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Slides for semester course
• Fractals and power laws (4 lectures)
• Text mining
• Matrices, SVD and tensors (5 lectures)
• Graph mining (6 lectures)
• Time series, Fourier, wavelets, & forecasting (4 

lectures)
• https://www.cs.cmu.edu/~christos/courses/989.F23/sch

edule.html

WBD, May 17, 2024

https://www.cs.cmu.edu/~christos/courses/989.F23/schedule.html
https://www.cs.cmu.edu/~christos/courses/989.F23/schedule.html
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations
• Conclusions

WBD, May 17, 2024
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Graphs – why should we care?

WBD, May 17, 2024

(source, destination, timestamp, duration)

… …

Customers Movies
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Graphs – why should we care?
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(source, destination, timestamp, $amount)
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Graphs - why should we care?

>$10B; ~1B users

WBD, May 17, 2024
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Graphs - why should we care?
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic and 

anomaly/intrusion detection
• Recommendation systems
• ....

• Many-to-many db relationship -> graph

WBD, May 17, 2024



CMU SCS

Motivating problems
• P1: patterns? Fraud detection?

• P2: Propagation
• P3: patterns in time-evolving graphs / 

tensors

WBD, May 17, 2024 (c) 2024 C. Faloutsos 10
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Motivating problems
• P1: patterns? Fraud detection?

• P2: Propagation
• P3: patterns in time-evolving graphs / 

tensors
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time
source

destination

Patterns            anomalies
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‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer

WBD, May 17, 2024 (c) 2024 C. Faloutsos 12
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations
• Conclusions

WBD, May 17, 2024
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Roadmap (detailed)

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
– 1.1 Patterns
– 1.2 Anomalies
– 1.3 Money laundering detection

• Part#2: Graph Mining – (semi-)supervised
• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 14
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Problem

WBD, May 17, 2024 (c) 2024 C. Faloutsos 15

Given: Find patterns (‘what is normal’)



CMU SCS

Solution(s)

WBD, May 17, 2024 (c) 2024 C. Faloutsos 16

Given: Find patterns (‘what is normal’)

…

6-degrees
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Laws and patterns
• Q1: Are real graphs random?

WBD, May 17, 2024
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Laws and patterns
• Q1: Are real graphs random?
• A1: NO!!

– Diameter (‘6 degrees’; ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

WBD, May 17, 2024
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

WBD, May 17, 2024
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Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 
SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

WBD, May 17, 2024
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S2: connected component sizes
• Connected Components – 4 observations:

Size

Count

(c) 2024 C. FaloutsosWBD, May 17, 2024

1.4B nodes
6B edges
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S2: connected component sizes
• Connected Components

Size

Count

(c) 2024 C. FaloutsosWBD, May 17, 2024

1) 10K x 
larger
than next
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S2: connected component sizes
• Connected Components

Size

Count

(c) 2024 C. FaloutsosWBD, May 17, 2024

2) ~0.7B 
singleton
 nodes
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S2: connected component sizes
• Connected Components

Size

Count

(c) 2024 C. FaloutsosWBD, May 17, 2024

3) SLOPE!
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S2: connected component sizes
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?1100-size cmpt

X 65.
Why?

(c) 2024 C. FaloutsosWBD, May 17, 2024

4) Spikes!
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S2: connected component sizes
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

(c) 2024 C. FaloutsosWBD, May 17, 2024
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Roadmap (detailed)

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
– 1.1 Patterns (degree, conn-comp, triangles)
– 1.2 Anomalies

• Part#2: Graph Mining – (semi-)supervised
• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 27
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 

WBD, May 17, 2024
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?
– 2x the friends, 2x the triangles ?

WBD, May 17, 2024
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Triangle Law: #S.3 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

WBD, May 17, 2024
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

31WBD, May 17, 2024 31(c) 2024 C. Faloutsos

? ?

?



CMU SCS

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

32WBD, May 17, 2024 32(c) 2024 C. Faloutsos
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

35WBD, May 17, 2024 35(c) 2024 C. Faloutsos
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MORE Graph Patterns

WBD, May 17, 2024 (c) 2024 C. Faloutsos 36

✔
✔
✔

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09. 
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MORE Graph Patterns

WBD, May 17, 2024 (c) 2024 C. Faloutsos 37

• Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal)

• Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Springer. 

https://link.springer.com/book/10.1007/978-3-031-01903-6
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Solution(s)

WBD, May 17, 2024 (c) 2024 C. Faloutsos 38

Given: Find patterns (‘what is normal’)

…

6-degrees
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Roadmap (detailed)

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
– 1.1 Patterns
– 1.2 Anomalies

• Part#2: Graph Mining – (semi-)supervised
• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 39

Patterns            anomalies
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Problem

WBD, May 17, 2024 (c) 2024 C. Faloutsos 40

Given: Find: suspicious sub-graphs
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Solution

WBD, May 17, 2024 (c) 2024 C. Faloutsos 41

Given: Find: suspicious sub-graphs

SVD

(singular value decomposition)



CMU SCS

How to find ‘suspicious’ groups?
• ‘blocks’ are normal, right?

WBD, May 17, 2024 (c) 2024 C. Faloutsos 42

fans

idols
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Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

WBD, May 17, 2024 (c) 2024 C. Faloutsos 43
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

WBD, May 17, 2024 (c) 2024 C. Faloutsos 44

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

WBD, May 17, 2024 (c) 2024 C. Faloutsos 45

Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 46

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
cust.

M
movies

science sports food

~ + +

DETAILS
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 48

N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +

DETAILS



CMU SCS

Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 49

~ + +

DETAILS

M
timestamps

‘cancer’ ‘alzheimer’ ‘Parkinson’

N genes
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 51

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

DETAILS

Even if shuffled!
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks

PAKDD’14 

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)
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Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

WBD, May 17, 2024 53(c) 2024 C. Faloutsos
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Real Data

“Pearls” “Staircase”

“Rays” “Block”

WBD, May 17, 2024 54(c) 2024 C. Faloutsos
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Real Data
• Spikes on the out-degree distribution

´

´
WBD, May 17, 2024 55(c) 2024 C. Faloutsos
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Problem

WBD, May 17, 2024 (c) 2024 C. Faloutsos 56

Given: Find: suspicious sub-graphs

SVD

(singular value decomposition)
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations
• Conclusions

WBD, May 17, 2024
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised

– 2.1. success stories
– 2.2. the gory details

• Part#3: Time-evolving graphs
• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 58
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Problem
• What color, for the rest?

– Given homophily (/heterophily etc)?

WBD, May 17, 2024 (c) 2024 C. Faloutsos 59
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)

WBD, May 17, 2024 (c) 2024 C. Faloutsos 60

www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Unifying	Guilt-by-Association	Approaches:	
Theorems	and	Fast	Algorithms

Danai Koutra  
U Kang 

Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece
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Problem Definition:
GBA techniques

Given: Graph; &         
   few labeled nodes
Find: labels of rest
(assuming network 
effects)

(c) 2024 C. Faloutsos 62WBD, May 17, 2024
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Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my friends are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them

WBD, May 17, 2024 (c) 2024 C. Faloutsos 63
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Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my friends are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them

WBD, May 17, 2024 (c) 2024 C. Faloutsos 64

YES!
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Rec. sys <-> GBA <-> RWR
• RWR = PPR (Personalized 

PageRank)

• Pixie [Eksombatchai+, 
2017]

WBD, May 17, 2024 (c) 2024 C. Faloutsos 65

… …

Customers Movies

https://arxiv.org/abs/1711.07601
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Rec. sys <-> GBA <-> RWR
• RWR = PPR (Personalized 

PageRank)

• Pixie [Eksombatchai+, 
2017]

WBD, May 17, 2024 (c) 2024 C. Faloutsos 66

… …

Customers Movies

https://arxiv.org/abs/1711.07601
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Correspondence of Methods

(c) 2024 C. Faloutsos 67

Method Matrix Unknow
n

known

RWR [I  – c AD-1] × x = (1-c)y
SSL [I  + a(D  -   A)] × x = y

FABP [I  + a  D - c’A] × bh = φh
0  1  0
1  0  1
0  1  0

   ?
0

 1
 1

1
    1
       1

d1
 d2 

      d3
final 

labels/ 
beliefs

prior 
labels/ 
beliefs

adjacency 
matrix

WBD, May 17, 2024
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BP  vs.  Linearized BP

BP is approximated by
Linearized	BP

0  1  0
1  0  1
0  1  0

   ?
0

-10-2
  10-
2

1
1 

        1
d1

d2 
      d3

linearnon-linear

Belief	Propagation

Our proposal:Original [Yedidia+]:

(c) 2024 C. Faloutsos 68WBD, May 17, 2024

DETAILS

• Closed-form formula?
• Convergence?
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Problem: e-commerce ratings fraud
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
fraudulent users, 
products and sellers

WBD, May 17, 2024 (c) 2024 C. Faloutsos 69
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Problem: e-commerce ratings fraud
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
fraudulent users, 
products and sellers

WBD, May 17, 2024 (c) 2024 C. Faloutsos 70

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017
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Problem: e-commerce ratings fraud

WBD, May 17, 2024 (c) 2024 C. Faloutsos 71

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017

DETAILS
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ZooBP: features

(c) 2024 C. Faloutsos 72

Fast; convergence guarantees.

Near-perfect accuracy linear in graph size

WBD, May 17, 2024

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017
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ZooBP in the real world

• Near 100% precision on top 
300 users (Flipkart)

• Flagged users: suspicious
• 400 ratings in 1 sec
• 5000 good ratings and no 

bad ratings

WBD, May 17, 2024 73(c) 2024 C. Faloutsos

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)

WBD, May 17, 2024 (c) 2024 C. Faloutsos 74

www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations
• Conclusions

WBD, May 17, 2024
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs

– 3.1. Tensors
– 3.2. inter-arrival times

• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 76
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Problem
• Patterns/anomalies in time-evolving 

graphs?

WBD, May 17, 2024 (c) 2024 C. Faloutsos 77

…

…

3am, 4/1

3am, 4/1

10pm, 4/3
11pm, 4/3
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= + +customer

product

tim
es

tam
p shoes Apple

fans jewelry

Short answer:
• Patterns/anomalies in time-evolving 

graphs?
• PARAFAC tensor decomposition

WBD, May 17, 2024 (c) 2024 C. Faloutsos 78

…

…

3am, 4/1

3am, 4/1

10pm, 4/3
11pm, 4/3
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Graphs over time -> tensors!
• Problem:

– Given who calls whom, and when
– Find patterns / anomalies

WBD, May 17, 2024 (c) 2024 C. Faloutsos 79

smith

johnson
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Graphs over time -> tensors!
• Problem:

– Given who calls whom, and when
– Find patterns / anomalies

WBD, May 17, 2024 (c) 2024 C. Faloutsos 80
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Graphs over time -> tensors!
• Problem:

– Given who calls whom, and when
– Find patterns / anomalies

WBD, May 17, 2024 (c) 2024 C. Faloutsos 81

Mon
Tue
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Graphs over time -> tensors!
• Problem:

– Given who calls whom, and when
– Find patterns / anomalies

WBD, May 17, 2024 (c) 2024 C. Faloutsos 82
callee

caller

tim
e
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Answer : tensor factorization
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 83

N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks

WBD, May 17, 2024 (c) 2024 C. Faloutsos 84

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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Answer: tensor factorization
• PARAFAC decomposition

WBD, May 17, 2024 (c) 2024 C. Faloutsos 85

= + +subject

object

ve
rb

politiciansartists athletes

🇺🇸
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Answer: tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days

WBD, May 17, 2024 (c) 2024 C. Faloutsos 86

= + +caller

callee

tim
e

?? ?? ??
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

WBD, May 17, 2024 87(c) 2024 C. Faloutsos

=



CMU SCS

Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

WBD, May 17, 2024 88(c) 2024 C. Faloutsos
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
WBD, May 17, 2024 89(c) 2024 C. Faloutsos

=

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, 
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
 Evangelos Papalexakis, Danai Koutra.  Com2: Fast 
Automatic Discovery of Temporal (Comet) Communities. 
PAKDD 2014, Tainan, Taiwan.
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs

– 3.1. Tensors
– 3.2. inter-arrival times

• …

WBD, May 17, 2024 (c) 2024 C. Faloutsos 90
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RSC: Mining and Modeling Temporal 
Activity in Social Media

Alceu F. Costa*   Yuto Yamaguchi    Agma J. M. Traina

Caetano Traina Jr.    Christos Faloutsos

Universidade
de São Paulo

KDD 2015 – Sydney, 
Australia

*alceufc@icmc.usp.br
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Reddit Dataset
Time-stamp from comments
21,198 users
20 Million time-stamps

Twitter Dataset
Time-stamp from tweets
6,790 users
16 Million time-stamps

Pattern Mining: Datasets

For each user we have: 
 Sequence of postings time-stamps: T = (t1, t2, t3, …)
 Inter-arrival times (IAT) of postings:  (∆1, ∆2, ∆3, …)

92
t1 t2 t3 t4

∆1 ∆2 ∆3

time
WBD, May 17, 2024 (c) 2024 C. Faloutsos
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Human? Robots?

log

linear

WBD, May 17, 2024 (c) 2024 C. Faloutsos 93
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Human? Robots?

log

linear
2’ 3h 1day

WBD, May 17, 2024 (c) 2024 C. Faloutsos 94
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94%
Sensitivity > 
70%

With strongly 
imbalanced 
datasets
# humans >> # 
bots

Twitter
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96%
Sensitivity > 
47%
With strongly 
imbalanced 
datasets
# humans >> # 
bots

Reddit
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‘Delay map’
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‘machine-gun’
behavior
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Roadmap

• Introduction – Motivation
• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs

– 3.1. Tensors
– 3.2. inter-arrival times
– 3.3. Forecasting

• …
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AutoGluon TS
• https://auto.gluon.ai/stable/tutorials/timeseri

es/index.html

from autogluon.timeseries import *
fit()

WBD, May 17, 2024 (c) 2024 C. Faloutsos 99

https://auto.gluon.ai/stable/tutorials/timeseries/index.html
https://auto.gluon.ai/stable/tutorials/timeseries/index.html
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= + +customer

product

tim
es

tam
p shoes Apple

fans jewelry

Short answer:
• Patterns/anomalies in time-evolving 

graphs?
• PARAFAC tensor decomposition
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…

…

3am, 4/1

3am, 4/1

10pm, 4/3
11pm, 4/3
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations / Visualization
• Conclusions
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TgraphSpot: Fast and Effective Anomaly 
Detection for Time-Evolving Graphs

IEEE BigData, 2022

Mirela Cazzolato1,2, Saranya Vijayakumar1, Xinyi Zheng1,
Namyong Park1, Meng-Chieh Lee1, Pedro Fidalgo3,4, 

Bruno Lages3, Agma J. M. Traina2, Christos Faloutsos1

Open source:
https://github.com/mtcazzolato/tgraph-spot

Video: https://youtu.be/jI1adN-BQuo?t=1537 

https://youtu.be/jI1adN-BQuo?t=1537


github.com/mtcazzolato/tgraph-spot/[M. Cazzolato, S. Vijayakumar et al.] 
TgraphSpot

Authors

10
3

Pedro Fidalgo

Bruno Lages

Mirela Cazzolato

Saranya Vijayakumar

Meng-Chieh Jeremy Lee

Xinyi Zheng
Agma Traina

Christos Faloutsos

Namyong Park
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Problem definition

WBD, May 17, 2024

5’
5’

5’

2’

5’

9’

(source, destination, timestamp, duration)
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Problem definition

WBD, May 17, 2024

$5
$5

$5

$2

$5

$9

(source, destination, timestamp, duration)$amount)

… …

customers movies
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System Overview - current
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Feature extraction Select nodes for
further investigation

Deep Dive: EgoNetFeature visualization

Video: https://youtu.be/jI1adN-BQuo?t=1537 

https://youtu.be/jI1adN-BQuo?t=1537
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Discovery #1
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Weighted in-degree (= in-seconds)

in-degree
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Discovery #1
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Weighted in-degree (= in-seconds)

in-degree
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Discovery #1
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Group of phone numbers 
receiving one-second-long 

calls

100 in-calls
100 seconds
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Discovery #1
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suspicious

suspicious

suspicious
confirmed 
fraudsters

confirmed 
fraudsters

confirmed 
fraudsters

Group of phone numbers 
receiving one-second-long 

calls
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Q: Why?
• Q: Why would people call hotel-like 

numbers, for 1second?
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Q: Why?
• Q: Why would people call hotel-like 

numbers, for 1second?
• A: low quality/ low price, gray-area 

international carrier, that drops a lot of 
phonecalls
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A: ‘international by-pass’
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‘USA’ ‘Greece’

Alice
Aaron

BettyBob

Suspicious 
tel-co

hotel

hotel
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A: ‘international by-pass’
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‘Greece’

hotel

hotel

Suspicious 
tel-co
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Graph Mining – unsupervised
• Part#2: Graph Mining – (semi-)supervised
• Part#3: Time-evolving graphs
• Part#4: Explanations
• Conclusions
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CONCLUSION#1: many patterns

WBD, May 17, 2024 (c) 2024 C. Faloutsos 116

Given: Find patterns (‘what is normal’)

…

6-degrees
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CONCLUSION#1’: Many tools
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Given: Find: suspicious sub-graphs

SVD

(singular value decomposition)
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CONCLUSION#2: (zoo)BP
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)

WBD, May 17, 2024 (c) 2024 C. Faloutsos 118

www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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CONCLUSION#3 – tensors

• powerful tool

WBD, May 17, 2024 (c) 2024 C. Faloutsos 119

=

1 caller 5 receivers 4 days of activity
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CONCLUSION#4 - visualization
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Weighted in-degree (= in-seconds)

in-degree
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References
• D. Chakrabarti, C. Faloutsos: Graph Mining – Laws, 

Tools and Case Studies, Morgan Claypool 2012
• https://link.springer.com/book/10.1007/978-3-031-

01903-6
• Earlier version – Survey

WBD, May 17, 2024
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References
• Danai Koutra and Christos Faloutsos, Individual and 

Collective Graph Mining: Principles, Algorithms, and 
Applications, Springer, 2017
https://link.springer.com/book/10.1007/978-3-031-
01911-1
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TgraphSpot: Fast and Effective Anomaly 
Detection for Time-Evolving Graphs

IEEE BigData, 2022

Mirela Cazzolato1,2, Saranya Vijayakumar1, Xinyi Zheng1,
Namyong Park1, Meng-Chieh Lee1, Pedro Fidalgo3,4, 

Bruno Lages3, Agma J. M. Traina2, Christos Faloutsos1

Open source:
https://github.com/mtcazzolato/tgraph-spot

Video: https://youtu.be/jI1adN-BQuo?t=1537 
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AutoGluon TS
• https://auto.gluon.ai/stable/tutorials/timeseri

es/index.html

from autogluon.timeseries import *
fit()
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https://auto.gluon.ai/stable/tutorials/timeseries/index.html
https://auto.gluon.ai/stable/tutorials/timeseries/index.html
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Slides for semester course
• https://www.cs.cmu.edu/~christos/courses/989.F23/sch

edule.html
• Fractals and power laws (4 lectures)
• Text mining
• Matrices, SVD and tensors (5 lectures)
• Graph mining (6 lectures)
• Time series, Fourier, wavelets, & forecasting (4 

lectures)

WBD, May 17, 2024

https://www.cs.cmu.edu/~christos/courses/989.F23/schedule.html
https://www.cs.cmu.edu/~christos/courses/989.F23/schedule.html
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TAKE HOME MESSAGE:

Cross-disciplinarity
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Cross-disciplinarity
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Thank you! 
christos@cs.cmu.edu


