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and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees
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Must-read material

• MM-Textbook, Chapter 5.2
• Ramakrinshan+Gehrke, Chapter 28.6
• Guttman, A. (June 1984). R-Trees: A Dynamic 

Index Structure for Spatial Searching. Proc. ACM 
SIGMOD, Boston, Mass.

http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF
http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF
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R-trees – impact:
• Popular method; like multi-d B-trees
• guaranteed utilization; fast search (low dim’s)
• Used in practice:

– Oracle spatial (R-tree) 
– Postgres:    create index … using  gist 
– Databricks (R-trees and z-order)
– Sqlite3:     www.sqlite.org/rtree.html
– Python: (pip install rtree)

https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/indexing-querying-spatial-data.html
https://www.databricks.com/notebooks/GeoMesa-NYC-Taxis.html
http://www.sqlite.org/rtree.html
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
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Indexing - Detailed outline
• primary key indexing
• secondary key / multi-key indexing
• spatial access methods

– problem dfn
– z-ordering
– R-trees
– ...

• text
• ...
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
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Spatial Access Methods - 
problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• Find cities within 100mi from Pittsburgh
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Solution#2: R-trees
• multi-dim trees
• Allow nodes to overlap
• Guaranteed 50% utilization
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R-trees

• z-ordering: cuts regions to pieces -> dup. 
elim.

• how could we avoid that?
• Idea: try to extend/merge B-trees and k-d 

trees



15-826 Copyright: C. Faloutsos (2024) #10

R-trees

• [Guttman 84] Main idea: allow parents to 
overlap!

Antonin Guttman
[https://dblp.org/pid/81/3404.html]

https://dblp.org/pid/81/3404.html
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R-trees

• [Guttman 84] Main idea: allow parents to 
overlap!
– => guaranteed 50% utilization
– => easier insertion/split algorithms.
– (only deal with Minimum Bounding Rectangles 

- MBRs)
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R-trees

• eg., w/ fanout 4: group nearby rectangles to 
parent MBRs; each group -> disk page
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R-trees

• eg., w/ fanout 4:
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R-trees

• eg., w/ fanout 4:
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R-trees - format of nodes

• {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...
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R-trees - format of nodes

• {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...
node
ptr ...
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R-trees - range search?
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R-trees - range search?

P1 P2 P3 P4
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R-trees - range search

Observations:
• every parent node completely covers its 
‘children’

• a child MBR may be covered by more than 
one parent - it is stored under ONLY ONE 
of them. (ie., no need for dup. elim.)
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R-trees - range search

Observations - cont’d
• a point query may follow multiple branches.
• everything works for any dimensionality
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

DETAILS
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R-trees - insertion

• eg.,  rectangle ‘X’
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R-trees - insertion

• eg.,  rectangle ‘X’
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R-trees - insertion

• eg.,  rectangle ‘Y’
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R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.
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R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.
• Q: how to measure ‘suitability’?

DETAILS
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R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.
• Q: how to measure ‘suitability’?
• A: by increase in area (volume) (more 

details: later, under ‘performance analysis’)
• Q: what if there is no room? how to split?

DETAILS
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R-trees - insertion

• eg.,  rectangle ‘W’
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R-trees - insertion

• eg.,  rectangle ‘W’  - focus on ‘P1’ - how 
to split?
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R-trees - insertion

• eg.,  rectangle ‘W’  - focus on ‘P1’ - how 
to split?

A
B

C

P1

W

K • (A1: plane sweep, 

until 50% of rectangles)

• A2: ‘linear’ split

• A3: quadratic split

• A4: exponential split

DETAILS
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R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

seed1

seed2
R

DETAILS
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R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

• Q: how to measure ‘closeness’?

DETAILS



15-826 Copyright: C. Faloutsos (2024) #33

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

• Q: how to measure ‘closeness’?
• A: by increase of area (volume)

DETAILS
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R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

seed1

seed2
R

DETAILS
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R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

seed1

seed2
R

DETAILS
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R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’ 
‘seed’

• smart idea: pre-sort rectangles according to 
delta of closeness (ie., schedule easiest 
choices first!)

DETAILS
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R-trees - insertion - pseudocode

• decide which parent to put new rectangle 
into (‘closest’ parent)

• if overflow, split to two, using (say,) the 
quadratic split algorithm
– propagate the split upwards, if necessary

• update the MBRs of the affected parents.

DETAILS



15-826 Copyright: C. Faloutsos (2024) #38

R-trees - insertion - 
observations

• many more split algorithms exist (see refs)

DETAILS
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

DETAILS
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R-trees - deletion

• delete rectangle
• if underflow

– ??

DETAILS
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R-trees - deletion

• delete rectangle
• if underflow

– temporarily delete all siblings (!);
– delete the parent node and
– re-insert them

DETAILS
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
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R-trees - range search

pseudocode:
  check the root
   for each branch, 
      if its MBR intersects the query rectangle
            apply range-search (or print out, if this 
                    is a leaf)



15-826 Copyright: C. Faloutsos (2024) #44

R-trees - nn search

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q



15-826 Copyright: C. Faloutsos (2024) #45

R-trees - nn search

• Q: How? (find near neighbor; refine...)
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R-trees - nn search

• A1: depth-first search; then, range query
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R-trees - nn search

• A1: depth-first search; then, range query
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R-trees - nn search

• A1: depth-first search; then, range query
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
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R-trees - spatial joins

Spatial joins: find (quickly) all
        counties         intersecting      lakes
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R-trees - spatial joins

Spatial joins: find (quickly) all
        counties         intersecting      lakes
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R-trees - spatial joins

Spatial joins: find (quickly) all
        counties         intersecting      lakes
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R-trees - spatial joins

Assume that they are both organized in R-trees:
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R-trees - spatial joins

Assume that they are both organized in R-trees:
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R-trees - spatial joins
for each parent P1 of tree T1
   for each parent P2 of tree T2
       if their MBRs intersect,
            process them recursively (ie., check their     
                  children)
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R-trees - spatial joins
Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do 

plane-sweeping to avoid N1 * N2 tests for 
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.)

    

DETAILS
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Indexing - more detailed 
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
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R-trees - performance analysis
• How many disk (=node) accesses we’ll 

need for
– range
– nn
– spatial joins

• why does it matter?
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R-trees - performance analysis
• How many disk (=node) accesses we’ll 

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc 

algorithms accordingly; also, do query-
optimization
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R-trees - performance analysis
• How many disk (=node) accesses we’ll 

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc 

algorithms accordingly; also, do query-
optimization



15-826 Copyright: C. Faloutsos (2024) #61

R-trees - performance analysis
• motivating question: on, e.g., split, should 

we try to minimize the area (volume)? the 
perimeter? the overlap? or a weighted 
combination? why?
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R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we 

expect 
    #DiskAccesses(q1,q2) =
          sum ( xi,1 + q1) * (xi,2 + q2)
    = sum ( xi,1 * xi,2 )  +
       q2 * sum ( xi,1 ) +
        q1* sum ( xi,2 )
        q1* q2 * N 

‘volume’

surface area

count
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R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location?
–    “          “              wrt size?
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R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location? uniform; (biased)
–    “          “              wrt size? uniform

Proof
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R-trees - performance analysis
• easier case: we know the positions of parent 

MBRs, eg:

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries)?

P1

x1

x2

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

POINT queries)?

P1

x1

x2

0 1
0

1

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

POINT queries)? A: x1*x2

P1

x1

x2

0 1
0

1

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries of size q1xq2)? 

P1

x1

x2
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q1
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Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries of size q1xq2)? 

P1
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x2
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q2

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries of size q1xq2)? 

P1

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries of size q1xq2)? 

P1 x2
q2

x1 q1

Proof
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R-trees - performance analysis
• How many times will P1 be retrieved (unif. 

queries of size q1xq2)? A: (x1+q1)*(x2+q2)

P1 x2
q2

x1 q1

Proof
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R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we 

expect 
    #DiskAccesses(q1,q2) =
          sum ( xi,1 + q1) * (xi,2 + q2)
    = sum ( xi,1 * xi,2 )  +
       q2 * sum ( xi,1 ) +
        q1* sum ( xi,2 )
        q1* q2 * N 

Proof
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R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we 

expect 
    #DiskAccesses(q1,q2) =
          sum ( xi,1 + q1) * (xi,2 + q2)
    = sum ( xi,1 * xi,2 )  +
       q2 * sum ( xi,1 ) +
        q1* sum ( xi,2 )
        q1* q2 * N 

‘volume’

surface area

count
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R-trees - performance analysis
Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical 

length matters
• for large queries (q1, q2 >> 0): the count N 

matters
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R-trees - performance analysis

Observations (cont’ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93],  

[Kamel+, CIKM93])

Berndt-Uwe Pagel
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R-trees - performance analysis
Conclusions:
• splits should try to minimize area and 

perimeter
• ie., we want few, small, square-like parent 

MBRs
• rule of thumb: shoot for queries with q1=q2 = 

0.1 (or =0.5 or so).
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Solution#2: R-trees
- multi-dim trees
- Allow nodes to overlap
- Guaranteed 50% utilization – fast search (in 

low dim’s)
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R-trees – conclusions:
• Used in practice:

– Oracle spatial (R-tree) 
– Postgres:    create index … using  gist 
– Databricks (R-trees and z-order)
– Sqlite3:     www.sqlite.org/rtree.html
– Python: (pip install rtree)

https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/indexing-querying-spatial-data.html
https://www.databricks.com/notebooks/GeoMesa-NYC-Taxis.html
http://www.sqlite.org/rtree.html
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