Large Graph Mining – Patterns and Tools

Christos Faloutsos CMU

Thank you!

• Puja Das

WBD, May 17, 2024

Thank you!

- Meng-Chieh Jeremy Lee (CMU)
- Robson Cordeiro (CMU)
- Catalina Vajiac (CMU)

WBD, May 17, 2024

Slides for semester course

- Fractals and power laws (4 lectures)
- Text mining
- Matrices, SVD and tensors (5 lectures)
- <u>Graph mining</u> (6 lectures)
- Time series, Fourier, wavelets, & forecasting (4 lectures)
- <u>https://www.cs.cmu.edu/~christos/courses/989.F23/sch</u> edule.html

WBD, May 17, 2024

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
- Part#4: Explanations
- Conclusions

Graphs – why should we care?

Ø

Customers Movies

(source, destination, timestamp, duration)

Graphs – why should we care?

(source, destination, timestamp, \$amount)

WBD, May 17, 2024

(c) 2024 C. Faloutsos

\$9

\$5

\$5

\$5

Graphs - why should we care?

WBD, May 17, 2024

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! вLOG
- computer network security: email/IP traffic and anomaly/intrusion detection
- Recommendation systems

• Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

Ο

00

- P2: Propagation
- P3: patterns in time-evolving graphs / tensors

Motivating problems

P1: patterns? Fraud detection?
 Patterns 2 anomalies

- P2: Propagation
- P3: patterns in time-evolving graphs / tensors

'Recipe' Structure:

- Problem definition
- Short answer/solution
- LONG answer details
- Conclusion/short-answer

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
 - Part#2: Graph Mining (semi-)supervised
 - Part#3: Time-evolving graphs
 - Part#4: Explanations
 - Conclusions

Roadmap (detailed)

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
 - 1.1 Patterns
 - 1.2 Anomalies
 - 1.3 Money laundering detection
- Part#2: Graph Mining (semi-)supervised

Problem

Given:

Find patterns ('what is normal')

WBD, May 17, 2024

(c) 2024 C. Faloutsos

15

Solution(s)

Given:

Find patterns ('what is normal')

WBD, May 17, 2024

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

• Connected Components – 4 observations:

Connected Components

Connected Components

• Connected Components

• Connected Components

• Connected Components

Roadmap (detailed)

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
 - 1.1 Patterns (degree, conn-comp, triangles)
 - 1.2 Anomalies
- Part#2: Graph Mining (semi-)supervised

. . .

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WBD, May 17, 20

ahoo!
Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WBD, May 17, 2024

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WBD, May 17, 2024

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WBD, May 17, 2024

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WBD, May 17, 2024

MORE Graph Patterns

	Unweighted	Weighted
Static	 V1. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] V2. Triangle Power Law (TPL) [Tsourakakis '08] V3. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dvnamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]
TG: A Recursive Realistic Graph Generator using Random		

R *Typing* Leman Akoglu and Christos Faloutsos. *PKDD*'09.
MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. '05] L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] L07. Constant size 2 nd and 3 nd connected components [McGlohon et al. '08] L08. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. '08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. `08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct. 2012, Springer.

Solution(s)

Given:

Find patterns ('what is normal')

WBD, May 17, 2024

(c) 2024 C. Faloutsos

Roadmap (detailed)

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
 - 1.1 Patterns
 - 1.2 Anomalies Patterns anomalies
- Part#2: Graph Mining (semi-)supervised

Problem

Given:

(c) 2024 C. Faloutsos

(c) 2024 C. Faloutsos

How to find 'suspicious' groups?

• 'blocks' are normal, right?

Except that:

• 'blocks' are normal, ish

• 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily?

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
 - Q: Can we spot blocks, easily? A: Silver bullet: SVD!

 Recall: (SVD) matrix factorization: finds blocks Even if shuffled!

Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)

Dataset

- Tencent Weibo
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

WBD, May 17, 2024

WBD, May 17, 2024

• Spikes on the out-degree distribution

(c) 2024 C. Faloutsos

(c) 2024 C. Faloutsos

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
 - Part#3: Time-evolving graphs
 - Part#4: Explanations
 - Conclusions

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
 - -2.1. success stories
 - -2.2. the gory details
- Part#3: Time-evolving graphs

Problem

- What color, for the rest?
 - Given homophily (/heterophily etc)?

Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')

www.cs.cmu.edu/~deswaran/code/zoobp.zip

WBD, May 17, 2024

(c) 2024 C. Faloutsos

60

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra

U Kang Hsing-Kuo Kenneth Pao Tai-You Ke Duen Horng (Polo) Chau Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece

Problem Definition: GBA techniques

Are they related?

- RWR (Random Walk with Restarts)
 - google's pageRank ('*if my friends are important, I'm important, too*')

- SSL (Semi-supervised learning)
 minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Are they related? YES!

- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)

 minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Google

Rec. sys <-> GBA <-> RWR

 RWR = PPR (Personalized PageRank)
 Customers Movies
 Customers Movies

<u>Pixie</u> [Eksombatchai+, 2017]

Rec. sys <-> GBA <-> RWR

 RWR = PPR (Personalized PageRank)
 Customers Movies

<u>Pixie</u> [Eksombatchai+, 2017]

Correspondence of Methods

Method	Matrix	Unknow n		known
RWR	$[\mathbf{I} - \mathbf{c} \mathbf{A}\mathbf{D}^{-1}] \times$	X	=	(1-c) y
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \mathbf{A})] \times$	X	—	У
FABP	$[\mathbf{I} + a \mathbf{D} - c' \mathbf{A}] \times$	b _h	=	φ _h
	1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	? final labels/ beliefs		0 1 prior labels/ beliefs

BP vs. Linearized BP

Original [Yedidia+]:

Our proposal:

Belief Propagation

 $j \in N(i)$

Linearized BP BP is approximated by

$$[\mathbf{I} + a\mathbf{D} - c'\mathbf{A}] \mathbf{b}_{h} = \phi_{h}$$

$$\downarrow_{1} \quad \textcircled{d1}_{d2} \quad \fbox{0}_{1} \quad \textcircled{0}_{1} \quad \rule{0}_{1} \quad$$

non-linear Closed-form formula? Convergence?

Faloutsos

Carnegie Mellon

Problem: e-commerce ratings fraud

 Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"

• Find the top *k* most fraudulent users, products and sellers

Carnegie Mellon

Problem: e-commerce ratings fraud

- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- Find the top *k* most fraudulent users, products and sellers

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, *"ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

Theorem 1 (ZOOBP). If $\mathbf{b}, \mathbf{e}, \mathbf{P}, \mathbf{Q}$ are constructed as described above, the linear equation system approximating the final node beliefs given by BP is:

$$\mathbf{b} = \mathbf{e} + (\mathbf{P} - \mathbf{Q})\mathbf{b} \qquad (\text{ZooBP}) \tag{10}$$

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, *"ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

ZooBP: features

Fast; convergence guarantees.

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "*ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017
ZooBP in the real world

- Near 100% precision on top 300 users (Flipkart)
 - Flagged users: suspicious
 - 400 ratings in 1 sec
 - 5000 good ratings and no bad ratings

<u>Dhivya Eswaran</u>, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, *"ZooBP:* Belief Propagation for Heterogeneous Networks", VLDB 2017

Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')

www.cs.cmu.edu/~deswaran/code/zoobp.zip

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
 - Part#4: Explanations
 - Conclusions

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
 - -3.1. Tensors
 - 3.2. inter-arrival times

Problem

• Patterns/anomalies in time-evolving graphs?

Short answer:

- Patterns/anomalies in time-evolving graphs?
- PARAFAC tensor decomposition

WBD, May 17, 2024

- Problem:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem:
 - Given who calls whom, and when
 - Find patterns / anomalies

Crush intro to SVD

• Recall: (SVD) matrix factorization: finds blocks

Answer: tensor factorization

• PARAFAC decomposition

Answer: tensor factorization

• PARAFAC decomposition

– 4M x 15 days

• Results for who-calls-whom-when

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

WBD, May 17, 2024

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

WBD, May 17, 2024

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
 - -3.1. Tensors
 - 3.2. inter-arrival times

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa^{*} Yuto Yamaguchi Agma J. M. Traina Caetano Traina Jr. Christos Faloutsos

*alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

Human? Robots?

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves Good performance: curve close to the top

Experiments: Can RSC-Spotter Detect Bots? Precision vs. Sensitivity Curves

Good performance: curve close to the top

'Delay map'

Roadmap

- Introduction Motivation
- Part#1: Graph Mining unsupe
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
 - -3.1. Tensors
 - -3.2. inter-arrival times
 - 3.3. Forecasting

AutoGluon TS

• <u>https://auto.gluon.ai/stable/tutorials/timeseri</u> <u>es/index.html</u>

from autogluon.timeseries import * fit()

WBD, May 17, 2024

Short answer:

100

- Patterns/anomalies in time-evolving graphs?
- PARAFAC tensor decomposition

WBD, May 17, 2024

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
- Part#4: Explanations / Visualization
 - Conclusions

TgraphSpot: Fast and Effective Anomaly Detection for Time-Evolving Graphs *IEEE BigData, 2022*

<u>Mirela Cazzolato</u>^{1,2}, Saranya Vijayakumar¹, Xinyi Zheng¹, Namyong Park¹, Meng-Chieh Lee¹, Pedro Fidalgo^{3,4}, Bruno Lages³, Agma J. M. Traina², Christos Faloutsos¹

Open source: https://github.com/mtcazzolato/tgraph-spot

Video: <u>https://youtu.be/j11adN-BQuo?t=1537</u>

Authors

Carnegie Mellon

Mirela Cazzolato

Saranya Vijayakumar

Xinyi Zheng

Namyong Park

Meng-Chieh Jeremy Lee

Pedro Fidalgo

Bruno Lages

Agma Traina

Christos Faloutsos

10

3

Problem definition

WBD, May 17, 2024

Problem definition

WBD, May 17, 2024

System Overview - current

Video: https://youtu.be/jI1adN-BQuo?t=1537

Discovery #1

Weighted in-degree (= in-seconds)

WBD, May 17, 2024

Discovery #1

Weighted in-degree (= in-seconds)

WBD, May 17, 2024
Discovery #1

100 in-calls 100 seconds

WBD, May 17, 2024

Discovery #1

Q: Why?

• Q: Why would people call hotel-like numbers, for 1second?

Q: Why?

- Q: Why would people call hotel-like numbers, for 1second?
- A: low quality/ low price, gray-area international carrier, that drops a lot of phonecalls

WBD, May 17, 2024

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Graph Mining unsupervised
- Part#2: Graph Mining (semi-)supervised
- Part#3: Time-evolving graphs
- Part#4: Explanations
- Conclusions

CONCLUSION#1: many patterns

Given:

Find patterns ('what is normal')

WBD, May 17, 2024

CONCLUSION#1': Many tools

Given:

CONCLUSION#2: (zoo)BP

- What color, for the rest?
- A: Belief Propagation ('zooBP')

www.cs.cmu.edu/~deswaran/code/zoobp.zip

WBD, May 17, 2024

CONCLUSION#3 – tensors

• powerful tool

WBD, May 17, 2024

CONCLUSION#4 - visualization

Weighted in-degree (= in-seconds)

WBD, May 17, 2024

References

- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- <u>https://link.springer.com/book/10.1007/978-3-031-</u> 01903-6
- Earlier version <u>Survey</u>

WBD, May 17, 2024

References

 Danai Koutra and Christos Faloutsos, Individual and Collective Graph Mining: Principles, Algorithms, and Applications, Springer, 2017 <u>https://link.springer.com/book/10.1007/978-3-031-</u>01911-1

Ind	lividual and
Co	llective Graph
Mi	ning
Prin	ciples, Algorithms,
and.	Applications
Danai	Koutra
Christ	tos Faloutsos

WBD, May 17, 2024

TgraphSpot: Fast and Effective Anomaly Detection for Time-Evolving Graphs *IEEE BigData, 2022*

<u>Mirela Cazzolato</u>^{1,2}, Saranya Vijayakumar¹, Xinyi Zheng¹, Namyong Park¹, Meng-Chieh Lee¹, Pedro Fidalgo^{3,4}, Bruno Lages³, Agma J. M. Traina², Christos Faloutsos¹

Open source: https://github.com/mtcazzolato/tgraph-spot

Video: <u>https://youtu.be/jI1adN-BQuo?t=1537</u>

AutoGluon TS

• <u>https://auto.gluon.ai/stable/tutorials/timeseri</u> <u>es/index.html</u>

from autogluon.timeseries import * fit()

WBD, May 17, 2024

Slides for semester course

- <u>https://www.cs.cmu.edu/~christos/courses/989.F23/sch</u> edule.html
- Fractals and power laws (4 lectures)
- Text mining
- Matrices, SVD and tensors (5 lectures)
- **Graph mining** (6 lectures)
- Time series, Fourier, wavelets, & forecasting (4 lectures)

TAKE HOME MESSAGE:

Cross-disciplinarity

christos@cs.cmu.edu

WBD, May 17, 2024