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About the tutorial

• Introduce matrix and tensor tools through 
real mining applications

• Goal: find patterns, rules, clusters, 
outliers, …
– in matrices and
– in tensors

SDM'07 Faloutsos, Kolda, Sun 1-3

CMU SCS

Motivation 1: Why “matrix”?

• Why matrices are important?
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Examples of Matrices: 
Graph - social network

John Peter Mary Nick ...
John
Peter
Mary
Nick

...

0 11 22 55 ...
5 0 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
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Examples of Matrices:
cloud of n-d points

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

chol# blood# age .. ...
John
Peter
Mary
Nick

...
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Examples of Matrices:
Market basket

• market basket as in Association Rules

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

milk bread choc. wine ...
John
Peter
Mary
Nick

...
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Examples of Matrices:
Documents and terms

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

Paper#1
Paper#2
Paper#3
Paper#4

data mining classif. tree ...

...
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Examples of Matrices:
Authors and terms

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...
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Examples of Matrices:
sensor-ids and time-ticks

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

t1
t2
t3
t4

temp1 temp2 humid. pressure ...

...
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Motivation 2: Why tensor?

• Q: what is a tensor?
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Motivation 2: Why tensor?

• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

SDM’07
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Motivation 2: Why tensor?

• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

SDM’06

SDM’05

SDM’07
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Tensors are useful for 3 or more 
modes 

Terminology: ‘mode’ (or ‘aspect’):

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...

Mode (== aspect) #1

Mode#2

Mode#3
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Motivating Applications 
• Why matrices are important?
• Why tensors are useful? 

– P1: environmental sensors
– P2: data center monitoring (‘autonomic’)
– P3: social networks
– P4: network forensics
– P5: web mining
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P1: Environmental sensor monitoring 
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Data in three aspects
(time, location, type)
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P2: Clusters/data center monitoring

• Monitor correlations of multiple measurements
• Automatically flag anomalous behavior
• Intemon: intelligent monitoring system 

– Prof. Greg Ganger and PDL 
– >100 machines in a data center
–warsteiner.db.cs.cmu.edu/demo/intemon.jsp
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P3: Social network analysis
• Traditionally, people focus on static networks and 

find community structures
• We plan to monitor the change of the community 

structure over time

DB

A
ut

ho
rs

Keywords
DM

DB

1990

2004
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P4: Network forensics
• Directional network flows
• A large ISP with 100 POPs, each POP 10Gbps link 

capacity [Hotnets2004]
– 450 GB/hour with compression

• Task: Identify abnormal traffic pattern and find out the 
cause
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Collaboration with Prof. Hui Zhang and Dr. Yinglian Xie
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P5: Web graph mining

• How to order the importance of web pages?
– Kleinberg’s algorithm HITS
– PageRank
– Tensor extension on HITS (TOPHITS)

• context-sensitive hypergraph analysis 
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Static Data model 
• Tensor

– Formally, 
– Generalization of matrices
– Represented as multi-array, (~ data cube).

Example

Correspondence

Order

3D arrayMatrixVector

3rd2nd1st

Sensors

A
ut

ho
rs

Keywords

Sources

D
es

tin
at

io
ns

Po
rts
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Dynamic Data model
• Tensor Streams

– A sequence of Mth order tensor

where

t is increasing over time

Example

Correspondence

Order

3D arraysTime evolving graphsMultiple streams

3rd2nd1st

Sources

D
es

tin
at

io
ns

Po
rtstim

e
Sensors

…

time

…au
th

or

keyword

…
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Roadmap

• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering
• Nonnegative Matrix 

factorization
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General goals

• Patterns
• Anomaly detection
• Compression
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Examples of Matrices
• Example/Intuition: Documents and terms
• Find patterns, groups, concepts

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

Paper#1
Paper#2
Paper#3
Paper#4

data mining classif. tree ...

...
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Singular Value Decomposition (SVD)
X = UΣVT

u1 u2 ukx(1) x(2) x(M) = .

v1

v2

vk

.

σ1

σ2

σk

X U
Σ VT

right singular vectors 

input data left singular 
vectors

singular values
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SVD as spectral decomposition

– Best rank-k approximation in L2 and Frobenius
– SVD only works for static matrices (a single 2nd

order tensor)

Am

n

Σ
m

n

U

VT

≈ +

σ1u1°v1 σ2u2°v2

See also PARAFAC
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SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x



2

SDM'07 Faloutsos, Kolda, Sun 2-7

CMU SCS

SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x

CS-concept
MD-concept
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SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x

CS-concept
MD-concept

doc-to-concept 
similarity matrix

SDM'07 Faloutsos, Kolda, Sun 2-9

CMU SCS

SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x

‘strength’ of CS-concept
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SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x

term-to-concept
similarity matrix

CS-concept
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SVD - Example

• A = U Σ VT - example:

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

data
inf.

retrieval
brain lung

0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27

=
CS

MD

9.64 0
0 5.29x

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

x

term-to-concept
similarity matrix

CS-concept
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SVD properties

• V are the eigenvectors of the covariance 
matrix XTX, since

• U are the eigenvectors of the Gram (inner-
product) matrix XXT, since 

Further reading:
1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.
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SVD - Interpretation

‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix, what 

is AT A?
A: term-to-term ([m x m]) similarity matrix
Q: A AT ?
A: document-to-document ([n x n]) similarity 

matrix

SDM'07 Faloutsos, Kolda, Sun 2-14
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PCs

Principal Component Analysis (PCA)
• SVD

– PCA is an important application of SVD
– Note that U and V are dense and may have negative entries

Am

n

Σm

n
RR

R

U
VT k

k k

Loading
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PCA interpretation
• best axis to project on: (‘best’ = min sum of 

squares of projection errors)

Term1 (‘data’)

Term2 (‘lung’)
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PCA - interpretation 

• minimum RMS error

PCA projects points
Onto the “best” axis

v1

first singular vector

Term1 (‘data’)

Term2 (‘lung’)
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering
• Nonnegative Matrix 

factorization
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Kleinberg’s algorithm HITS
• Problem dfn: given the web and a query
• find the most ‘authoritative’ web pages for 

this query

Step 0: find all pages containing the query terms
Step 1: expand by one move forward and backward

Further reading:
1. J. Kleinberg. Authoritative sources in a hyperlinked environment. SODA 1998
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Kleinberg’s algorithm HITS
• Step 1: expand by one move forward and 

backward
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Kleinberg’s algorithm HITS
• on the resulting graph, give high score (= 

‘authorities’) to nodes that many important 
nodes point to

• give high importance score (‘hubs’) to 
nodes that point to good ‘authorities’

hubs authorities

SDM'07 Faloutsos, Kolda, Sun 2-21
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Kleinberg’s algorithm HITS
observations
• recursive definition!
• each node (say, ‘i’-th node) has both an 

authoritativeness score ai and a hubness
score hi
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Kleinberg’s algorithm: HITS
Let A be the adjacency matrix: 

the (i,j) entry is 1 if the edge from i to j exists
Let h and a be  [n x 1] vectors with the 

‘hubness’ and ‘authoritativiness’ scores.
Then:
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CMU SCS

Kleinberg’s algorithm: HITS
Then:

ai = hk + hl + hm

that is
ai = Sum (hj)     over all j that 

(j,i) edge exists
or
a = AT h

k
l

m

i
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Kleinberg’s algorithm: HITS
symmetrically, for the ‘hubness’:

hi = an + ap + aq

that is
hi = Sum (qj)     over all j that 

(i,j) edge exists
or
h = A a

p

n

q

i



5

SDM'07 Faloutsos, Kolda, Sun 2-25

CMU SCS

Kleinberg’s algorithm: HITS
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

That is:
a = ATA a

SDM'07 Faloutsos, Kolda, Sun 2-26
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Kleinberg’s algorithm: HITS
a is a right singular vector of the adjacency 

matrix A (by dfn!), a.k.a the eigenvector of 
ATA

Starting from random a’ and iterating, we’ll 
eventually converge

Q: to which of all the eigenvectors? why?
A: to the one of the strongest eigenvalue, 

(AT A ) k  v’ ~ (constant) v1

SDM'07 Faloutsos, Kolda, Sun 2-27
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Kleinberg’s algorithm - discussion
• ‘authority’ score can be used to find ‘similar 

pages’ (how?)
• closely related to ‘citation analysis’, social 

networks / ‘small world’ phenomena

See also TOPHITS SDM'07 Faloutsos, Kolda, Sun 2-28
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering
• Nonnegative Matrix 

factorization
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Motivating problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if it is connected 
with important nodes
(recursive, but OK!)

SDM'07 Faloutsos, Kolda, Sun 2-30
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Motivating problem – PageRank
solution

Given a directed graph, find its most 
interesting/central node

Proposed solution: Random walk; spot most 
‘popular’ node (-> steady state prob. (ssp))

A node has high ssp,
if it is connected 
with high ssp nodes
(recursive, but OK!)
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(Simplified) PageRank algorithm

• Let A be the transition matrix (= adjacency 
matrix); let AT become column-normalized - then

1 2 3

4
5

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

To
From AT

1

1 1

1/2 1/2

1/2

1/2
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(Simplified) PageRank algorithm
• AT p = p

1 2 3

4
5

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

AT p    =      p

1

1 1

1/2 1/2

1/2

1/2
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(Simplified) PageRank algorithm
• AT p = 1 * p
• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized)

• Why does it exist such a p? 
– p exists if A is nxn, nonnegative, irreducible 

[Perron–Frobenius theorem]

SDM'07 Faloutsos, Kolda, Sun 2-34
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible

SDM'07 Faloutsos, Kolda, Sun 2-35
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c A p + (1-c)/n 1 =>
p = (1-c)/n [I - c A] -1 1

SDM'07 Faloutsos, Kolda, Sun 2-36
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering
• Nonnegative Matrix 

factorization
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Motivation of CUR or CMD

• SVD, PCA all transform data into some 
abstract space (specified by a set basis)
– Interpretability problem
– Loss of sparsity

SDM'07 Faloutsos, Kolda, Sun 2-38
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Interpretability problem

• Each column of projection matrix Ui is a linear 
combination of all dimensions along certain 
mode Ui(:,1) = [0.5; -0.5; 0.5; 0.5]

• All the data are projected onto the span of Ui

• It is hard to interpret the projections

SDM'07 Faloutsos, Kolda, Sun 2-39
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PCA - interpretation 

• minimum RMS error

PCA projects points
Onto the “best” axis

v1

first singular vector

Term1 (‘data’)

Term2 (‘lung’)
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The sparsity property

SVD: A = U Σ VT

Big but sparse Big and dense

CUR: A = C U R
Big but sparse Big but sparse

dense but small

sparse and small

SDM'07 Faloutsos, Kolda, Sun 2-41
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The sparsity property – pictorially:

=
SVD/PCA:
Destroys sparsity

U   Σ VT

=

C   U   R

CUR: maintains sparsity
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The sparsity property (cont.)

• CMD uses much smaller space to achieve the same 
accuracy

• CUR limitation: duplicate columns and rows
• SVD limitation: orthogonal projection densifies the 

data
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CUR
CMD

Network DBLP

Reference:
Sun et al. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM’07
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CUR

• Example-based projection: use actual rows and columns 
to specify the subspace

• Given a matrix A∈Rm×n, find three matrices C∈ Rm×c, 
U∈ Rc×r, R∈ Rr× n , such that ||A-CUR|| is small

C

    RX
m

n

r

c

 

Am

n

U is the pseudo-inverse of X
Orthogonal 
projection

Example-based
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CUR (cont.)

• Key question:
– How to select/sample the columns and rows?

• Uniform sampling
• Biased sampling

– CUR w/ absolute error bound
– CUR w/ relative error bound

Reference:
1. Tutorial: Randomized Algorithms for Matrices and Massive Datasets, SDM’06
2. Drineas et al. Subspace Sampling and Relative-error Matrix Approximation: Column-

Row-Based Methods, ESA2006
3. Drineas et al., Fast Monte Carlo Algorithms for Matrices III: Computing a 

Compressed Approximate Matrix Decomposition, SIAM Journal on Computing, 2006.
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering etc
• Nonnegative Matrix 

factorization
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Co-clustering
• Let X and Y be discrete random variables 

– X  and Y  take values in {1, 2, …, m} and {1, 2, …, n}
– p(X, Y)  denotes the joint probability distribution—if 

not known, it is often estimated based on co-occurrence
data

– Application areas: text mining, market-basket analysis, 
analysis of browsing behavior, etc. 

• Key Obstacles in Clustering Contingency Tables 
– High Dimensionality, Sparsity, Noise
– Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03
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Co-clustering

• Given data matrix and the number of row 
and column groups k and l

• Simultaneously
– Cluster rows of p(X, Y)  into k disjoint groups 
– Cluster columns of p(X, Y)  into l disjoint groups

• Key goal is to exploit the “duality” between 
row and column clustering to overcome 
sparsity and noise

SDM'07 Faloutsos, Kolda, Sun 2-48
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Information Theory Concepts
• Entropy of a random variable X with probability 

distribution p:

• The Kullback-Leibler (KL) Divergence or “Relative 
Entropy” between two probability distributions p and q:

• Mutual Information between random variables X and Y: 

∑=
x

xqxpxpqpKL ))()(log()(),(

)(log)()( xpxppH
x
∑−=

∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x y ypxp
yxpyxpYXI

)()(
),(log),(),(

details
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Information-Theoretic Co-Clustering

• View (scaled) co-occurrence matrix as a joint probability distribution 
between row & column random variables

• We seek a hard-clustering of both dimensions such that loss in 
“Mutual Information”

is minimized given a fixed no. of row & col. clusters

∑ −
−

=

yx
yxoccurenceco

yxoccurencecoyxp

,
),(#

),(#),(

X̂
Ŷ

X
Y

 )ˆ,ˆ( - ),( YXIYXI

details
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Information Theoretic Co-clustering

• “Loss in mutual information” equals

• p is the input distribution
• q is an approximation to p

– Can be shown that q(x,y) is a maximum entropy 
approximation subject to cluster constraints.

),()ˆ|()ˆ|()ˆ,ˆ(                             

)),( || ),((  )ˆ,ˆ( - ),(

YXHYYHXXHYXH

yxqyxpKLYXIYXI

−++=

=

yyxxyypxxpyxpyxq ˆ,ˆ),ˆ|()ˆ|()ˆ,ˆ(),( ∈∈=
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

04.04.004.04.04.
04.04.04.004.04.
05.05.05.000
05.05.05.000
00005.05.05.
00005.05.05.

),( yxp

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

036.036.028.028.036.036.
036.036.028.028036.036.
054.054.042.000
054.054.042.000
000042.054.054.
000042.054.054.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

5.00
5.00
05.0
05.0
005.
005.

⎥⎦
⎤

⎢⎣
⎡

2.2.
3.0
03. [ ]      

36.36.28.000
00028.36.36. =

)ˆ|( xxp

)ˆ,ˆ( yxp
)ˆ|( yyp

),( yxq

#parameters that determine q(x,y) are: )()1()( lnklkm −+−+−
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Problem with Information Theoretic 
Co-clustering

• Number of row and column groups must be 
specified

Desiderata:

Simultaneously discover row and column groups

Fully Automatic: No “magic numbers”

Scalable to large graphs

SDM'07 Faloutsos, Kolda, Sun 2-53
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Cross-association

Desiderata:

Simultaneously discover row and column groups

Fully Automatic: No “magic numbers”

Scalable to large matrices

Reference:
1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04

SDM'07 Faloutsos, Kolda, Sun 2-54
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What makes a cross-association 
“good”?

versus

Column 
groups

Column 
groups

R
ow

 g
ro

up
s

R
ow

 g
ro

up
s

Why is this 
better?
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What makes a cross-association 
“good”?

versus

Column 
groups

Column 
groups

R
ow

 g
ro

up
s

R
ow

 g
ro

up
s

Why is this 
better?

simpler; easier to describe
easier to compress!

SDM'07 Faloutsos, Kolda, Sun 2-56
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What makes a cross-association 
“good”?

Problem definition: given an encoding scheme
• decide on the # of col. and row groups k and l
• and reorder rows and columns,
• to achieve best compression

SDM'07 Faloutsos, Kolda, Sun 2-57
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Main Idea

sizei * H(xi) + Cost of describing 
cross-associations

Code Cost Description 
Cost

ΣiTotal Encoding Cost =

Good 
Compression

Better 
Clustering

Minimize the total cost (# bits)

for lossless compression

details
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Algorithm

k = 5 row
 groups

k=1, 
l=2

k=2, 
l=2

k=2, 
l=3

k=3, 
l=3

k=3, 
l=4

k=4, 
l=4

k=4, 
l=5

l = 5 col groups

SDM'07 Faloutsos, Kolda, Sun 2-59
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Algorithm
Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/CrossAssoci
ations-01-27-2005.tgz

Variations and extensions:
• ‘Autopart’ [Chakrabarti, PKDD’04]
• www.cs.cmu.edu/~deepay

SDM'07 Faloutsos, Kolda, Sun 2-60
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Cross-Associations vs. Co-clustering 

1. For binary matrix
2. Lossless Compression.
3. Always provides 

complete information 
about the matrix, for any 
number of row and 
column groups.

4. Chosen automatically 
using the MDL principle.

1. For any nonnegative 
matrix

2. Lossy Compression.
3. Approximates the 

original matrix, while 
trying to minimize KL-
divergence.

4. The number of row and 
column groups must be 
given by the user.

Cross-AssociationsInformation-theoretic  
co-clustering
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Roadmap
• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• SVD, PCA
• HITS, PageRank
• CUR
• Co-clustering, etc
• Nonnegative Matrix 

factorization

SDM'07 Faloutsos, Kolda, Sun 2-62

CMU SCS

Nonnegative Matrix Factorization

• Coming up soon with nonnegative tensor 
factorization
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Roadmap

• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• Tensor Basics
• Tucker

– Tucker 1 (PCA)
– Tucker 2 
– Tucker 3 (HOSVD)

• PARAFAC

CMU SCS

Tensor Basics

3-3

CMU SCS

A tensor is a multidimensional array

xijkI

J

K

An I × J × K tensor Column (Mode-1) 
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

Horizontal Slices Lateral Slices Frontal Slices
3rd order tensor

mode 1 has dimension I
mode 2 has dimension J
mode 3 has dimension K

Note: Tutorial focus is 
on 3 dimensions, but 
everything can be 

extended to higher 
dimensionality. 3-4

CMU SCS

Matricize: Converting a Tensor to a 
Matrix

(i,j,k) (i′,j′)

(i′,j′) (i,j,k)

Matricize
(unfolding)

Reverse 
Matricize

X(n): The mode-n fibers are 
rearranged to be the columns 
of a matrix 

5   7
6   81   3

2   4

3-5
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Tensor Mode-n Multiplication

• Tensor Times Matrix • Tensor Times Vector

Multiply each 
row (mode-2) 

fiber by B

Compute the dot 
product of a and 

each column 
(mode-1) fiber

3-6

CMU SCS

Pictorial View of Mode-n Matrix 
Multiplication

Mode-1 multiplication
(frontal slices)

Mode-2 multiplication
(lateral slices)

Mode-3 multiplication
(horizontal slices)
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Mode-n product Example

• Tensor times a matrix

Time

Lo
ca

ti
on

Typ
e

clusters

×time

Lo
ca

ti
on

Typ
e

clusters

Ti
m

e

3-8
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Mode-n product Example

• Tensor times a vector

Time

Lo
ca

ti
on

Typ
e

×time

Lo
ca

ti
on

Typ
e

Ti
m

e

3-9
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Outer, Kronecker, & 
Khatri-Rao Products

Outer Product

=

Kronecker Product

M x N P x Q

MP x NQ

Khatri-Rao Product

M x R N x R MN x R

Observe: a ◦ b and a ⊗ b have the same elements, but one is shaped 
into a matrix and the other into a vector.

CMU SCS

Specially Structured Tensors

3-11
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=
U

I x R

V

J x R

WK
x R

R x R x R

Specially Structured Tensors
• Tucker Tensor • Kruskal Tensor

I x J x K

=
U

I x R

V

J x S

WK
x T

R x S x T

I x J x K

+…+=

“core”

3-12
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Specially Structured Tensors
• Tucker Tensor • Kruskal Tensor

In matrix form: In matrix form:
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Matrix SVD is a Tucker or 
Kruskal Tensor

Matrix SVD:

Tucker Tensor:

Kruskal Tensor:

CMU SCS

Tensor Decompositions

3-15

CMU SCS

Tucker Decomposition

• Proposed by Tucker (1966)
• AKA: Three-mode factor analysis, three-mode 

PCA, orthogonal array decomposition
• A, B, and C generally assumed to be 

orthonormal (generally assume they have full 
column rank)

• is not diagonal 
• Not unique

Recall the equations for 
converting a tensor to a matrix

I x J x K

=
A

I x R

B

J x S

CK
x T

R x S x T

3-16
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Tucker Variations
• Tucker2

• Tucker1

I x J x K

=
A

I x R

B

J x S

R x S x K

I x J x K

=
A

I x R

R x J x K

See Kroonenberg & De Leeuw, Psychometrika, 1980 for discussion.

Finding principal components in only mode 1.
Can be solved via rank-R matrix SVD

3-17
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Higher Order SVD
(HO-SVD)

De Lathauwer, De Moor, & Vandewalle, SIMAX, 1980 

I x J x K

=
A

I x R

B

J x S

CK
x T

R x S x T

Not optimal, but 
often used to 

initialize Tucker-
ALS algorithm.

(Observe connection to Tucker1.)

3-18

CMU SCS

Solving for Tucker

Minimize 
s.t. A,B,C orthonormal

Maximize 
s.t. A,B,C orthonormal

To solve for A (assuming B and C are fixed):

Calculate R leading left singular vectors of 
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Alternating Least Squares (ALS) for 
Tucker

• Initialize 
– Choose R, S, T
– Calculate A, B, C via HO-SVD

• Until converged do…
– A = R leading left singular 

vectors of X(1)(C⊗B)
– B = S leading left singular 

vectors of X(2)(C⊗A)
– C = T leading left singular 

vectors of X(3)(B⊗A)

Kroonenberg & De Leeuw, Psychometrika, 1980 

I x J x K

=
A

I x R

B

J x S

CK
x T

R x S x T

3-20
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CANDECOMP/PARAFAC 
Decomposition

• CANDECOMP = Canonical Decomposition (Carroll & Chang, 1970)
• PARAFAC = Parallel Factors (Harshman, 1970)
• Core is diagonal (specified by the vector λ)
• Columns of A, B, and C are not orthonormal
• If R is minimal, then R is called the rank of the tensor (Kruskal 1977) 
• Can have rank(  ) > min{I,J,K}

=

I x R

K
x R

A
B

J x R

C

R x R x R

I x J x K

+…+=

3-21
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Alternating Least Squares 
(ALS) for PARAFAC

I x J x K

+…+=

R rank-1 tensors
To solve for A, consider:

By the properties of the Khatri-Rao product, we have:

Thus:

Do the same for B and C, then repeat…



1

4-1

CMU SCS

Roadmap

• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

• Other decompositions
• Nonnegativity
• Missing values
• Incrementalization

CMU SCS

Other Tensor Decompositions

4-3
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Combining Tucker & PARAFAC
• Step 1: Choose 

orthonormal matrices U, 
V, W to compress tensor 
(Tucker tensor!)
– Typically HO-SVD can be 

used

• Step 2: Run PARAFAC 
on smaller tensor

• Step 3: Reassemble result 

Bro and Andersson, 1998

M x I

U
V

N x J

WP
x K

I x J x K
M x N x P

4-4
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3-Way DEDICOM

• 2-way DEDICOM introduced by Harshman, 1978
• 3-way DEDICOM due to Kiers, 1993
• Idea is to capture asymmetric relationships among different 

“roles”
• If third dimension is time, than diagonal slices capture 

participation of each role at each time

ro
le

s

tim
e patterns

3-way DEDICOM
=

See, e.g., Bader, Harshman, Kolda, SAND2006-2161 

CMU SCS

Computations with 
Tensors

4-6
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Dense Tensors

• Largest tensor that can be 
stored on a laptop is 200 x 
200 x 200

• Typically, tensor 
operations are reduced to 
matrix operations 
– Requires permuting and 

reshaping the tensor

• Example: Mode-n tensor-
matrix multiply

I x J x K

I x J x K
M x IM x J x K

M x JK
M x I

I x JK

Example: Mode-1 Matrix Multiply
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Sparse Tensors: Only Store Nonzeros

Store just the 
nonzeros of a tensor
(assume coordinate 

format)
pth nonzero

1st subscript 
of pth

nonzero

2nd subscript 
of pth

nonzero
3rd subscript 

of pth
nonzero

Example: Tensor-Vector Multiply (in all modes) 

4-8
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Tucker Tensors:
Store Core & Factors

Tucker tensor stores the core (which can be 
dense, sparse, or structured) and the factors.

Result is a 
Tucker Tensor

Example: Mode-3 Tensor-Vector Multiply

4-9
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Kruskal Example: 
Store Factors

I x J x K

I x R J x R K x R

R x R R x R R x R

Example: Norm

I x J x K

=
U

I x R

V

J x R

WK
x R

R x R x R

+…+=

Kruskal tensors store factor 
matrices and scaling vector.

CMU SCS

Nonnegativity

4-11
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Non-negative Matrix Factorization

Lee & Seung, Nature, 1999

Minimize subject to elements of 
A and B being positive.

Update formulas (do not increase objective function):

Elementwise multiply
(Hadamard product)

Elementwise divide

4-12
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Non-negative 3-Way PARAFAC 
Factorization

M. Mørup, L. K. Hansen, J. Parnas, S. M. Arnfred, Decomposing 
the time-frequency representation of EEG using non-negative 

matrix and multi-way factorization, 2006 

Minimize subject to elements of 
A, B and C being positive.

Lee-Seung-like update formulas can be derived for 3D and higher:

Elementwise multiply
(Hadamard product)

Elementwise divide
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Handling Missing Data

4-14

CMU SCS

A Quick Overview on Handling 
Missing Data

• Consider sparse PARAFAC where all the zero 
entries represent missing data

• Typically, missing values are just set to zero
• There are more sophisticated approaches for 

handling missing values:
– Weighted approximation
– Data imputation to estimate missing values

See, e.g., Kiers, Psychometrika, 1997 and Srebro & Jaakkola, ICML 2003

4-15
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Weighted Least Squares

• Weight the least squares problem so that the missing 
elements are ignored:

• But this problem is often too hard to solve directly!

Weight Tensor

Weighted
Least Squares

4-16

CMU SCS

Missing Value Imputation

• Use the current estimate to fill in the missing values
Current Estimate

• The tensor for the next iteration of the algorithm is:
Known Values Estimates of Unknowns

Sparse! Kruskal Tensor

• Challenge is finding a good initial estimate

4-17

CMU SCS

Roadmap

• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies

4-18

CMU SCS

Tensor Toolbox for MATLAB

• Six object-oriented tensor classes
– Working with tensors is easy

• Most comprehensive set of kernel 
operations in any language
– E.g., arithmetic, logical, 

multiplication operations 
• Sparse tensors are unique

– Speed-ups of two orders of 
magnitude for smaller problems

– Larger problems than ever 
before

• Free for research or 
evaluations purposes

• 297 unique registered users 
from all over the world 
(as of January 17, 2006)

http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox

Bader & Kolda, ACM TOMS 2006 & SAND2006-7592
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Incrementalization

4-20
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Incremental Tensor Decomposition

• Dynamic data model
– Tensor Streams

• Dynamic Tensor Decomposition (DTA)
• Streaming Tensor Decomposition (STA)
• Window-based Tensor Decomposition 

(WTA)

4-21

CMU SCS

Dynamic Tensor Stream

• Streams come with structure
– (time, source, destination, port)
– (time, author, keyword)

• How to summarize tensor streams effectively and 
incrementally?

time

D
es

tin
at

io
n

Source

4-22
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Dynamic Data model
• Tensor Streams

– A sequence of Mth order tensor

where
n is increasing over time

Example

Correspondence

Order

3D arraysTime evolving graphsMultiple streams

3rd2nd1st

Sources
D

es
tin

at
io

ns
Po

rtstim
e

Sensors

…

time

…au
th

or

keyword

…

4-23
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Incremental Tensor Decomposition

UDestination

USource

Old cores

Sou
rce

D
es

tin
at

io
n

New TensorOld Tensors

4-24
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1st order DTA - problem
Given x1…xn where each xi∈ RN, find 
U∈RN×R such that the error e is 
small: 

n

N

x1

xn

…
.

?

tim
e

Sensors

UT

indooroutdoor

Y

Sensors

R

Note that Y = XU
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1st order Dynamic Tensor Analysis
Input: new data vector x∈ RN, old variance matrix C∈ RN× N

Output: new projection matrix U∈ RN× R

Algorithm:
1. update variance matrix Cnew = xTx + C
2. Diagonalize UΛUT = Cnew
3. Determine the rank R and return U

xT C U
UTx

Cnew

Diagonalization has to be done for every new x! 

Old X

x

tim
e

4-26
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Mth order DTA

dU

T
dU

=

Reconstruct Variance Matrix

dC

dC

Update Variance Matrix

dS

Diagonalize 
Variance Matrix

dU

T
dU

dS
X(d)X(d)× =

( )dX( )
T
dX

M
at

ric
iz

in
g,

Tr
an

sp
os

e

Construct Variance Matrix of  
Incremental Tensor 

Matricizing

T 

4-27
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Mth order DTA – complexity
Storage: 
O(∏ Ni), i.e., size of an input tensor at a single 

timestamp
Computation:
∑ Ni

3 (or ∑ Ni
2) diagonalization of C

+ ∑ Ni ∏ Ni matrix multiplication X (d)
T X(d)

For low order tensor(<3), diagonalization is the main cost
For high order tensor,  matrix multiplication is the main cost

4-28
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1st order Streaming Tensor 
Analysis (STA)

• Adjust U smoothly when new data arrive without 
diagonalization [VLDB05]

• For each new point x
– Project onto current line
– Estimate error
– Rotate line in the direction of the error and in proportion to its 

magnitude
For each new point x and for i = 1, …, k : 
• yi :=   Ui

Tx (proj. onto Ui)
• di ← λdi + yi

2 (energy ∝ i-th eigenval.)
• ei :=   x – yiUi (error)
• Ui ← Ui + (1/di) yiei (update estimate)
• x ← x – yiUi (repeat with remainder)

error

U

Sensor 1

Se
ns

or
 2

4-29
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Mth order STA
( )
T
dX

Matricizing

• Run 1st order STA along each mode
• Complexity:

– Storage: O(∏ Ni)
– Computation: ∑ Ri ∏ Ni which is smaller 

than DTAy1

U1

x
e1

U1 updated

4-30
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Meta-algorithm for 
window-based tensor analysis

UTime

ULocation

UType

Y

D

Lo
ca

ti
on

Typ
e

Time

R1

R 2

R0
W

N1

N 2
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Moving Window scheme (MW)
D(n-1,W)

D(n,W)

DnDn-W…... …...

Time

Te
ns

or
 

St
re

am
s

Cd Cd
old new

Update variance matrix

• Update the variance 
matrix C(i) 
incrementally

• Diagonalize C(i) to find 
U(i)

A good and efficient 
initialization U(d) Diagonalize



1

SDM'07 Faloutsos, Kolda, Sun 5-1

CMU SCS

Roadmap

• Motivation
• Matrix tools
• Tensor basics
• Tensor extensions
• Software demo
• Case studies
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P1: Environmental sensor monitoring 

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

time (min)

va
lu

e

Temperature

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

time (min)

va
lu

e

Light

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

time (min)

va
lu

e

Voltage
0 2000 4000 6000 8000 10000

0

10

20

30

40

time (min)

va
lu

e

Humidity
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1st factor 
Scaling factor 250

Volt Humid Temp Light
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

type

va
lu

e

type

va
lu

e

0 20 40 60

0

0.05

0.1

0.15

0.2

0.25

0.3

location

va
lu

e

location

0 500 1000

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (min)

va
lu

e

time
P2: sensor monitoring 

• 1st factor consists of the main trends:
– Daily periodicity on time
– Uniform on all locations
– Temp, Light and Volt are positively correlated while 

negatively correlated with Humid

Lo
ca

tio
n

Typ
e Time
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P2: sensor monitoring 

• 2nd factor captures an atypical trend:
– Uniformly across all time
– Concentrating on 3 locations
– Mainly due to voltage

• Interpretation: two sensors have low battery, and the 
other one has high battery. 

2nd factor
Scaling factor 154

Volt Humid Temp Light
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

type

va
lu

e

0 500 1000

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (min)
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e

typelocationtime
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DB

A
ut

ho
rs

Keywords
DM

DB
UA

UK

1990

2004

1990

2004

P3: Social network analysis
• Multiway latent semantic indexing (LSI)

– Monitor the change of the community structure 
over time

Philip Yu

Michael 
Stonebreaker

‘Query’‘Pattern’

tim
e

SDM'07 Faloutsos, Kolda, Sun 5-6

CMU SCS

P3: Social network analysis (cont.)

2004

2004

1995

Year

streams,pattern,support, cluster, 
index,gener,queri

jiawei han,jian pei,philip s. yu,
jianyong wang,charu c. aggarwal

distribut,systems,view,storage,servic,process,
cache

surajit chaudhuri,mitch
cherniack,michael
stonebreaker,ugur etintemel

queri,parallel,optimization,concurr,
objectorient

michael carey, michael
stonebreaker, h. jagadish,
hector garcia-molina

KeywordsAuthors

• Two groups are correctly identified: Databases and Data 
mining

• People and concepts are drifting over time

DB

DM
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P4: Network anomaly detection

• Reconstruction error gives indication of anomalies.
• Prominent difference between normal and abnormal ones is 

mainly due to the unusual scanning activity (confirmed by the 
campus admin).

200 400 600 800 1000 1200
0

10

20

30

40

50

hours

er
ro

r

Reconstruction error 
over time

100 200 300 400 500
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P5: Web graph mining

• How to order the importance of web pages?
– Kleinberg’s algorithm HITS
– PageRank
– Tensor extension on HITS (TOPHITS)

SDM'07 Faloutsos, Kolda, Sun 5-9
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Kleinberg’s Hubs and Authorities
(the HITS method)

Sparse adjacency matrix and its SVD:

authority scores
for 1st topic

hub scores 
for 1st topic

hub scores 
for 2nd topic

authority scores
for 2nd topic

fro
m

to

Kleinberg, JACM, 1999
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authority scores
for 1st topic

hub scores 
for 1st topic

hub scores 
for 2nd topic

authority scores
for 2nd topic

fro
m

to

HITS Authorities on Sample Data
.97 www.ibm.com
.24 www.alphaworks.ibm.com
.08 www-128.ibm.com
.05 www.developer.ibm.com
.02 www.research.ibm.com
.01 www.redbooks.ibm.com
.01 news.com.com

1st Principal Factor

.99 www.lehigh.edu

.11 www2.lehigh.edu

.06 www.lehighalumni.com

.06 www.lehighsports.com

.02 www.bethlehem-pa.gov

.02 www.adobe.com

.02 lewisweb.cc.lehigh.edu

.02 www.leo.lehigh.edu

.02 www.distance.lehigh.edu

.02 fp1.cc.lehigh.edu

2nd Principal Factor
We started our crawl from

http://www-neos.mcs.anl.gov/neos, 
and crawled 4700 pages,

resulting in 560 
cross-linked hosts.

.75 java.sun.com

.38 www.sun.com

.36 developers.sun.com

.24 see.sun.com

.16 www.samag.com

.13 docs.sun.com

.12 blogs.sun.com

.08 sunsolve.sun.com

.08 www.sun-catalogue.com

.08 news.com.com

3rd Principal Factor

.60 www.pueblo.gsa.gov

.45 www.whitehouse.gov

.35 www.irs.gov

.31 travel.state.gov

.22 www.gsa.gov

.20 www.ssa.gov

.16 www.census.gov

.14 www.govbenefits.gov

.13 www.kids.gov

.13 www.usdoj.gov

4th Principal Factor

.97 mathpost.asu.edu

.18 math.la.asu.edu

.17 www.asu.edu

.04 www.act.org

.03 www.eas.asu.edu

.02 archives.math.utk.edu

.02 www.geom.uiuc.edu

.02 www.fulton.asu.edu

.02 www.amstat.org

.02 www.maa.org

6th Principal Factor
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Three-Dimensional View of the Web

Observe that this 
tensor is very sparse!

Kolda, Bader, Kenny, ICDM05
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Topical HITS (TOPHITS)
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information.

authority scores
for 1st topic

hub scores 
for 1st topic

hub scores 
for 2nd topic

authority scores
for 2nd topic

fro
m

to

ter
m

term scores 
for 1st topic

term scores 
for 2nd topic
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Topical HITS (TOPHITS)
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information.

authority scores
for 1st topic

hub scores 
for 1st topic

hub scores 
for 2nd topic

authority scores
for 2nd topic

fro
m

to

ter
m

term scores 
for 1st topic

term scores 
for 2nd topic
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TOPHITS Terms & Authorities 
on Sample Data

.23 JAVA .86 java.sun.com

.18 SUN .38 developers.sun.com

.17 PLATFORM .16 docs.sun.com

.16 SOLARIS .14 see.sun.com

.16 DEVELOPER .14 www.sun.com

.15 EDITION .09 www.samag.com

.15 DOWNLOAD .07 developer.sun.com

.14 INFO .06 sunsolve.sun.com

.12 SOFTWARE .05 access1.sun.com

.12 NO-READABLE-TEXT .05 iforce.sun.com

1st Principal Factor

.20 NO-READABLE-TEXT .99 www.lehigh.edu

.16 FACULTY .06 www2.lehigh.edu

.16 SEARCH .03 www.lehighalumni.com

.16 NEWS

.16 LIBRARIES

.16 COMPUTING

.12 LEHIGH

2nd Principal Factor

.15 NO-READABLE-TEXT .97 www.ibm.com

.15 IBM .18 www.alphaworks.ibm.com

.12 SERVICES .07 www-128.ibm.com

.12 WEBSPHERE .05 www.developer.ibm.com

.12 WEB .02 www.redbooks.ibm.com

.11 DEVELOPERWORKS .01 www.research.ibm.com

.11 LINUX

.11 RESOURCES

.11 TECHNOLOGIES

.10 DOWNLOADS

3rd Principal Factor

.26 INFORMATION .87 www.pueblo.gsa.gov

.24 FEDERAL .24 www.irs.gov

.23 CITIZEN .23 www.whitehouse.gov

.22 OTHER .19 travel.state.gov

.19 CENTER .18 www.gsa.gov

.19 LANGUAGES .09 www.consumer.gov

.15 U.S .09 www.kids.gov

.15 PUBLICATIONS .07 www.ssa.gov

.14 CONSUMER .05 www.forms.gov

.13 FREE .04 www.govbenefits.gov

4th Principal Factor

.26 PRESIDENT .87 www.whitehouse.gov

.25 NO-READABLE-TEXT .18 www.irs.gov

.25 BUSH .16 travel.state.gov

.25 WELCOME .10 www.gsa.gov

.17 WHITE .08 www.ssa.gov

.16 U.S .05 www.govbenefits.gov

.15 HOUSE .04 www.census.gov

.13 BUDGET .04 www.usdoj.gov

.13 PRESIDENTS .04 www.kids.gov

.11 OFFICE .02 www.forms.gov

6th Principal Factor

.75 OPTIMIZATION .35 www.palisade.com

.58 SOFTWARE .35 www.solver.com

.08 DECISION .33 plato.la.asu.edu

.07 NEOS .29 www.mat.univie.ac.at

.06 TREE .28 www.ilog.com

.05 GUIDE .26 www.dashoptimization.com

.05 SEARCH .26 www.grabitech.com

.05 ENGINE .25 www-fp.mcs.anl.gov

.05 CONTROL .22 www.spyderopts.com

.05 ILOG .17 www.mosek.com

12th Principal Factor

.46 ADOBE .99 www.adobe.com

.45 READER

.45 ACROBAT

.30 FREE

.30 NO-READABLE-TEXT

.29 HERE

.29 COPY

.05 DOWNLOAD

13th Principal Factor

.50 WEATHER .81 www.weather.gov

.24 OFFICE .41 www.spc.noaa.gov

.23 CENTER .30 lwf.ncdc.noaa.gov

.19 NO-READABLE-TEXT .15 www.cpc.ncep.noaa.gov

.17 ORGANIZATION .14 www.nhc.noaa.gov

.15 NWS .09 www.prh.noaa.gov

.15 SEVERE .07 aviationweather.gov

.15 FIRE .06 www.nohrsc.nws.gov

.15 POLICY .06 www.srh.noaa.gov

.14 CLIMATE

16th Principal Factor

.22 TAX .73 www.irs.gov

.17 TAXES .43 travel.state.gov

.15 CHILD .22 www.ssa.gov

.15 RETIREMENT .08 www.govbenefits.gov

.14 BENEFITS .06 www.usdoj.gov

.14 STATE .03 www.census.gov

.14 INCOME .03 www.usmint.gov

.13 SERVICE .02 www.nws.noaa.gov

.13 REVENUE .02 www.gsa.gov

.12 CREDIT .01 www.annualcreditreport.com

19th Principal Factor

TOPHITS uses 3D analysis to find 
the dominant groupings of web 
pages and terms.

authority scores
for 1st topic

hub scores 
for 1st topic

hub scores 
for 2nd topic

authority scores
for 2nd topicfro

m

to

ter
m

term scores 
for 1st topic

term scores 
for 2nd topic

Tensor PARAFAC

wk = # unique links using term k
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Conclusion

• Real data are often in high dimensions with 
multiple aspects (modes)

• Matrix and tensor provide elegant theory 
and algorithms for such data

• However, many problems are still open
– skew distribution, anomaly detection, streaming 

algorithm, distributed/parallel algorithms, 
efficient out-of-core processing
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Thank you!
• Christos Faloutsos

www.cs.cmu.edu/~christos

• Tamara Kolda
csmr.ca.sandia.gov/~tgkolda

• Jimeng Sun           
www.cs.cmu.edu/~jimeng
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