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Problem definition

• Given: one or more sequences
x1 ,  x2 ,  … ,  xt ,  …
(y1, y2, … , yt, …
…  )

• Find
– similar sequences; forecasts
– patterns; clusters; outliers
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Motivation - Applications
•  Financial, sales, economic series

•  Medical

– ECGs +; blood pressure etc monitoring

– reactions to new drugs

– elderly care
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Motivation - Applications
(cont’d)

• ‘Smart house’

– sensors monitor temperature, humidity,
air quality

• video surveillance
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Motivation - Applications
(cont’d)

• civil/automobile infrastructure

– bridge vibrations [Oppenheim+02]

–  road conditions / traffic monitoring
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Motivation - Applications
(cont’d)

• Weather, environment/anti-pollution

– volcano monitoring

– air/water pollutant monitoring
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Motivation - Applications
(cont’d)

•  Computer systems

– ‘Active Disks’ (buffering, prefetching)

– web servers (ditto)

– network traffic monitoring

– ...
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Stream Data: Disk accesses

time

#bytes
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Settings & Applications

• One or more sensors, collecting time-series
data
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Settings & Applications

Each sensor collects data (x1, x2, …, xt, …)
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Settings & Applications

Some sensors ‘report’ to others or 
to the central site
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Settings & Applications

Goal #1:
Finding patterns
in a single time sequence
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Settings & Applications

Goal #2:
Finding patterns
in many time 
sequences
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Problem #1:

Goal: given a signal (e.g.., #packets over
time)

Find: patterns, periodicities, and/or compress

year

count lynx caught per year
(packets per day;
temperature per day)
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Problem#2: Forecast
Given xt, xt-1, … , forecast xt+1
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Problem#2’: Similarity search
E.g.., Find a 3-tick pattern, similar to the last one
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Problem #3:
• Given: A set of correlated time sequences
• Forecast ‘Sent(t)’
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Differences from DSP/Stat

• Semi-infinite streams
– we need on-line, ‘any-time’ algorithms

• Can not afford human intervention
– need automatic methods

• sensors have limited memory /
processing / transmitting power
– need for (lossy) compression
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Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

• To do forecasting, we need
– to find patterns/rules
– to find similar settings in the past

• to find outliers, we need to have forecasts
– (outlier = too far away from our forecast)
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Important topics NOT in this
tutorial:

• Continuous queries
– [Babu+Widom ] [Gehrke+] [Madden+]

• Categorical data streams
– [Hatonen+96]

•  Outlier detection (discontinuities)
– [Breunig+00]

• Related (see D. Shasha’s tutorial)
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Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions: Euclidean;Time-warping
– indexing
– feature extraction

• DSP
• ...
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Importance of distance functions

Subtle, but absolutely necessary:
• A ‘must’ for similarity indexing (->

forecasting)
• A ‘must’ for clustering
Two major families

– Euclidean and Lp norms
– Time warping and variations
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Euclidean and Lp
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Observation #1

• Time sequence -> n-d
vector

...

Day-1

Day-2

Day-n
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Observation #2

Euclidean distance is
closely related to
– cosine similarity
– dot product
– ‘cross-correlation’

function

...

Day-1

Day-2

Day-n
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Time Warping

• allow accelerations - decelerations
– (with or w/o penalty)

• THEN compute the (Euclidean) distance (+
penalty)

• related to the string-editing distance
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Time Warping

‘stutters’ :
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Time warping
Q: how to compute it?
A: dynamic programming
      D( i, j ) = cost to match
prefix of length i of first sequence  x with prefix

of length j of second sequence y

Skip
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Thus, with no penalty for stutter, for sequences
x1, x2, … , xi,;        y1, y2, … , yj
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Time warping
• Complexity: O(M*N) - quadratic on the

length of the strings
• Many variations (penalty for stutters; limit

on the number/percentage of stutters; … )
• popular in voice processing

[Rabiner+Juang]

Skip
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Other Distance functions

• piece-wise linear/flat approx.; compare
pieces [Keogh+01] [Faloutsos+97]

• ‘cepstrum’  (for voice [Rabiner+Juang])
– do DFT; take log of amplitude; do DFT again!

• Allow for small gaps [Agrawal+95]
See tutorial by [Gunopulos Das, SIGMOD01]
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Other Distance functions

• recently: parameter-free, MDL based
[Keogh, KDD’ 04]
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Conclusions

Prevailing distances:
– Euclidean and
– time-warping
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DSP
• ...
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Indexing

Problem:
• given a set of time sequences,
• find the ones similar to a desirable query

sequence
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day

$price
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day

$price
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day

$price
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distance function: by expert
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Idea: ‘GEMINI’

E.g.., ‘find stocks similar to MSFT’
Seq. scanning: too slow
How to accelerate the search?
[Faloutsos96]
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day
1 365

day
1 365

S1

Sn

F(S1)

F(Sn)

‘GEMINI’  - Pictorially

eg, avg

eg,. std
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GEMINI

Solution: Quick-and-dirty’ filter:
• extract n features (numbers, eg., avg., etc.)
• map into a point in n-d feature space
• organize points with off-the-shelf spatial

access method (‘SAM’ )
• discard false alarms
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Examples of GEMINI

• Time sequences: DFT (up to 100 times
faster) [SIGMOD94];

• [Kanellakis+], [Mendelzon+]
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Examples of GEMINI

Even on other-than-sequence data:
• Images (QBIC) [JIIS94]
• tumor-like shapes [VLDB96]
• video [Informedia + S-R-trees]
• automobile part shapes [Kriegel+97]

CIKM 04 (c) C. Faloutsos, 2004 45

CMU SCS

Indexing - SAMs

Q: How do Spatial Access Methods (SAMs)
work?

A: they group nearby points (or regions)
together, on nearby disk pages, and answer
spatial queries quickly (‘range queries’ ,
‘nearest neighbor’  queries etc)

For example:
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R-trees

• [Guttman84] eg., w/ fanout 4: group nearby
rectangles to parent MBRs; each group ->
disk page
A
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J

Skip
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R-trees

• eg., w/ fanout 4:
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R-trees

• eg., w/ fanout 4:
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R-trees - range search?
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R-trees - range search?
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Conclusions

• Fast indexing: through GEMINI
– feature extraction and
– (off the shelf) Spatial Access Methods

[Gaede+98]
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DSP
• ...
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD, etc (data dependent)
• MDS, FastMap
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DFT and cousins

• very good for compressing real signals
• more details on DFT/DCT/DWT: later
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DFT and stocks
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DFT and stocks
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• Dow Jones Industrial
index, 6/18/2001-
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• just 3 DFT
coefficients give very
good approximation
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD etc (data dependent)
• MDS, FastMap
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SVD

• THE optimal method for dimensionality
reduction
– (under the Euclidean metric)
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Singular Value Decomposition
(SVD)

• SVD (~LSI ~ KL ~ PCA ~ spectral
analysis...) LSI: S. Dumais; M. Berry

KL: eg, Duda+Hart

PCA: eg., Jolliffe

Details: [Press+], 

[Faloutsos96]

day1

day2
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SVD

• Extremely useful tool
– (also behind PageRank/google and Kleinberg’ s

algorithm for hubs and authorities)

• But may be slow: O(N * M * M) if N>M
• any approximate, faster method?
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SVD shorcuts
• random projections (Johnson-Lindenstrauss

thm [Papadimitriou+ pods98])
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Random projections

• pick ‘enough’  random directions (will be
~orthogonal, in high-d!!)

•  distances are preserved probabilistically,
within epsilon

• (also, use as a pre-processing step for SVD
[Papadimitriou+ PODS98])
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Feature extraction - w/ fractals

• Main idea: drop those attributes that don’ t
affect the intrinsic (‘fractal’ ) dimensionality
[Traina+, SBBD 2000]

• i.e.., drop attributes that depend on others
(linearly or non-linearly!)

Skip
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Fractals

Fractal dimension
= intrinsic dimension
~ degrees of freedom

Real data: often self-
similar, with NON-
INTEGER intrinsic
dimension (!)

Skip
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Feature extraction - w/ fractals
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD (data dependent)
• MDS, FastMap
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MDS / FastMap

• but, what if we have NO points to start
with?
(eg. Time-warping distance)

• A: Multi-dimensional Scaling (MDS) ;
FastMap
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MDS/FastMap
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MDS

Multi Dimensional 
Scaling
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FastMap

• Multi-dimensional scaling (MDS) can do
that, but in O(N**2)  time

• FastMap [Faloutsos+95] takes O(N) time
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FastMap: Application

VideoTrails [Kobla+97]

scene-cut detection (about 10% errors)
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Outline

• Motivation
• Similarity Search and Indexing

– distance functions
– indexing
– feature extraction

• DFT, DWT, DCT (data independent)
• SVD (data dependent)
• MDS, FastMap
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Conclusions - Practitioner’ s
guide

Similarity search in time sequences
1) establish/choose distance (Euclidean, time-

warping,… )
2) extract features (SVD, DWT, MDS), and use

an SAM (R-tree/variant) or a Metric Tree (M-
tree)

2’ ) for high intrinsic dimensionalities, consider sequential
scan (it might win… )
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Books

• William H. Press, Saul A. Teukolsky, William T.
Vetterling and  Brian P. Flannery: Numerical Recipes in C,
Cambridge University Press, 1992, 2nd Edition. (Great
description, intuition and code for SVD)

• C. Faloutsos: Searching Multimedia Databases by Content,
Kluwer Academic Press, 1996 (introduction to SVD, and
GEMINI)
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Outline

• DFT
– Definition of DFT and properties
– how to read the DFT spectrum

• DWT
– Definition of DWT and properties
– how to read the DWT scalogram
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Introduction - Problem#1

Goal: given a signal (eg., packets over time)
Find: patterns and/or compress

year

count

lynx caught per year
(packets per day;
automobiles per hour)
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What does DFT do?

A: highlights the periodicities
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DFT: definition
• For a sequence x0, x1, …  xn-1

• the (n-point) Discrete Fourier Transform is
• X0, X1, …  Xn-1 :
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DFT: definition

• Good news: Available in all symbolic math
packages, eg., in ‘mathematica’
x = [1,2,1,2];
X = Fourier[x];
Plot[ Abs[X] ];
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DFT: Amplitude spectrum

actual mean mean+freq12
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DFT: examples
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DFT: examples

Low frequency sinusoid
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DFT: examples

• Sinusoid - symmetry property: Xf = X*
n-f
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DFT: examples

• Higher freq. sinusoid
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DFT: examples

examples
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DFT: examples

examples
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Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions
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Outline

• Motivation
• Similarity Search and Indexing
• DSP

– DFT
• Definition of DFT and properties
• how to read the DFT spectrum

– DWT
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DFT: Amplitude spectrum
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DFT: Amplitude spectrum

actual mean mean+freq12
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DFT: Amplitude spectrum
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DFT: Amplitude spectrum

• excellent approximation, with only 2
frequencies!

• so what?

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

Freq.
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DFT: Amplitude spectrum

• excellent approximation, with only 2
frequencies!

• so what?
• A1: (lossy) compression
• A2: pattern discovery 1 12 23 34 45 56 67 78 89 10

0

11
1
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DFT: Amplitude spectrum

• excellent approximation, with only 2
frequencies!

• so what?
• A1: (lossy) compression
• A2: pattern discovery

actual mean mean+freq12
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DFT - Conclusions

• It spots periodicities (with the
‘amplitude spectrum’)

• can be quickly computed (O( n log n)),
thanks to the FFT algorithm.

• standard tool in signal processing
(speech, image etc signals)

• (closely related to DCT and JPEG)
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Outline

• Motivation
• Similarity Search and Indexing
• DSP

– DFT
– DWT

• Definition of DWT and properties
• how to read the DWT scalogram
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Problem #1:

Goal: given a signal (eg., #packets over time)
Find: patterns, periodicities, and/or compress

year

count lynx caught per year
(packets per day;
virus infections per month)
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Wavelets - DWT

• DFT is great - but, how about compressing
a spike?
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Wavelets - DWT

• DFT is great - but, how about compressing
a spike?

• A: Terrible - all DFT coefficients needed!
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Wavelets - DWT

• DFT is great - but, how about compressing
a spike?

• A: Terrible - all DFT coefficients needed!

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value

time

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CIKM 04 (c) C. Faloutsos, 2004 111

CMU SCS

Wavelets - DWT

• Similarly, DFT suffers on short-duration
waves (eg., baritone, silence, soprano)

time

value
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Wavelets - DWT

• Solution#1: Short window Fourier
transform (SWFT)

• But: how short should be the window?

time

freq

time

value
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Wavelets - DWT

• Answer: multiple window sizes! -> DWT

time

freq

Time
domain DFT SWFT DWT
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Haar Wavelets

• subtract sum of left half from right half
• repeat recursively for quarters, eight-ths, ...
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Wavelets - construction

x0  x1  x2  x3  x4  x5  x6  x7

Skip
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Wavelets - construction

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......level 1

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0level 2

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0

etc ...

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
+

-

d1,0 s1,1d1,1 .......

s2,0

Q: map each coefficient 

on the time-freq. plane

t

f

Skip
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Wavelets - construction

d2,0

x0  x1  x2  x3  x4  x5  x6  x7

s1,0
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d1,0 s1,1d1,1 .......

s2,0

Q: map each coefficient 

on the time-freq. plane

t

f

Skip
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Haar wavelets - code
#!/usr/bin/perl5
# expects a file with numbers
# and prints the dwt transform
# The number of time-ticks should be a power of 2
# USAGE
#    haar.pl <fname>

my @vals=();
my @smooth; # the smooth component of the signal
my @diff;   # the high-freq. component

# collect the values into the array @val
while(<>){

@vals = ( @vals ,  split );
}

my $len = scalar(@vals);
my $half = int($len/2);
while($half >= 1 ){
   for(my $i=0; $i< $half; $i++){

   $diff [$i] = ($vals[2*$i] - $vals[2*$i + 1] )/ sqrt(2);
   print "\t", $diff[$i];
   $smooth [$i] = ($vals[2*$i] + $vals[2*$i + 1] )/ sqrt(2);

   }
   print "\n";
   @vals = @smooth;
   $half = int($half/2);
}
print "\t", $vals[0], "\n" ;      # the final, smooth component
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Wavelets - construction

Observation1:
‘+’  can be some weighted addition
‘-’  is the corresponding weighted difference

(‘Quadrature mirror filters’ )

Observation2: unlike DFT/DCT,
there are *many* wavelet bases: Haar, Daubechies-

4, Daubechies-6, Coifman, Morlet, Gabor, ...
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Wavelets - how do they look
like?

• E.g., Daubechies-4

CIKM 04 (c) C. Faloutsos, 2004 124

CMU SCS

Wavelets - how do they look
like?

• E.g., Daubechies-4

?

?
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Wavelets - how do they look
like?

• E.g., Daubechies-4
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Outline

• Motivation
• Similarity Search and Indexing
• DSP

– DFT
– DWT

• Definition of DWT and properties
• how to read the DWT scalogram
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Wavelets - Drill#1:

t

f

• Q: baritone/silence/soprano - DWT?

time

value
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Wavelets - Drill#1:

t

f

• Q: baritone/soprano - DWT?

time

value
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Wavelets - Drill#2:

• Q: spike - DWT?

t

f

1 2 3 4 5 6 7 8
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Wavelets - Drill#2:

t

f

• Q: spike - DWT?

1 2 3 4 5 6 7 8

0.00    0.00    0.71    0.00

0.00    0.50
-0.35
0.35
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f

CIKM 04 (c) C. Faloutsos, 2004 134

CMU SCS

Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: weekly + daily periodicity, + spike -
DWT?

t

f
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Wavelets - Drill#3:

• Q: DFT?

t

f

t

f

DWT DFT
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Advantages of Wavelets

• Better compression (better RMSE with same
number of coefficients - used in JPEG-2000)

• fast to compute (usually: O(n)!)
• very good for ‘spikes’
• mammalian eye and ear: Gabor wavelets
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Overall Conclusions

• DFT, DCT spot periodicities
• DWT : multi-resolution - matches

processing of mammalian ear/eye better
• All three: powerful tools for compression,

pattern detection in real signals
• All three: included in math packages

– (matlab, ‘R’ , mathematica, …  - often in
spreadsheets!)
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Overall Conclusions

• DWT : very suitable for self-similar
traffic

• DWT: used for summarization of streams
[Gilbert+01], db histograms etc
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Resources - software and urls

• http://www.dsptutor.freeuk.com/jsanalyser/
FFTSpectrumAnalyser.html : Nice java
applets for FFT

• http://www.relisoft.com/freeware/freq.html
voice frequency analyzer (needs
microphone)
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Resources: software and urls

• xwpl: open source wavelet package from
Yale, with excellent GUI

• http://monet.me.ic.ac.uk/people/gavin/java
/waveletDemos.html : wavelets and
scalograms
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Books

• William H. Press, Saul A. Teukolsky, William T.
Vetterling and  Brian P. Flannery: Numerical Recipes in C,
Cambridge University Press, 1992, 2nd Edition. (Great
description, intuition and code for DFT, DWT)

• C. Faloutsos: Searching Multimedia Databases by Content,
Kluwer Academic Press, 1996 (introduction to DFT,
DWT)
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Additional Reading

• [Gilbert+01] Anna C. Gilbert, Yannis Kotidis and S.
Muthukrishnan and Martin Strauss, Surfing Wavelets on
Streams: One-Pass Summaries for Approximate Aggregate
Queries, VLDB 2001
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Sensor Data Mining: Similarity
Search and Pattern Analysis

Christos Faloutsos
CMU
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Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions
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Forecasting

"Prediction is very difficult, especially about
the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/t
houghts.html
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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Problem#2: Forecast
• Example: give xt-1, xt-2, … , forecast xt
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Forecasting: Preprocessing
MANUALLY:
remove trends                    spot periodicities
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Problem#2: Forecast
• Solution: try to express

xt

as a linear function of the past: xt-2, xt-2, … ,
(up to a window of w)

Formally:
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Time Tick
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(Problem: Back-cast; interpolate)
• Solution - interpolate: try to express

xt

as a linear function of the past AND the future:
 xt+1, xt+2, …  xt+wfuture; xt-1, …  xt-wpast

(up to windows of wpast , wfuture)
• EXACTLY the same algo’ s
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Linear Regression: idea

40
45
50

55
60

65
70

75
80
85

15 25 35 45

Body weight

patient weight height

1 27 43

2 43 54

3 54 72

…
…

…

N 25 ??

•  express what we don’ t know (= ‘dependent variable’ )
•  as a linear function of what we know (= ‘indep. variable(s)’ )

Body height
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Linear Auto Regression:
Time Packets

Sent (t-1)
Packets
Sent(t)

1 - 43

2 43 54

3 54 72

…
…

…

N 25 ??
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Linear Auto Regression:

40
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2 43 54

3 54 72

…
…

…

N 25 ??

•  lag w=1
•  Dependent variable = # of packets sent (S [t])
•  Independent variable = # of packets sent (S[t-1])

‘lag-plot’
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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More details:

• Q1: Can it work with window w>1?
• A1: YES!

xt-2

xt

xt-1
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More details:

• Q1: Can it work with window w>1?
• A1: YES! (we’ ll fit a hyper-plane, then!)

xt-2

xt

xt-1
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More details:

• Q1: Can it work with window w>1?
• A1: YES! (we’ ll fit a hyper-plane, then!)

xt-2

xt-1

xt
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More details:

• Q1: Can it work with window w>1?
• A1: YES! The problem becomes:

X[N � w] u a[w � 1] = y[N � 1]

• OVER-CONSTRAINED
– a is the vector of the regression coefficients

– X has the N values of the w indep. variables
– y has the N values of the dependent variable

Skip
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More details:
• X[N � w] u a[w � 1] = y[N � 1]
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More details:
• X[N � w] u a[w � 1] = y[N � 1]
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More details

• Q2: How to estimate a1, a2, …  aw  = a?
• A2: with Least Squares fit

• (Moore-Penrose pseudo-inverse)
• a is the vector that minimizes the RMSE

from y

 a = ( XT u X )-1 u (XT u y)

Skip
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Even more details

• Q3: Can we estimate a incrementally?
• A3: Yes, with the brilliant, classic method

of ‘Recursive Least Squares’  (RLS) (see,
e.g., [Yi+00], for details) - pictorially:

Skip
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Even more details

• Given:

Independent Variable
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e
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Even more details

Independent Variable

D
ep
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nt
 V

ar
ia

bl
e

.

new point

Skip
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Even more details

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

RLS: quickly compute new best fit

new point

Skip
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Even more details

• Straightforward Least
Squares
– Needs huge matrix

(growing in size)
O(N×w)

– Costly matrix
operation
O(N×w2)

• Recursive LS
– Need much smaller,

fixed size matrix
O(w×w)

– Fast, incremental
computation
O(1×w2)

N = 106,     w = 1-100

Skip
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Even more details

• Q4: can we ‘forget’  the older samples?
• A4: Yes - RLS can easily handle that

[Yi+00]:

Skip
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Adaptability - ‘forgetting’

Independent Variable
eg., #packets sent

D
ep

en
de

nt
 V

ar
ia

bl
e

eg
., 

#b
yt

es
 s

en
t

Skip

CIKM 04 (c) C. Faloutsos, 2004 172

CMU SCS

Adaptability - ‘forgetting’

Independent Variable
eg. #packets sent
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Trend change
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Adaptability - ‘forgetting’

Independent Variable

D
ep
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 V
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bl
e

Trend change

(R)LS
with no forgetting

(R)LS
with forgetting

•  RLS: can *trivially* handle ‘forgetting’

Skip
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How to choose ‘w’ ?

• goal: capture arbitrary periodicities
• with NO human intervention
• on a semi-infinite stream
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Answer:

• ‘AWSOM’  (Arbitrary Window Stream
fOrecasting Method) [Papadimitriou+,
vldb2003]

• idea: do AR on each wavelet level
• in detail:
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AWSOM
xt

t
t

W1,1

t

W1,2

t

W1,3

t

W1,4

t

W2,1

t

W2,2

t

W3,1

t

V4,1

time

frequency=
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AWSOM
xt

t
t

W1,1

t

W1,2

t

W1,3

t

W1,4

t

W2,1

t

W2,2

t

W3,1

t

V4,1

time

frequency
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AWSOM - idea

Wl,tWl,t-1Wl,t-2 Wl,t �        � l,1Wl,t-1 �  � l,2Wl,t-2 �  … 

Wl’,t’-1Wl’,t’-2
Wl’,t’

Wl’,t’ �        � l’,1Wl’,t’-1 �  � l’,2Wl’,t’-2 �  … 
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More details…

• Update of wavelet coefficients
• Update of linear models
• Feature selection

– Not all correlations are significant
– Throw away the insignificant ones (“ noise” )

(incremental)

(incremental; RLS)

(single-pass)
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Results - Synthetic data
• Triangle pulse
• Mix (sine +

square)
• AR captures

wrong trend (or
none)

• Seasonal AR
estimation fails

AWSOM AR Seasonal AR
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Results - Real data

• Automobile traffic
– Daily periodicity
– Bursty “ noise”  at smaller scales

• AR fails to capture any trend
• Seasonal AR estimation fails
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Results - real data

• Sunspot intensity
– Slightly time-varying “ period”

• AR captures wrong trend
• Seasonal ARIMA

– wrong downward trend, despite help by human!
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Complexity

• Model update
Space:  O�lgN + mk2� | O�lgN�
Time:   O�k2� | O�1�

• Where
– N: number of points (so far)
– k: number of regression coefficients; fixed
– m:number of linear models; O � lgN�

Skip
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Outline

• Motivation
• ...
• Linear Forecasting

– Auto-regression: Least Squares; RLS
– Co-evolving time sequences
– Examples
– Conclusions
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Co-Evolving Time Sequences
• Given: A set of correlated time sequences
• Forecast ‘Repeated(t)’

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11
Time Tick

N
um

be
r 

of
 p

ac
ke

ts

sent

lost

repeated??
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Solution:

Q: what should we do?
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Solution:

Least Squares, with
• Dep. Variable: Repeated(t)
• Indep. Variables: Sent(t-1) …  Sent(t-w);

Lost(t-1) … Lost(t-w); Repeated(t-1), ...
• (named: ‘MUSCLES’  [Yi+00])
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B.II - Time Series Analysis -
Outline

• Auto-regression
• Least Squares; recursive least squares
• Co-evolving time sequences
• Examples
• Conclusions

Skip
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Examples - Experiments
• Datasets

– Modem pool traffic (14 modems, 1500 time-
ticks; #packets per time unit)

– AT&T WorldNet internet usage (several data
streams; 980 time-ticks)

• Measures of success
– Accuracy : Root Mean Square Error (RMSE)

Skip
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Accuracy - “ Modem”

MUSCLES outperforms AR & “ yesterday”

0

0.5

1

1.5

2

2.5

3

3.5

4

RMSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Modems

AR
yesterday
MUSCLES

Skip
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Accuracy - “ Internet”

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RMSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Streams

AR

yesterday

MUSCLES

MUSCLES consistently outperforms AR & “ yesterday”

Skip
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B.II - Time Series Analysis -
Outline

• Auto-regression
• Least Squares; recursive least squares
• Co-evolving time sequences
• Examples
• Conclusions

Skip
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Conclusions - Practitioner’ s
guide

• AR(IMA) methodology: prevailing method
for linear forecasting

• Brilliant method of Recursive Least Squares
for fast, incremental estimation.

• See [Box-Jenkins]
• very recently: AWSOM (no human

intervention)
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Resources: software and urls

• MUSCLES: Prof. Byoung-Kee Yi:
http://www.postech.ac.kr/~bkyi/

or christos@cs.cmu.edu

• free-ware: ‘R’  for stat. analysis
(clone of Splus)
 http://cran.r-project.org/
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Books

• George E.P. Box and Gwilym M. Jenkins and Gregory C.
Reinsel, Time Series Analysis: Forecasting and Control,
Prentice Hall, 1994 (the classic book on ARIMA, 3rd ed.)

• Brockwell, P. J. and R. A. Davis (1987). Time Series:
Theory and Methods. New York, Springer Verlag.
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Additional Reading

• [Papadimitriou+ vldb2003] Spiros Papadimitriou, Anthony
Brockwell and Christos Faloutsos Adaptive, Hands-Off
Stream Mining VLDB 2003, Berlin, Germany, Sept. 2003

• [Yi+00] Byoung-Kee Yi et al.: Online Data Mining for
Co-Evolving Time Sequences, ICDE 2000. (Describes
MUSCLES and Recursive Least Squares)
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Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions
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Outline

• Motivation
• ...
• Linear Forecasting
• Bursty traffic - fractals and multifractals

– Problem
– Main idea (80/20, Hurst exponent)
– Results
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Recall: Problem #1:

Goal: given a signal (eg., #bytes over time)
Find: patterns, periodicities, and/or compress

time

#bytes Bytes per 30’
(packets per day;
earthquakes per year)
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Problem #1

• model bursty traffic
• generate realistic traces
• (Poisson does not work)

time

# bytes

Poisson
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Motivation

• predict queue length distributions (e.g., to
give probabilistic guarantees)

• “ learn”  traffic, for buffering, prefetching,
‘active disks’ , web servers
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Q: any ‘pattern’ ?

time

# bytes
• Not Poisson
• spike; silence; more

spikes; more silence…
• any rules?
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solution: self-similarity

# bytes

time time

# bytes
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But:

• Q1: How to generate realistic traces;
extrapolate; give guarantees?

• Q2: How to estimate the model parameters?
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Outline

• Motivation
• ...
• Linear Forecasting
• Bursty traffic - fractals and multifractals

– Problem
– Main idea (80/20, Hurst exponent)
– Results
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Approach

• Q1: How to generate a sequence, that is
– bursty
– self-similar
– and has similar queue length distributions
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Approach

• A: ‘binomial multifractal’  [Wang+02]
• ~ 80-20 ‘law’ :

– 80% of bytes/queries etc on first half
– repeat recursively

• b: bias factor (eg., 80%)
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Binary multifractals
20 80
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Binary multifractals
20 80
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Parameter estimation

• Q2: How to estimate the bias factor b?
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Parameter estimation

• Q2: How to estimate the bias factor b?
• A: MANY ways [Crovella+96]

– Hurst exponent
– variance plot
– even DFT amplitude spectrum! (‘periodogram’ )
– More robust: ‘entropy plot’  [Wang+02]
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Entropy plot

• Rationale:
–  burstiness: inverse of uniformity
– entropy measures uniformity of a distribution
– find entropy at several granularities, to see

whether/how our distribution is close to
uniform.
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Entropy plot

• Entropy E(n) after n
levels of splits

• n=1: E(1)= - p1 log2(p1)-
p2 log2(p2)

p1 p2
% of bytes

 here
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Entropy plot

• Entropy E(n) after n
levels of splits

• n=1: E(1)= - p1 log(p1)-
p2 log(p2)

• n=2: E(2) = - ���  p2,i *
log2 (p2,i)

p2,1 p2,2 p2,3 p2,4
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Real traffic

• Has linear entropy plot
(-> self-similar)

# of levels (n)

Entropy
E(n)

0.73
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Observation - intuition:

intuition: slope =
  intrinsic dimensionality =
  info-bits per coordinate-bit

– unif. Dataset: slope =1
– multi-point: slope = 0

# of levels (n)

Entropy
E(n)

Skip
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Entropy plot - Intuition

• Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’ )

• = info bit per coordinate bit - eg

Dim = 1
Pick a point; 
reveal its coordinate bit-by-bit -
how much info is each bit worth to me?

Skip
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Entropy plot

• Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’ )

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

‘info’  value = E(1): 1 bit

Skip
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Entropy plot

• Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’ )

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

Is next MSB =0?

Skip
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Entropy plot

• Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’ )

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

Is next MSB =0?

Info value =1 bit
= E(2) - E(1) =
slope!

Skip
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Entropy plot

• Repeat, for all points at same position:

Dim=0

Skip
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Entropy plot

• Repeat, for all points at same position:
• we need 0 bits of info, to determine position
• -> slope = 0 = intrinsic dimensionality

Dim=0

Skip
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Entropy plot

• Real (and 80-20) datasets can be in-
between: bursts, gaps, smaller bursts,
smaller gaps, at every scale

Dim = 1

Dim=0
0<Dim<1

Skip
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(Fractals, again)

• What set of points could have behavior
between point and line?
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Cantor dust

• Eliminate the middle third
• Recursively!
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Cantor dust
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Cantor dust
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Cantor dust
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Cantor dust
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Dimensionality?
(no length; infinite # points!)
Answer: log2 / log3 = 0.6

Cantor dust
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Some more entropy plots:

• Poisson vs real

Poisson: slope = ~1 -> uniformly distributed

1 0.73
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B-model

• b-model traffic gives perfectly
linear plot

• Lemma: its slope is
slope = -b log2b - (1-b) log2 (1-b)

• Fitting: do entropy plot; get
slope; solve for b

E(n)

n
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Outline

• Motivation
• ...
• Linear Forecasting
• Bursty traffic - fractals and multifractals

– Problem
– Main idea (80/20, Hurst exponent)
– Experiments - Results
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Experimental setup

• Disk traces (from HP [Wilkes 93])
• web traces from LBL

http://repository.cs.vt.edu/

lbl-conn-7.tar.Z
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Model validation

• Linear entropy plots

Bias factors b: 0.6-0.8
smallest b / smoothest: nntp traffic
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Web traffic - results

• LBL, NCDF of queue lengths (log-log scales)

(queue length l)

Prob( >l)

How to give guarantees?
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Web traffic - results

• LBL, NCDF of queue lengths (log-log scales)

(queue length l)

Prob( >l)
20% of the requests
will see
queue lengths <100
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Conclusions

• Multifractals (80/20, ‘b-model’ ,
Multiplicative Wavelet Model (MWM)) for
analysis and synthesis of  bursty traffic

• can give (probabilistic) guarantees
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Books

• Fractals: Manfred Schroeder: Fractals, Chaos, Power
Laws: Minutes from an Infinite Paradise W.H. Freeman
and Company, 1991 (Probably the BEST book on
fractals!)
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Further reading:

• Crovella, M. and A. Bestavros (1996). Self-Similarity in
World Wide Web Traffic, Evidence and Possible Causes.
Sigmetrics.

• [ieeeTN94] W. E. Leland, M.S. Taqqu,  W. Willinger,
D.V. Wilson,  On the Self-Similar Nature of Ethernet
Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15,
Feb. 1994.
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Further reading

• [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R.
G. Baraniuk, A Multifractal Wavelet Model with
Application to Network Traffic, IEEE Special Issue on
Information Theory, 45. (April 1999), 992-1018.

• [Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang
Chang, Spiros Papadimitriou and Christos Faloutsos, Data
Mining Meets Performance Evaluation: Fast Algorithms
for Modeling Bursty Traffic, ICDE 2002, San Jose, CA,
2/26/2002 - 3/1/2002.
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Outline

• Motivation
• Similarity Search and Indexing
• DSP
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions
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Detailed Outline

• Non-linear forecasting
– Problem
– Idea
– How-to
– Experiments
– Conclusions
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Recall: Problem #1

Given a time series {xt}, predict its future
course, that is, xt+1, xt+2, ...

Time

Value
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How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: ‘Delayed Coordinate
Embedding’  =  Lag Plots [Sauer92]
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General Intuition (Lag Plot)

xt-1

xxtt

4-NN
New Point

Interpolate
these…

To get the final
prediction

Lag = 1,
k = 4 NN
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Questions:

• Q1: How to choose lag L?
• Q2: How to choose k (the # of  NN)?
• Q3: How to interpolate?
• Q4: why should this work at all?
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Q1: Choosing lag L

• Manually (16, in award winning system by
[Sauer94])
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Q2: Choosing number of
neighbors k

• Manually (typically ~ 1-10)
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Q3: How to interpolate?

How do we interpolate between the
    k nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop
with distance - how?)
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Q3: How to interpolate?

A3.3: Using SVD - seems to perform best
([Sauer94] - first place in the Santa Fe
forecasting competition)

Xt-1

xt

CIKM 04 (c) C. Faloutsos, 2004 254

CMU SCS

Q4: Any theory behind it?

A4: YES!
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Theoretical foundation

• Based on the “ Takens’  Theorem”
[Takens81]

• which says that long enough delay vectors
can do prediction, even if there are
unobserved variables in the dynamical
system (= diff. equations)
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Theoretical foundation

Example: Lotka-Volterra equations

dH/dt = r H – a H*P
dP/dt = b H*P – m P

H is count of prey (e.g., hare)
P is count of predators (e.g., lynx)

Suppose only P(t) is observed (t=1, 2, … ).
H

P

Skip
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Theoretical foundation

• But the delay vector space is a faithful
reconstruction of the internal system state

• So prediction in delay vector space is as
good as prediction in state space

Skip

H

P

P(t-1)

P(t)
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Detailed Outline

• Non-linear forecasting
– Problem
– Idea
– How-to
– Experiments
– Conclusions
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Datasets

Logistic Parabola:
   xt = axt-1(1-xt-1) + noise
   Models population of flies [R. May/1976]
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Datasets

Logistic Parabola:
   xt = axt-1(1-xt-1) + noise
   Models population of flies [R. May/1976]
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Lag-plot
ARIMA: fails
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Logistic Parabola

Timesteps

Value

Our Prediction from
here
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Logistic Parabola

Timesteps

Value

Comparison of prediction
to correct values
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Datasets

LORENZ: Models convection
currents in the air
dx / dt = a (y - x)
dy / dt = x (b - z) - y
dz / dt = xy - c z

Value Skip

CIKM 04 (c) C. Faloutsos, 2004 264

CMU SCS

LORENZ

Timesteps

Value

Comparison of prediction
to correct values

Skip
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Datasets

Time

Value

• LASER: fluctuations in
a Laser over time (used
in Santa Fe
competition)

Skip
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Laser

Timesteps

Value

Comparison of prediction
to correct values

Skip
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Conclusions

• Lag plots for non-linear forecasting
(Takens’  theorem)

• suitable for ‘chaotic’  signals
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Overall conclusions

• Similarity search: Euclidean/time-warping;
feature extraction and SAMs
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Overall conclusions

• Similarity search: Euclidean/time-warping;
feature extraction and SAMs

• Signal processing: DWT is a powerful tool

CIKM 04 (c) C. Faloutsos, 2004 272

CMU SCS

Overall conclusions

• Similarity search: Euclidean/time-warping;
feature extraction and SAMs

• Signal processing: DWT is a powerful tool
• Linear Forecasting: AR (Box-Jenkins)

methodology
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Overall conclusions

• Similarity search: Euclidean/time-warping;
feature extraction and SAMs

• Signal processing: DWT is a powerful tool
• Linear Forecasting: AR (Box-Jenkins)

methodology; AWSOM
• Bursty traffic: multifractals (80-20 ‘law’ )
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Overall conclusions

• Similarity search: Euclidean/time-warping;
feature extraction and SAMs

• Signal processing: DWT is a powerful tool
• Linear Forecasting: AR (Box-Jenkins)

methodology
• Bursty traffic: multifractals (80-20 ‘law’ )
• Non-linear forecasting: lag-plots (Takens)
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‘Take home’  messages

• Hard, but desirable query for sensor data:
‘find patterns / outliers’

• We need fast, automated such tools
– Many great tools exist (DWT, ARIMA, … )
– some are readily usable; others need to be made

scalable / single pass/ automatic
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