: Are real graphs random?
• A1: NO!!

– Diameter (‘6 degrees’; ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

PNC 2023
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

PNC 2023
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S2: connected component sizes
• Connected Components – 4 observations:

Size

Count

Christos FaloutsosPNC 2023

1.4B nodes
6B edges
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsosPNC 2023

1) 10K x 
larger
than next
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsosPNC 2023

2) ~0.7B 
singleton
nodes
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S2: connected component sizes
• Connected Components

Size

Count

Christos FaloutsosPNC 2023

3) SLOPE!
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S2: connected component sizes
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?1100-size cmpt

X 65.
Why?

Christos FaloutsosPNC 2023

4) Spikes!
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S2: connected component sizes
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

Christos FaloutsosPNC 2023
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns: Degree; Triangles
– P1.2: Anomaly/fraud detection

• Part#2: time-evolving graphs; tensors
• Conclusions

PNC 2023
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 

PNC 2023
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?
– 2x the friends, 2x the triangles ?

PNC 2023
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Triangle Law: #S.3 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

PNC 2023
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

26PNC 2023 26Christos Faloutsos
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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MORE Graph Patterns

PNC 2023 Christos Faloutsos 31

✔
✔
✔

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09. 
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MORE Graph Patterns
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• Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal)

• Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool. 

http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions

PNC 2023

Patterns            anomalies
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How to find ‘suspicious’ groups?
• ‘blocks’ are normal, right?

PNC 2023 Christos Faloutsos 34

fans

idols
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Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

PNC 2023 Christos Faloutsos 35
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

PNC 2023 Christos Faloutsos 36

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]
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Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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~ + +

DETAILS

M
timestamps

‘cancer’ ‘alzheimer’ ‘Parkinson’

N genes
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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DETAILS

Even if shuffled!
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)
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Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

PNC 2023 45Christos Faloutsos
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Real Data

“Pearls” “Staircase”

“Rays” “Block”

PNC 2023 46Christos Faloutsos
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Real Data
• Spikes on the out-degree distribution

´

´
PNC 2023 47Christos Faloutsos
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral methods
• No labels – accounting application
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions
PNC 2023
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AutoAudit: Mining Accounting 
and Time-Evolving Graphs

IEEE Big Data, 2020

Meng-Chieh Lee1, Yue Zhao2, Aluna Wang2, Pierre Jinghong Liang2, 
Leman Akoglu2, Vincent S. Tseng1, Christos Faloutsos2



‘Smurfing’

…

‘Alan’ ‘Bob’

How to spot it?



‘Smurfing’

…

Sender

Receiver

‘Alan’ ‘Bob’

‘Alan’

‘Alan’
‘Bob’

‘Bob’

‘smurfs’

Reverse-‘L’ shape
(after careful re-ordering)



AutoAudit: Experiments

Ideal: 100%

acc
urac

y
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– P1.1: Patterns
– P1.2: Anomaly / fraud detection

• No labels – spectral methods
• No labels – dense subgraphs
• With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors
• Conclusions
PNC 2023
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Network Effect Tools: SNARE

54

• Some accounts are sort-of-suspicious – how to combine weak 
signals?

Before

PNC 2023 Christos Faloutsos
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Network Effect Tools: SNARE

55

• A: Belief Propagation.

Before

PNC 2023 Christos Faloutsos
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Network Effect Tools: SNARE
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• A: Belief Propagation.

AfterBefore

PNC 2023 Christos Faloutsos

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M.
Steier, Christos Faloutsos: SNARE: a link analytic system for
graph labeling and risk detection. KDD 2009: 1265-1274
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Network Effect Tools: SNARE

57

• Produces improvement over simply using flags
– Up to 6.5 lift
– Improvement especially for low false positive rate

True 
positive 

rate

Results for accounts data (ROC Curve)
Ideal

SNARE Baseline (flags 
only)

PNC 2023 Christos Faloutsos
False positive rate
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Summary of Part#1
• *many* patterns in real graphs

– Power-laws everywhere
– Long (and growing) list of tools for 

anomaly/fraud detection

PNC 2023 Christos Faloutsos 58

Patterns            anomalies
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs

– P2.1: tools/tensors
– P2.2: other patterns

• Conclusions

PNC 2023
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Part 2:
Time evolving 
graphs; tensors
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

PNC 2023 Christos Faloutsos 61

smith

johnson
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Tue
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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callee
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e



CMU SCS

Answer : tensor factorization
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Answer: tensor factorization
• PARAFAC decomposition
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= + +subject

object

ve
rb

politicians artists athletes



CMU SCS

Answer: tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days

PNC 2023 Christos Faloutsos 68

= + +caller

callee

tim
e

?? ?? ??
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

PNC 2023 69Christos Faloutsos
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

PNC 2023 70Christos Faloutsos

=



CMU SCS

Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
PNC 2023 71Christos Faloutsos
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Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann,
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
Evangelos Papalexakis, Danai Koutra. Com2: Fast
Automatic Discovery of Temporal (Comet) Communities.
PAKDD 2014, Tainan, Taiwan.
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Part 2: Conclusions

• Time-evolving / heterogeneous graphs -> 
tensors

• PARAFAC finds patterns
• Surprising temporal patterns

PNC 2023 72Christos Faloutsos
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Visualization
• Conclusions

PNC 2023
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TgraphSpot: Fast and Effective Anomaly 
Detection for Time-Evolving Graphs

IEEE BigData, 2022

Mirela Cazzolato1,2, Saranya Vijayakumar1, Xinyi Zheng1,
Namyong Park1, Meng-Chieh Lee1, Pedro Fidalgo3,4, 

Bruno Lages3, Agma J. M. Traina2, Christos Faloutsos1

Open source:
https://github.com/mtcazzolato/tgraph-spot

Video: https://youtu.be/jI1adN-BQuo?t=1537

https://youtu.be/jI1adN-BQuo?t=1537


github.com/mtcazzolato/tgraph-spot/[M. Cazzolato, S. Vijayakumar et al.] 
TgraphSpot

Authors
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Saranya Vijayakumar

Meng-Chieh Jeremy Lee

Xinyi Zheng
Agma Traina

Christos Faloutsos

Namyong Park
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Problem definition

PNC 2023

5’
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(source, destination, timestamp, duration)
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Problem definition

PNC 2023
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System Overview - current
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Feature extraction Select nodes for
further investigation

Deep Dive: EgoNetFeature visualization

Video: https://youtu.be/jI1adN-BQuo?t=1537

https://youtu.be/jI1adN-BQuo?t=1537
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Discovery #1
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Weighted in-degree (= in-seconds)

in-degree
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Discovery #1
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Group of phone numbers 
receiving one-second-long 

calls

100 in-calls
100 seconds
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Discovery #1
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suspicious

suspicious

suspicious
confirmed 
fraudsters

confirmed 
fraudsters

confirmed 
fraudsters

Group of phone numbers 
receiving one-second-long 

calls
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Q: Why?
• Q: Why would people call hotel-like 

numbers, for 1second?

PNC 2023 Christos Faloutsos 82



CMU SCS

A: ‘international by-pass’

PNC 2023 Christos Faloutsos 83

‘USA’ ‘Greece’

Alice
Aaron

BettyBob

Suspicious 
tel-co

hotel

hotel
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A: ‘international by-pass’
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‘Greece’

hotel

hotel

Suspicious 
tel-co
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Visualization
• Conclusions
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CONCLUSION#1 – Big data
• Patterns          Anomalies
• Large datasets reveal patterns/outliers that 

are invisible otherwise

PNC 2023
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CONCLUSION#2 – tensors

• powerful tool

PNC 2023

=

1 caller 5 receivers 4 days of activity
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CONCLUSION#3 - visualization
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Weighted in-degree (= in-seconds)

in-degree
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TAKE HOME MESSAGE:

Cross-disciplinarity
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Cross-disciplinarity
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Thank you! 


