
15-826: Multimedia (Databases)
and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees

C. Faloutsos

15-826 Copyright: C. Faloutsos (2024) #2

Must-read material

• MM-Textbook, Chapter 5.2
• Ramakrinshan+Gehrke, Chapter 28.6
• Guttman, A. (June 1984). R-Trees: A Dynamic

Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF
http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF

15-826 Copyright: C. Faloutsos (2024) #3

R-trees – impact:
• Popular method; like multi-d B-trees
• guaranteed utilization; fast search (low dim’s)
• Used in practice:

– Oracle spatial (R-tree)
– Postgres: create index … using gist
– Databricks (R-trees and z-order)
– Sqlite3: www.sqlite.org/rtree.html
– Python: (pip install rtree)

https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/indexing-querying-spatial-data.html
https://www.databricks.com/notebooks/GeoMesa-NYC-Taxis.html
http://www.sqlite.org/rtree.html

15-826 Copyright: C. Faloutsos (2024) #4

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

15-826 Copyright: C. Faloutsos (2024) #5

Indexing - Detailed outline
• primary key indexing
• secondary key / multi-key indexing
• spatial access methods

– problem dfn
– z-ordering
– R-trees
– ...

• text
• ...

15-826 Copyright: C. Faloutsos (2024) #6

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2024) 7

Spatial Access Methods -
problem

• Given a collection of geometric objects
(points, lines, polygons, ...)

• Find cities within 100mi from Pittsburgh

15-826 Copyright: C. Faloutsos (2024) 8

Solution#2: R-trees
• multi-dim trees
• Allow nodes to overlap
• Guaranteed 50% utilization

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 Copyright: C. Faloutsos (2024) #9

R-trees

• z-ordering: cuts regions to pieces -> dup.
elim.

• how could we avoid that?
• Idea: try to extend/merge B-trees and k-d

trees

15-826 Copyright: C. Faloutsos (2024) #10

R-trees

• [Guttman 84] Main idea: allow parents to
overlap!

Antonin Guttman
[https://dblp.org/pid/81/3404.html]

https://dblp.org/pid/81/3404.html

15-826 Copyright: C. Faloutsos (2024) #11

R-trees

• [Guttman 84] Main idea: allow parents to
overlap!
– => guaranteed 50% utilization
– => easier insertion/split algorithms.
– (only deal with Minimum Bounding Rectangles

- MBRs)

15-826 Copyright: C. Faloutsos (2024) #12

R-trees

• eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

A
B

C

D
E

F
G

H

I

J

15-826 Copyright: C. Faloutsos (2024) #13

R-trees

• eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4
F GD E

H I JA B C

15-826 Copyright: C. Faloutsos (2024) #14

R-trees

• eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-826 Copyright: C. Faloutsos (2024) #15

R-trees - format of nodes

• {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...

15-826 Copyright: C. Faloutsos (2024) #16

R-trees - format of nodes

• {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...
node
ptr ...

15-826 Copyright: C. Faloutsos (2024) #17

R-trees - range search?

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-826 Copyright: C. Faloutsos (2024) #18

R-trees - range search?

P1 P2 P3 P4

F GD E

H I JA B C

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 Copyright: C. Faloutsos (2024) #19

R-trees - range search

Observations:
• every parent node completely covers its
‘children’

• a child MBR may be covered by more than
one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-826 Copyright: C. Faloutsos (2024) #20

R-trees - range search

Observations - cont’d
• a point query may follow multiple branches.
• everything works for any dimensionality

15-826 Copyright: C. Faloutsos (2024) #21

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #22

R-trees - insertion

• eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

DETAILS

15-826 Copyright: C. Faloutsos (2024) #23

R-trees - insertion

• eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

X

DETAILS

15-826 Copyright: C. Faloutsos (2024) #24

R-trees - insertion

• eg., rectangle ‘Y’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY

15-826 Copyright: C. Faloutsos (2024) #25

R-trees - insertion

• eg., rectangle ‘Y’: extend suitable parent.

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY
Y

DETAILS

15-826 Copyright: C. Faloutsos (2024) #26

R-trees - insertion

• eg., rectangle ‘Y’: extend suitable parent.
• Q: how to measure ‘suitability’?

DETAILS

15-826 Copyright: C. Faloutsos (2024) #27

R-trees - insertion

• eg., rectangle ‘Y’: extend suitable parent.
• Q: how to measure ‘suitability’?
• A: by increase in area (volume) (more

details: later, under ‘performance analysis’)
• Q: what if there is no room? how to split?

DETAILS

15-826 Copyright: C. Faloutsos (2024) #28

R-trees - insertion

• eg., rectangle ‘W’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

W

K

K

DETAILS

15-826 Copyright: C. Faloutsos (2024) #29

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how
to split?

A
B

C

P1

W

K

DETAILS

15-826 Copyright: C. Faloutsos (2024) #30

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how
to split?

A
B

C

P1

W

K • (A1: plane sweep,

until 50% of rectangles)

• A2: ‘linear’ split

• A3: quadratic split

• A4: exponential split

DETAILS

15-826 Copyright: C. Faloutsos (2024) #31

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2
R

DETAILS

15-826 Copyright: C. Faloutsos (2024) #32

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• Q: how to measure ‘closeness’?

DETAILS

15-826 Copyright: C. Faloutsos (2024) #33

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• Q: how to measure ‘closeness’?
• A: by increase of area (volume)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #34

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2
R

DETAILS

15-826 Copyright: C. Faloutsos (2024) #35

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2
R

DETAILS

15-826 Copyright: C. Faloutsos (2024) #36

R-trees - insertion & split

• pick two rectangles as ‘seeds’;
• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• smart idea: pre-sort rectangles according to
delta of closeness (ie., schedule easiest
choices first!)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #37

R-trees - insertion - pseudocode

• decide which parent to put new rectangle
into (‘closest’ parent)

• if overflow, split to two, using (say,) the
quadratic split algorithm
– propagate the split upwards, if necessary

• update the MBRs of the affected parents.

DETAILS

15-826 Copyright: C. Faloutsos (2024) #38

R-trees - insertion -
observations

• many more split algorithms exist (see refs)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #39

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #40

R-trees - deletion

• delete rectangle
• if underflow

– ??

DETAILS

15-826 Copyright: C. Faloutsos (2024) #41

R-trees - deletion

• delete rectangle
• if underflow

– temporarily delete all siblings (!);
– delete the parent node and
– re-insert them

DETAILS

15-826 Copyright: C. Faloutsos (2024) #42

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2024) #43

R-trees - range search

pseudocode:
 check the root
 for each branch,
 if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

15-826 Copyright: C. Faloutsos (2024) #44

R-trees - nn search

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2024) #45

R-trees - nn search

• Q: How? (find near neighbor; refine...)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2024) #46

R-trees - nn search

• A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2024) #47

R-trees - nn search

• A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2024) #48

R-trees - nn search

• A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2024) #49

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2024) #50

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

15-826 Copyright: C. Faloutsos (2024) #51

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

15-826 Copyright: C. Faloutsos (2024) #52

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

15-826 Copyright: C. Faloutsos (2024) #53

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-826 Copyright: C. Faloutsos (2024) #54

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-826 Copyright: C. Faloutsos (2024) #55

R-trees - spatial joins
for each parent P1 of tree T1
 for each parent P2 of tree T2
 if their MBRs intersect,
 process them recursively (ie., check their
 children)

15-826 Copyright: C. Faloutsos (2024) #56

R-trees - spatial joins
Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do

plane-sweeping to avoid N1 * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.)

DETAILS

15-826 Copyright: C. Faloutsos (2024) #57

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2024) #58

R-trees - performance analysis
• How many disk (=node) accesses we’ll

need for
– range
– nn
– spatial joins

• why does it matter?

15-826 Copyright: C. Faloutsos (2024) #59

R-trees - performance analysis
• How many disk (=node) accesses we’ll

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc

algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2024) #60

R-trees - performance analysis
• How many disk (=node) accesses we’ll

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc

algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2024) #61

R-trees - performance analysis
• motivating question: on, e.g., split, should

we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

15-826 Copyright: C. Faloutsos (2024) #62

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
 #DiskAccesses(q1,q2) =
 sum (xi,1 + q1) * (xi,2 + q2)
 = sum (xi,1 * xi,2) +
 q2 * sum (xi,1) +
 q1* sum (xi,2)
 q1* q2 * N

‘volume’

surface area

count

15-826 Copyright: C. Faloutsos (2024) #63

R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location?
– “ “ wrt size?

15-826 Copyright: C. Faloutsos (2024) #64

R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location? uniform; (biased)
– “ “ wrt size? uniform

Proof

15-826 Copyright: C. Faloutsos (2024) #65

R-trees - performance analysis
• easier case: we know the positions of parent

MBRs, eg:

Proof

15-826 Copyright: C. Faloutsos (2024) #66

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries)?

P1

x1

x2

Proof

15-826 Copyright: C. Faloutsos (2024) #67

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

POINT queries)?

P1

x1

x2

0 1
0

1

Proof

15-826 Copyright: C. Faloutsos (2024) #68

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

POINT queries)? A: x1*x2

P1

x1

x2

0 1
0

1

Proof

15-826 Copyright: C. Faloutsos (2024) #69

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

0 1
0

1

q1

q2

Proof

15-826 Copyright: C. Faloutsos (2024) #70

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

q1

q2

Proof

15-826 Copyright: C. Faloutsos (2024) #71

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

Proof

15-826 Copyright: C. Faloutsos (2024) #72

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1 x2
q2

x1 q1

Proof

15-826 Copyright: C. Faloutsos (2024) #73

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)? A: (x1+q1)*(x2+q2)

P1 x2
q2

x1 q1

Proof

15-826 Copyright: C. Faloutsos (2024) #74

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
 #DiskAccesses(q1,q2) =
 sum (xi,1 + q1) * (xi,2 + q2)
 = sum (xi,1 * xi,2) +
 q2 * sum (xi,1) +
 q1* sum (xi,2)
 q1* q2 * N

Proof

15-826 Copyright: C. Faloutsos (2024) #75

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
 #DiskAccesses(q1,q2) =
 sum (xi,1 + q1) * (xi,2 + q2)
 = sum (xi,1 * xi,2) +
 q2 * sum (xi,1) +
 q1* sum (xi,2)
 q1* q2 * N

‘volume’

surface area

count

15-826 Copyright: C. Faloutsos (2024) #76

R-trees - performance analysis
Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical

length matters
• for large queries (q1, q2 >> 0): the count N

matters

15-826 Copyright: C. Faloutsos (2024) #77

R-trees - performance analysis

Observations (cont’ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93],

[Kamel+, CIKM93])

Berndt-Uwe Pagel

15-826 Copyright: C. Faloutsos (2024) #78

R-trees - performance analysis
Conclusions:
• splits should try to minimize area and

perimeter
• ie., we want few, small, square-like parent

MBRs
• rule of thumb: shoot for queries with q1=q2 =

0.1 (or =0.5 or so).

15-826 Copyright: C. Faloutsos (2024) 79

Solution#2: R-trees
- multi-dim trees
- Allow nodes to overlap
- Guaranteed 50% utilization – fast search (in

low dim’s)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 Copyright: C. Faloutsos (2024) #80

R-trees – conclusions:
• Used in practice:

– Oracle spatial (R-tree)
– Postgres: create index … using gist
– Databricks (R-trees and z-order)
– Sqlite3: www.sqlite.org/rtree.html
– Python: (pip install rtree)

https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/indexing-querying-spatial-data.html
https://www.databricks.com/notebooks/GeoMesa-NYC-Taxis.html
http://www.sqlite.org/rtree.html

15-826 Copyright: C. Faloutsos (2024) #81

References

• Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, Bernhard Seeger: The R*-Tree: An
Efficient and Robust Access Method for Points
and Rectangles. ACM SIGMOD 1990: 322-331

• Guttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

15-826 Copyright: C. Faloutsos (2024) #82

References
• Jagadish, H. V. (May 23-25, 1990). Linear Clustering of

Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

• Ibrahim Kamel, Christos Faloutsos: On Packing R-trees,
CIKM, 1993

15-826 Copyright: C. Faloutsos (2024) #83

References, cont’d

• Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

• Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

