
15-826: Multimedia (Databases)
and Data Mining

Lecture#3: Primary key indexing – hashing
C. Faloutsos

15-826 Copyright: C. Faloutsos (2024) 2

Reading Material

• [Litwin] Litwin, W., (1980), Linear
Hashing: A New Tool for File and Table
Addressing, VLDB, Montreal, Canada,
1980

• textbook, Chapter 3
• Ramakrinshan+Gehrke, Chapter 11

15-826 Copyright: C. Faloutsos (2024) 3

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

15-826 Copyright: C. Faloutsos (2024) 4

Indexing - Detailed outline

• primary key indexing
– B-trees and variants
– (static) hashing
– extendible hashing

• secondary key indexing
• spatial access methods
• text
• ...

15-826 Copyright: C. Faloutsos (2024) 5

(Static) Hashing

Problem: “find EMP record with ssn=123”
What if disk space was free, and time was at

premium?

15-826 Copyright: C. Faloutsos (2024) 6

Hashing

A: Brilliant idea: key-to-address transformation:

#0 page

#123 page

#999,999,999

123; Smith; Main str

15-826 Copyright: C. Faloutsos (2024) 7

Hashing

Since space is NOT free:
• use M, instead of 999,999,999 slots
• hash function: h(key) = slot-id

#0 page

#123 page

#999,999,999

123; Smith; Main str

15-826 Copyright: C. Faloutsos (2024) 8

Hashing

Typically: each hash bucket is a page, holding
many records:

#0 page

#h(123)

M

123; Smith; Main str

15-826 Copyright: C. Faloutsos (2024) 9

Hashing - design decisions?

• eg., IRS, 200M tax returns, by SSN

15-826 Copyright: C. Faloutsos (2024) 10

Indexing- overview
• B-trees
• (static) hashing

– hashing functions
– size of hash table
– collision resolution
– Hashing vs B-trees
– Indices in SQL

• Extendible hashing

15-826 Copyright: C. Faloutsos (2024) 11

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

15-826 Copyright: C. Faloutsos (2024) 12

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

Division hashing
90% utilization
Separate chaining

15-826 Copyright: C. Faloutsos (2024) 13

Design decisions - functions

• Goal: uniform spread of keys over hash
buckets

• Popular choices:

– Division hashing

– Multiplication hashing

SKIP

15-826 Copyright: C. Faloutsos (2024) 14

Division hashing

h(x) = (a*x+b) mod M

• eg., h(ssn) = (ssn) mod 1,000

– gives the last three digits of ssn

• M: size of hash table - choose a prime
number, defensively (why?)

SKIP

15-826 Copyright: C. Faloutsos (2024) 15

• eg., M=2; hash on driver-license number
(dln), where last digit is ‘gender’ (0/1 =
M/F)

• in an army unit with predominantly male
soldiers

• Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

Division hashing
SKIP

15-826 Copyright: C. Faloutsos (2024) 16

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

SKIP

15-826 Copyright: C. Faloutsos (2024) 17

Size of hash table

• eg., 50,000 employees, 10 employee-
records / page

• Q: M=?? pages/buckets/slots

SKIP

15-826 Copyright: C. Faloutsos (2024) 18

Size of hash table

• eg., 50,000 employees, 10 employees/page

• Q: M=?? pages/buckets/slots

• A: utilization ~ 90% and
– M: prime number

Eg., in our case: M= closest prime to
50,000/10 / 0.9 = 5,555

SKIP

15-826 Copyright: C. Faloutsos (2024) 19

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

SKIP

15-826 Copyright: C. Faloutsos (2024) 20

Collision resolution

• Q: what is a ‘collision’?
• A: ??

SKIP

15-826 Copyright: C. Faloutsos (2024) 21

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

SKIP

15-826 Copyright: C. Faloutsos (2024) 22

Collision resolution

• Q: what is a ‘collision’?
• A: ??
• Q: why worry about collisions/overflows?

(recall that buckets are ~90% full)

SKIP

15-826 Copyright: C. Faloutsos (2024) 23

Collision resolution

• Q: what is a ‘collision’?
• A: ??
• Q: why worry about collisions/overflows?

(recall that buckets are ~90% full)
• A: ‘birthday paradox’

SKIP

15-826 Copyright: C. Faloutsos (2024) 24

Collision resolution

• open addressing
– linear probing (ie., put to next slot/bucket)
– re-hashing

• separate chaining (ie., put links to overflow
pages)

SKIP

15-826 Copyright: C. Faloutsos (2024) 25

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

linear probing:

SKIP

15-826 Copyright: C. Faloutsos (2024) 26

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

re-hashing

h1()

h2()

SKIP

15-826 Copyright: C. Faloutsos (2024) 27

Collision resolution

123; Smith; Main str.

separate chaining

SKIP

15-826 Copyright: C. Faloutsos (2024) 28

Design decisions - conclusions

• function: division hashing
– h(x) = (a*x+b) mod M

• size M: ~90% util.; prime number.
• collision resolution: separate chaining

– easier to implement (deletions!);
– no danger of becoming full

15-826 Copyright: C. Faloutsos (2024) 29

Indexing- overview
• B-trees
• (static) hashing

– hashing functions
– size of hash table
– collision resolution
– Hashing vs B-trees
– Indices in SQL

• Extendible hashing

15-826 Copyright: C. Faloutsos (2024) 30

Hashing vs B-trees:

Hashing offers
• speed ! (O(1) avg. search time)

..but:

15-826 Copyright: C. Faloutsos (2024) 31

Hashing vs B-trees:

..but B-trees give:
• key ordering:

– range queries
– proximity queries
– sequential scan

• O(log(N)) guarantees for search, ins./del.
• graceful growing/shrinking

15-826 Copyright: C. Faloutsos (2024) 32

Indexing- overview

• B-trees
• (static) Hashing
• extensible hashing

– ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2024) 33

Problem with static hashing

• problem: overflow?

• problem: underflow? (underutilization)

15-826 Copyright: C. Faloutsos (2024) 34

Solution: Dynamic/extendible
hashing

• idea: shrink / expand hash table on demand..

• ..dynamic hashing

Details: how to grow gracefully, on overflow?

Many solutions – simplest: Linear hashing
[Litwin]

15-826 Copyright: C. Faloutsos (2024) 35

Indexing- overview

• B-trees
• Static hashing
• extendible hashing

– ‘extensible’ hashing [Fagin, Pipenger +]
– ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2024) 36

Linear hashing - Detailed
overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 37

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

15-826 Copyright: C. Faloutsos (2024) 38

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

A: split buckets from left to right, regardless
of which one overflowed (‘crazy’, but it
works well!) - Eg.:

15-826 Copyright: C. Faloutsos (2024) 39

Linear hashing
Initially: h(x) = x mod N (N=4 here)

Assume capacity: 3 records / bucket

Insert key ‘17’

0 1 2 3bucket- id

4 8 5 9
13

6 7 11

15-826 Copyright: C. Faloutsos (2024) 40

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3bucket- id

4 8 5 9
13

6 7 11

17 overflow of bucket#1

15-826 Copyright: C. Faloutsos (2024) 41

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3bucket- id

4 8 5 9
13

6 7 11

17
overflow of bucket#1

Split #0, anyway!!!

15-826 Copyright: C. Faloutsos (2024) 42

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3bucket- id

4 8 5 9
13

6 7 11

17
Split #0, anyway!!!

Q: But, how?

15-826 Copyright: C. Faloutsos (2024) 43

Linear hashing
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3bucket- id

4 8 5 9
13

6 7 11

17

15-826 Copyright: C. Faloutsos (2024) 44

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3bucket- id

8 5 9
13

6 7 11

17

4

4

15-826 Copyright: C. Faloutsos (2024) 45

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

15-826 Copyright: C. Faloutsos (2024) 46

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

15-826 Copyright: C. Faloutsos (2024) 47

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 48

Linear hashing - searching?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

0 1 2 3bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

15-826 Copyright: C. Faloutsos (2024) 49

Linear hashing - searching?
Q1: find key ‘6’? Q2: find key ‘4’?

Q3: key ‘8’?

0 1 2 3bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

15-826 Copyright: C. Faloutsos (2024) 50

Linear hashing - searching?

Algo to find key ‘k’:

• compute b= h0(k);

• if b<split-ptr, compute b=h1(k)

• search bucket b

15-826 Copyright: C. Faloutsos (2024) 51

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 52

Linear hashing - insertion?
Algo: insert key ‘k’

• compute appropriate bucket ‘b’

• if the overflow criterion is true

•split the bucket of ‘split-ptr’

• split-ptr ++ (*)

15-826 Copyright: C. Faloutsos (2024) 53

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?

15-826 Copyright: C. Faloutsos (2024) 54

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization >= u-max

15-826 Copyright: C. Faloutsos (2024) 55

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization > u-max
A2: avg length of ovf chains > max-len
A3:

15-826 Copyright: C. Faloutsos (2024) 56

Linear hashing - insertion?
Algo: insert key ‘k’

• compute appropriate bucket ‘b’

• if the overflow criterion is true

•split the bucket of ‘split-ptr’

• split-ptr ++ (*)

what if we reach the right edge??

15-826 Copyright: C. Faloutsos (2024) 57

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) for the splitted ones)

split ptr

0 1 2 3 4 5 6

15-826 Copyright: C. Faloutsos (2024) 58

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2024) 59

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2024) 60

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2024) 61

Linear hashing - split now?

split ptr

0 1 2 3 4 5 6 7

this state is called ‘full expansion’

15-826 Copyright: C. Faloutsos (2024) 62

Linear hashing - observations

In general, at any point of time, we have at most two
h.f. active, of the form:

•hn(x) = x mod (N * 2n)

•hn+1(x) = x mod (N * 2n+1)

(after a full expansion, we have only one h.f.)

15-826 Copyright: C. Faloutsos (2024) 63

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 64

Linear hashing - deletion?

• reverse of insertion:

15-826 Copyright: C. Faloutsos (2024) 65

Linear hashing - deletion?

• reverse of insertion:
• if the underflow criterion is met

– contract!

15-826 Copyright: C. Faloutsos (2024) 66

Linear hashing - how to
contract?

h0(x) = mod N (for the un-split buckets)
h1(x) = mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6

15-826 Copyright: C. Faloutsos (2024) 67

Linear hashing - how to
contract?

h0(x) = mod N (for the un-split buckets)
h1(x) = mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5

15-826 Copyright: C. Faloutsos (2024) 68

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 69

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

1.01 d.a.

15-826 Copyright: C. Faloutsos (2024) 70

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

1.01 d.a.
??

15-826 Copyright: C. Faloutsos (2024) 71

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

1.01 d.a.

??

15-826 Copyright: C. Faloutsos (2024) 72

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

1.01 d.a.
??

15-826 Copyright: C. Faloutsos (2024) 73

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

1.01 d.a.

15-826 Copyright: C. Faloutsos (2024) 74

Linear hashing - performance

• [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

recordsR 2R

eg., 1.01 d.a.

eg., 1.3 d.a.

15-826 Copyright: C. Faloutsos (2024) 75

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

15-826 Copyright: C. Faloutsos (2024) 76

Other hashing variations

• ‘order preserving’
• ‘perfect hashing’ (no collisions!) [Ed. Fox,

et al]

15-826 Copyright: C. Faloutsos (2024) 77

Primary key indexing -
conclusions

• hashing is O(1) on the average for search
• linear hashing: elegant way to grow a hash

table
• B-trees: industry work-horse for primary-

key indexing (O(log(N) w.c.!)

15-826 Copyright: C. Faloutsos (2024) 78

References for primary key
indexing

• [Fagin+] Ronald Fagin, Jürg Nievergelt, Nicholas
Pippenger, H. Raymond Strong: Extendible Hashing - A
Fast Access Method for Dynamic Files. TODS 4(3): 315-
344(1979)

• [Fox] Fox, E. A., L. S. Heath, Q.-F. Chen, and A. M.
Daoud. "Practical Minimal Perfect Hash Functions for
Large Databases." Communications of the ACM 35.1
(1992): 105-21.

15-826 Copyright: C. Faloutsos (2024) 79

References, cont’d

• [Knuth] D.E. Knuth. The Art Of Computer Programming,
Vol. 3, Sorting and Searching, Addison Wesley

• [Larson] Per-Ake Larson Performance Analysis of Linear
Hashing with Partial Expansions ACM TODS, 7,4, Dec.
1982, pp 566--587

• [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool
for File and Table Addressing, VLDB, Montreal, Canada,
1980

