

15-826: Multimedia (Databases) and Data Mining

Lecture #8: Fractals - introduction

C. Faloutsos

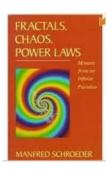
Must-read Material

Christos Faloutsos and Ibrahim Kamel,
 Beyond Uniformity and Independence:
 Analysis of R-trees Using the Concept of
 Fractal Dimension, Proc. ACM SIGACT SIGMOD-SIGART PODS, May 1994, pp.
 4-13, Minneapolis, MN.

Recommended Material

optional, but very useful:

- Manfred Schroeder *Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise* W.H. Freeman and Company, 1991
 - Chapter 10: boxcounting method
 - Chapter 1: Sierpinski triangle



Outline

Goal: 'Find similar / interesting things'

Intro to DB

- Indexing similarity search
- Data Mining

Indexing - Detailed outline

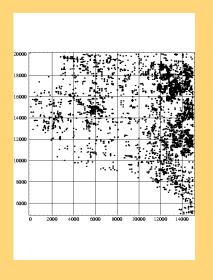
- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

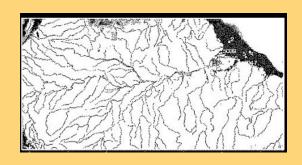
Intro to fractals - outline

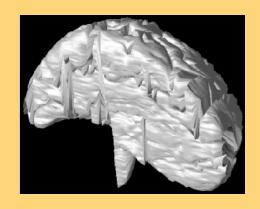
- Motivation 3 problems / case studies
 - Definition of fractals and power laws
 - Solutions to posed problems
 - More examples and tools
 - Discussion putting fractals to work!
 - Conclusions practitioner's guide
 - Appendix: gory details boxcounting plots

Problem

• What patterns are in real *k*-dim points?

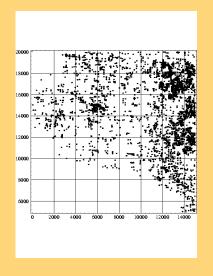


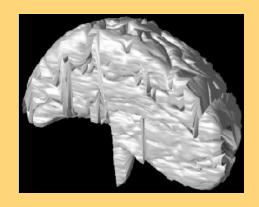




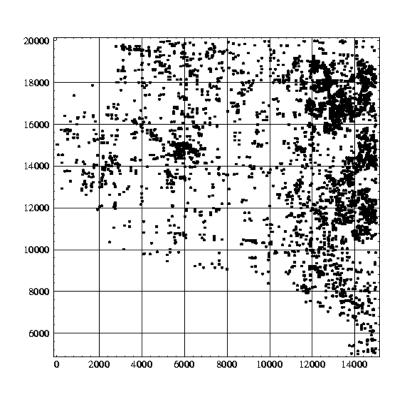
Conclusions

- What patterns are in real *k*-dim points?
- Self-similarity (= fractals -> power laws)





Problem #1: GIS - points



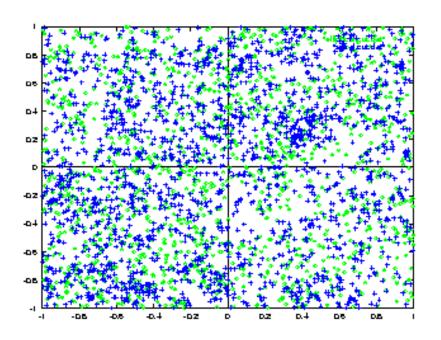
Road end-points of Montgomery county:

- •Q1: how many d.a. for an R-tree?
- •Q2 : distribution?
 - not uniform
 - •not Gaussian
 - •no rules??

Problem #2 - spatial d.m.

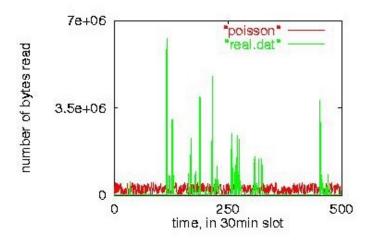
Galaxies (Sloan Digital Sky Survey w/ B.

Nichol)



- 'spiral' and 'elliptical' galaxies
 - (stores and households ...)
- patterns?
- attraction/repulsion?
- how many 'spi' within r from an 'ell'?

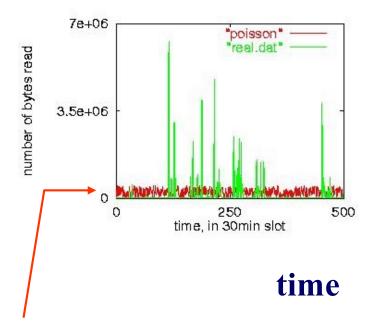
bytes



time

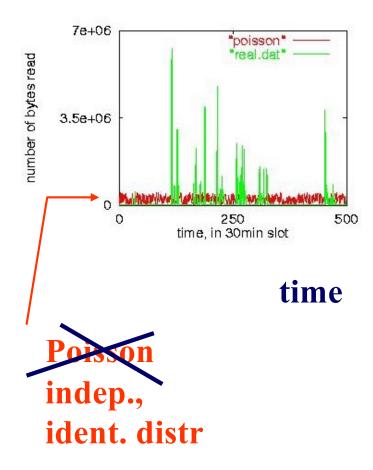
- disk trace (from HP J. Wilkes); Web traffic fit a model
- how many explosions to expect?
- queue length distr.?

bytes

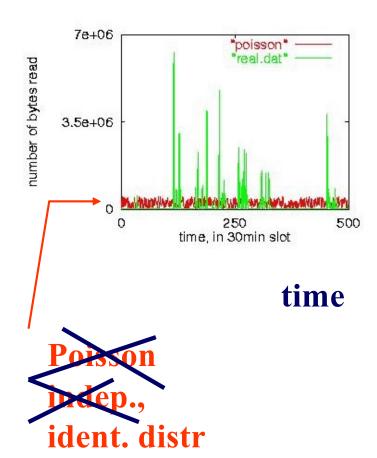


Poisson indep., ident. distr

bytes



bytes



Q: Then, how to generate such bursty traffic?

Common answer:

- Fractals / self-similarities / power laws
- Seminal works from Hilbert, Minkowski, Cantor, Mandelbrot, (Hausdorff, Lyapunov, Ken Wilson, ...)

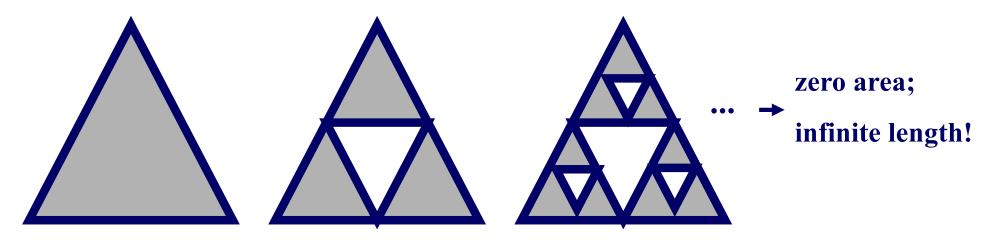
Road map

Motivation – 3 problems / case studies

- Definition of fractals and power laws
- Solutions to posed problems
- More examples and tools
- Discussion putting fractals to work!
- Conclusions practitioner's guide
- Appendix: gory details boxcounting plots

What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:



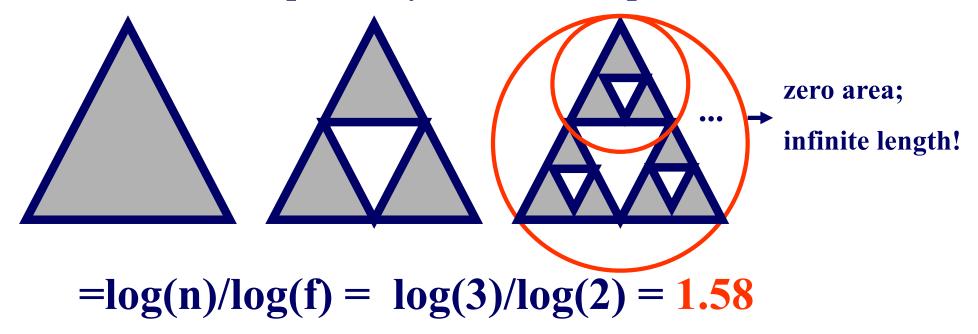
Dimensionality??

Definitions (cont' d)

- Paradox: Infinite perimeter; Zero area!
- 'dimensionality': between 1 and 2
- actually: Log(3)/Log(2) = 1.58...

Dfn of fd:

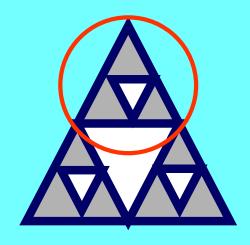
ONLY for a perfectly self-similar point set:



Definitions of f.d.

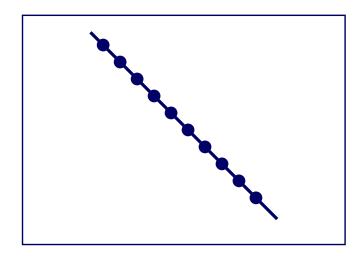
For mathematical fractal

$$fd = \frac{\log(n)}{\log(f)}$$

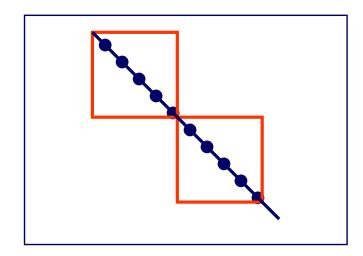


For real set of points:

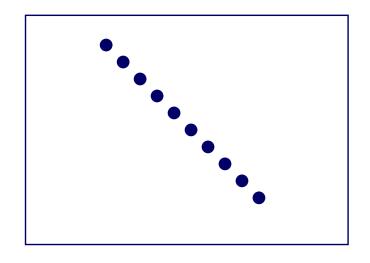
- Q: fractal dimension of a line?
- A: $1 = \log(2)/\log(2)!$



- Q: fractal dimension of a line?
- A: $1 = \log(2)/\log(2)!$



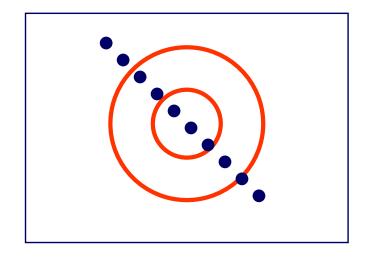
• Q: dfn for a finite set of points?

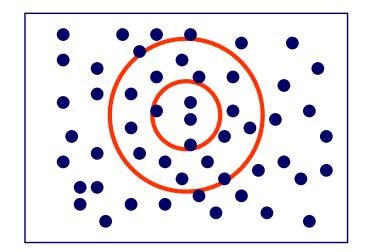


X	y
5	1
4	2
3	3
2	4

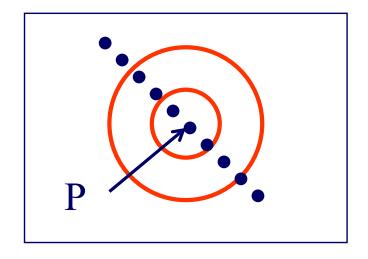
- Q: fractal dimension of a line?
- A: nn (\leq r) ~ r^1 ('power law': y=x^a)

- Q: fd of a plane?
- A: nn (<= r) ~ r^2
 fd== slope of (log(nn) vs log(r))



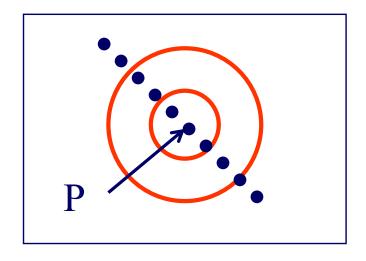


- Local fractal dimension of point 'P'?
- A: nn_P ($\leq r$) $\sim r^1$



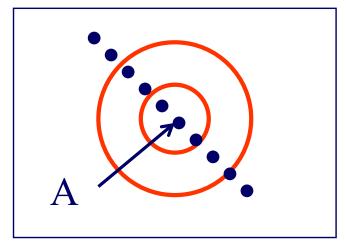
- If this equation holds for several values of r,
- Then, the local fractal dimension of point P:
- Local fd = exp = 1

- Local fractal dimension of point 'A'?
- A: nn_P ($\leq r$) $\sim r^1$



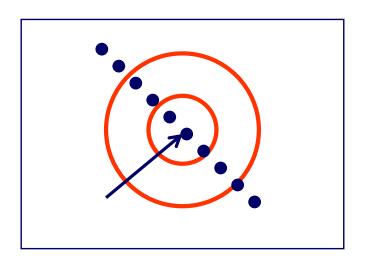
- If this is true for all points of the cloud
- Then the exponent is the **global** f.d.
- Or simply the f.d.

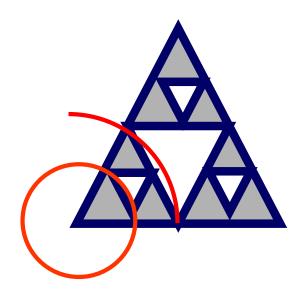
- **Global** fractal dimension?
- A: if
- $\sup_{\text{all}_P} [nn_P (\le r)] \sim r^1$
- Then: exp = global f.d.



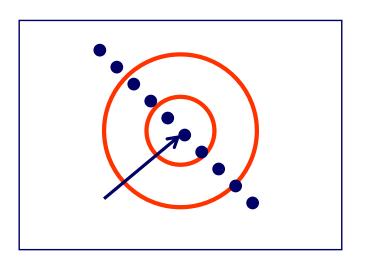
- If this is true for all points of the cloud
- Then the exponent is the **global** f.d.
- Or simply the f.d.

• Local fractal dimension for sierpinski triangle?

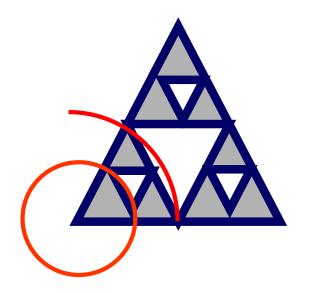




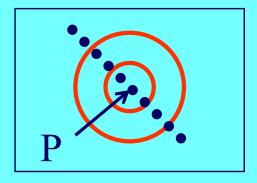
• Local fractal dimension for sierpinski triangle?



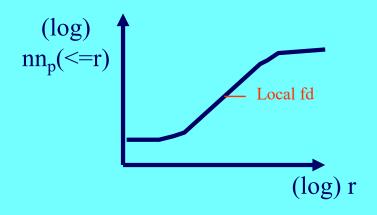
- 2x radius, 3x points
- $n = r \wedge (\log 3/\log 2)$

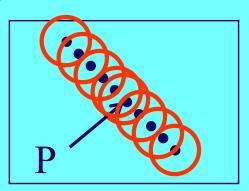


Local and global fd

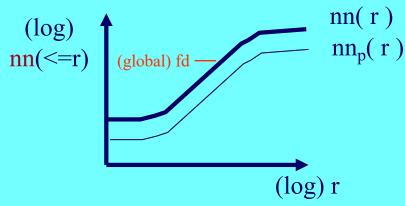


neighbors of P within r $nn_P(\leq r) \propto r^{fd}$





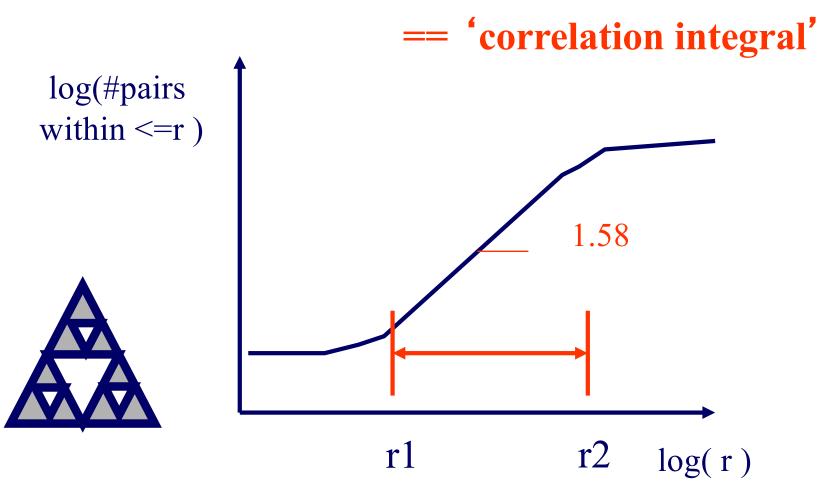
Sum_P(# neighbors within r) =
All pairs of neighbors within r = $nn(\leq r) \propto r^{fd}$



- Algorithm, to estimate it?
 Notice
- $Sum_{all_P} [nn_P (<=r)]$ is exactly tot#pairs(<=r)

including 'mirror' pairs

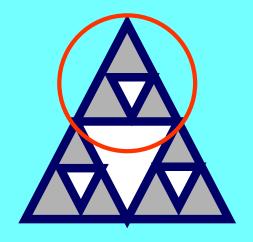
Sierpinsky triangle



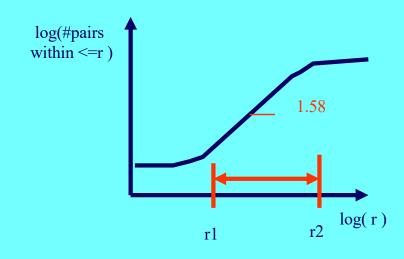
Definitions of f.d.

For mathematical fractal:

$$fd = \frac{\log(n)}{\log(f)}$$



For real set of points: fd in the **range** (r1, r2): Slope of corr. integral



Observations:

- Euclidean objects have **integer** fractal dimensions
 - point: 0
 - lines and smooth curves: 1
 - smooth surfaces: 2
- fractal dimension -> roughness of the periphery

Important properties

- fd = embedding dimension -> uniform pointset
- a point set may have several fd, depending on scale

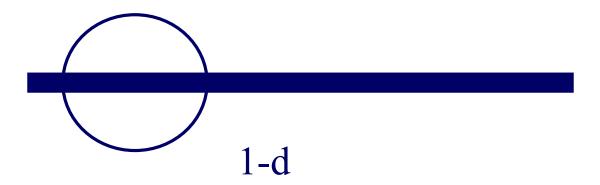
Important properties

- fd = embedding dimension -> uniform pointset
- a point set may have several fd, depending on scale

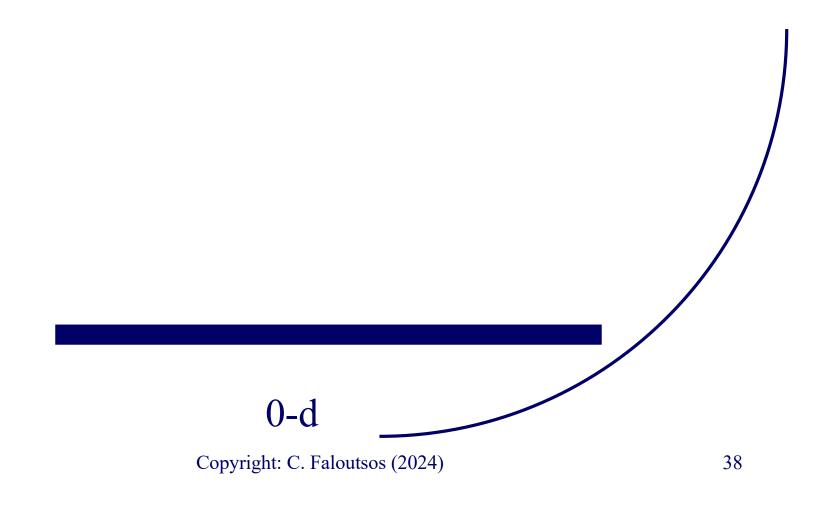
2-d

Important properties

- fd = embedding dimension -> uniform pointset
- a point set may have several fd, depending on scale



Important properties



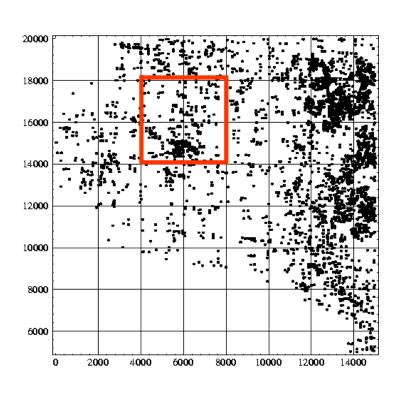
15-826

Road map

- Motivation 3 problems / case studies
- Definition of fractals and power laws

- Solutions to posed problems
- More examples and tools
- Discussion putting fractals to work!
- Conclusions practitioner's guide
- Appendix: gory details boxcounting plots

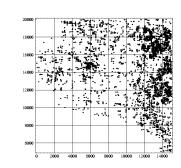
Problem #1: GIS points



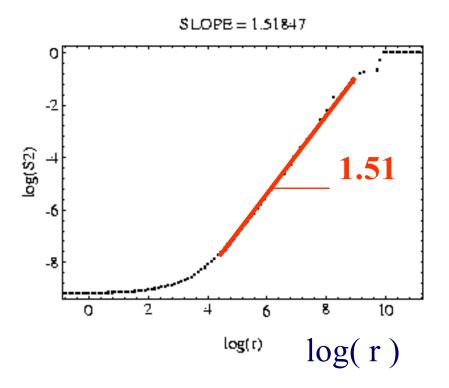
Cross-roads of Montgomery county:

•any rules?

Solution #1



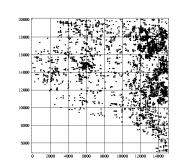
log(#pairs(within <= r))



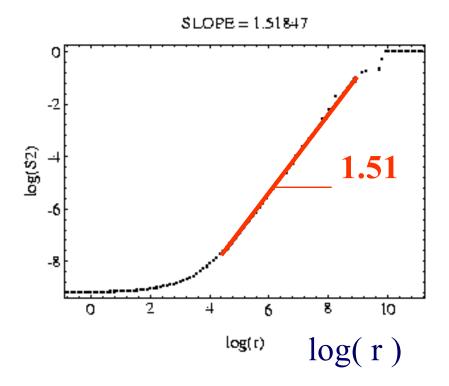
A: self-similarity ->

- <=> fractals
- <=> scale-free
- \ll power-laws (y=x^a, F=C*r^(-2))
- avg#neighbors(<= r)r^D

Solution #1



log(#pairs(within <= r))

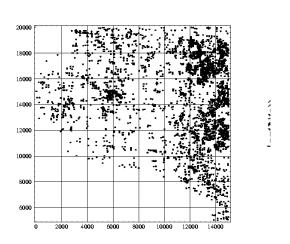


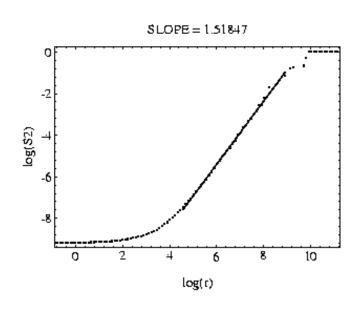
A: self-similarity

• avg#neighbors($\leq r$) $\sim r^{(1.51)}$

Examples:MG county

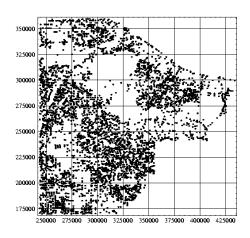
 Montgomery County of MD (road endpoints)

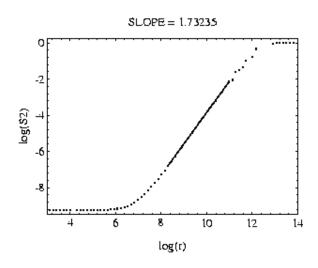




Examples:LB county

• Long Beach county of CA (road end-points)

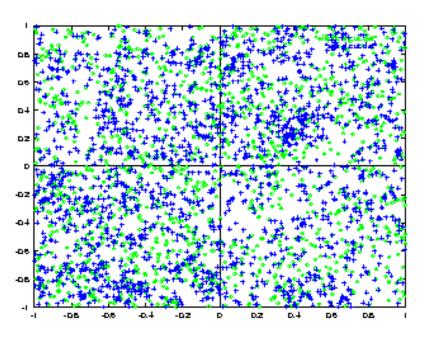


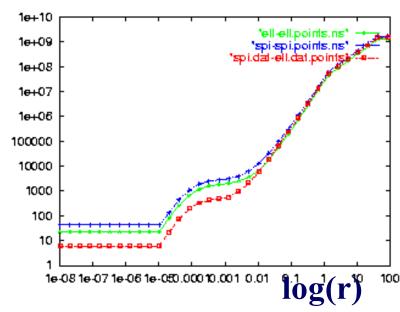


Solution#2: spatial d.m.

Galaxies ('BOPS' plot - [sigmod2000])

log(#pairs)



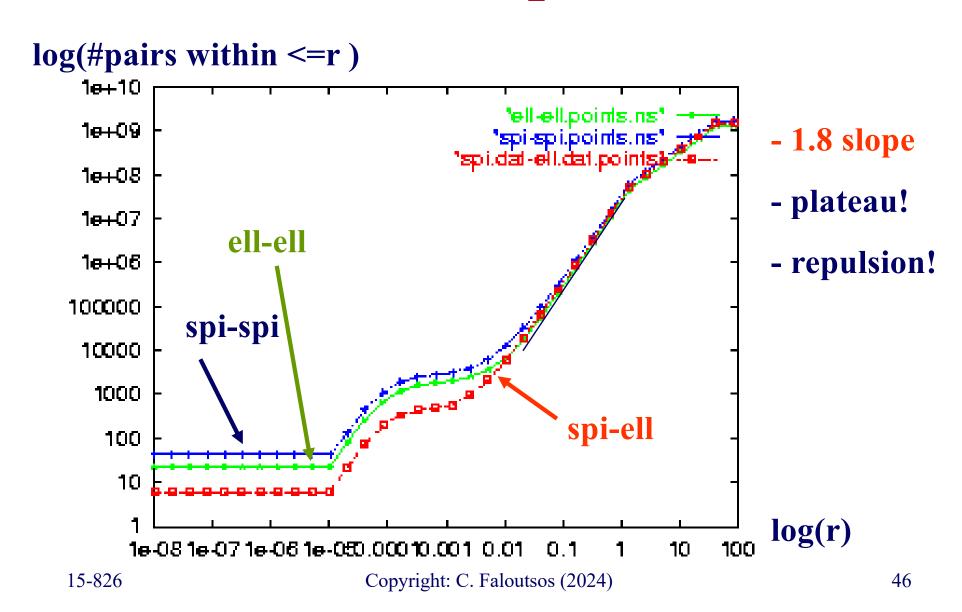


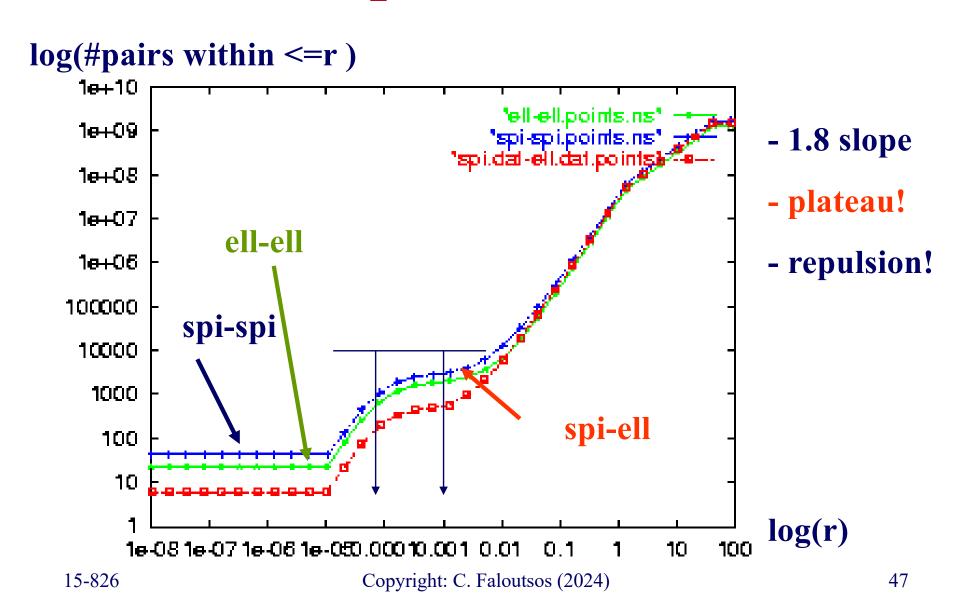
15-826

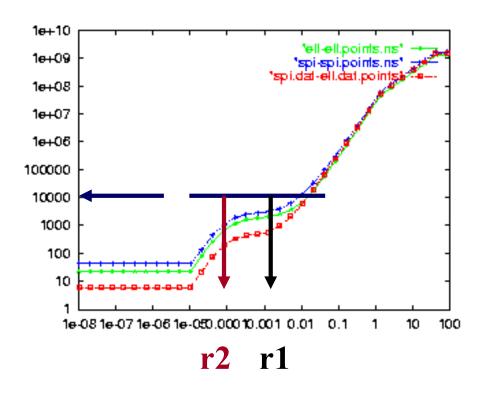
Copyright: C. Faloutsos (2024)

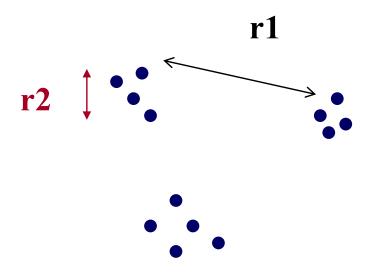
15

Solution#2: spatial d.m.

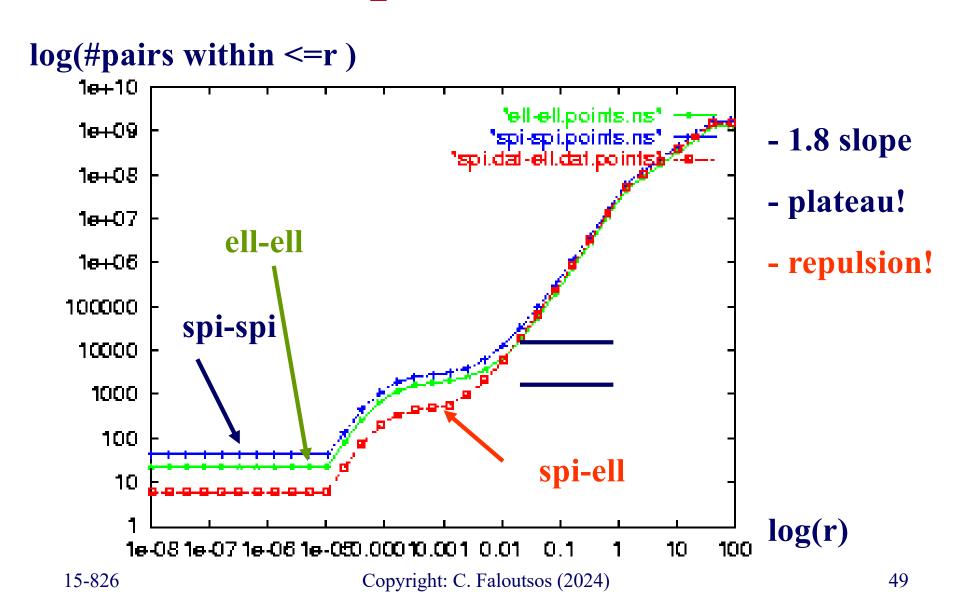


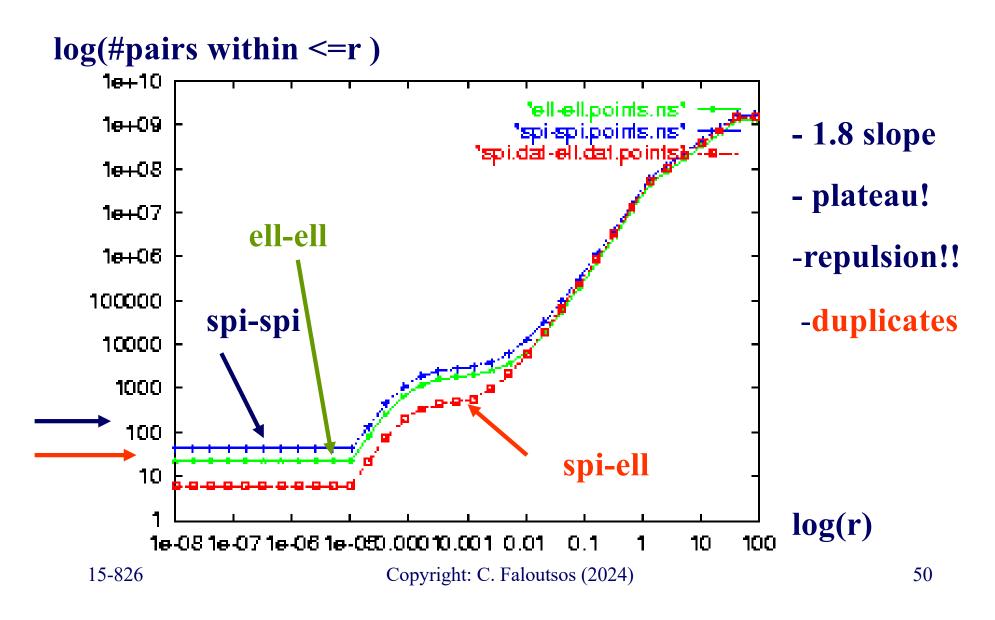






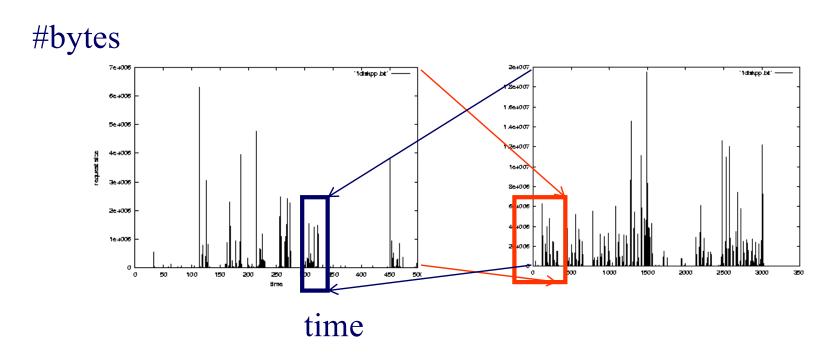
Heuristic on choosing # of clusters





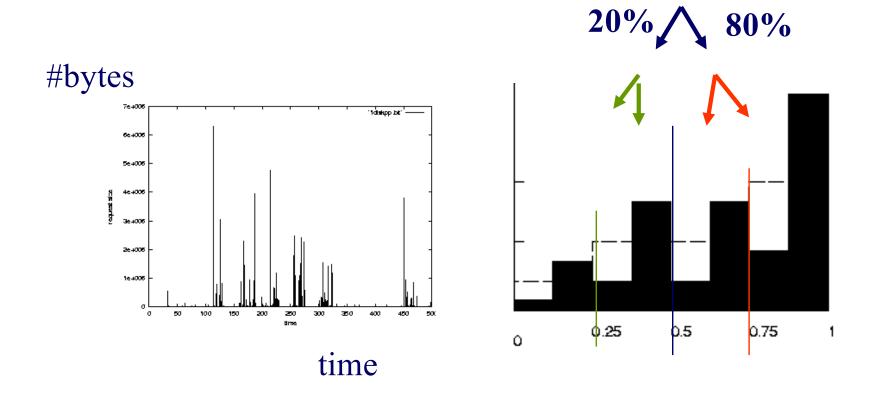
Solution #3: traffic

• disk traces: self-similar:

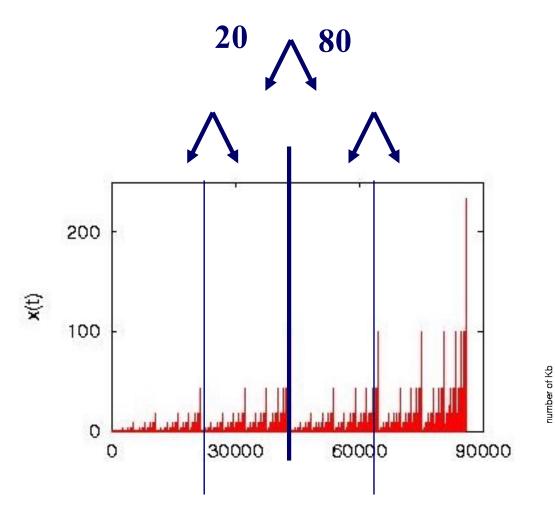


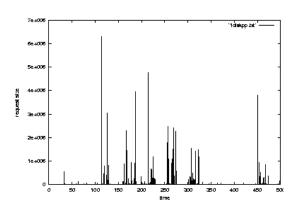
Solution #3: traffic

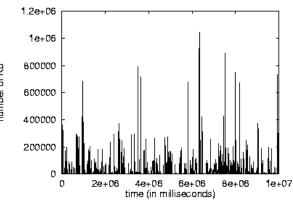
• disk traces (80-20 'law' = 'multifractal')



80-20 / multifractals

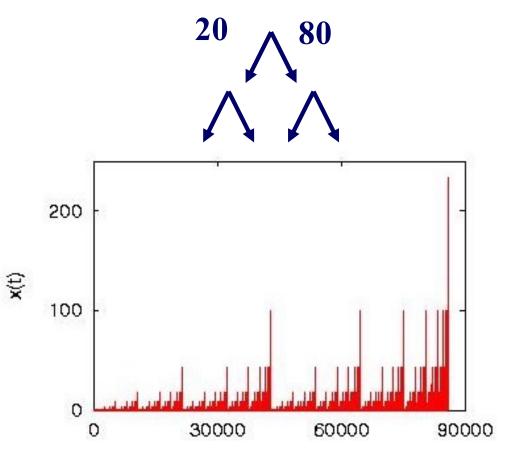






Copyright: C. Faloutsos (2024)

80-20 / multifractals



- p; (1-p) in general
- yes, there are dependencies

Solution#3: traffic

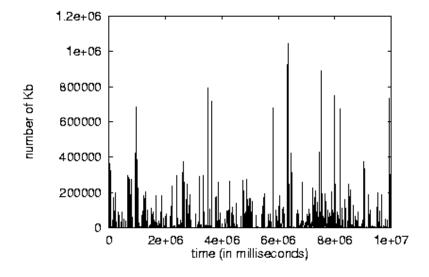
Clarification:

- fractal: a set of points that is self-similar
- multifractal: a probability density function that is self-similar

Many other time-sequences are bursty/clustered: (such as?)

Example:

network traffic

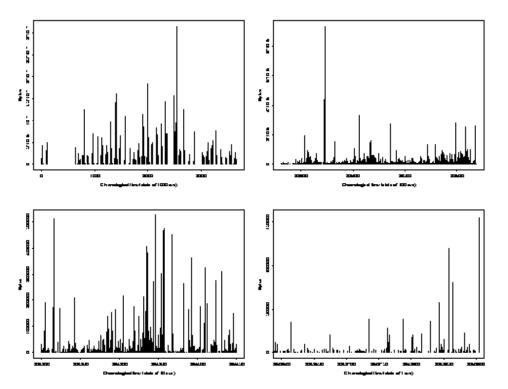


http://repository.cs.vt.edu/lbl-conn-7.tar.Z

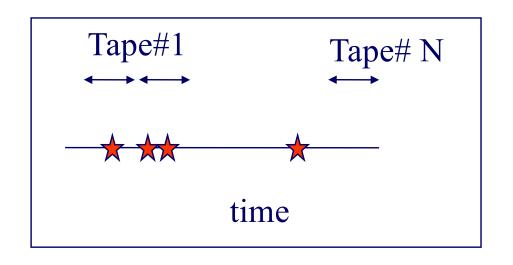
Web traffic

• [Crovella Bestavros, SIGMETRICS' 96]

1000 sec; 100sec 10sec; 1sec



Tape accesses



tapes needed, to retrieve *n* records?

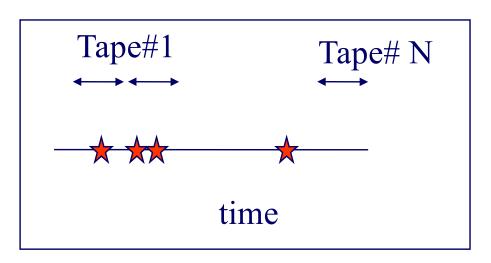
(# days down, due to failures / hurricanes / communication

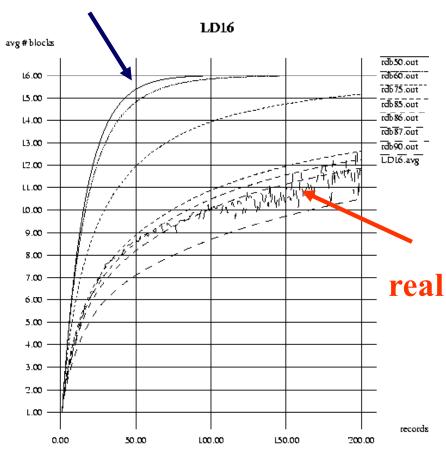
noise...)

Tape accesses

50-50 = Poisson

tapes retrieved





qual. records

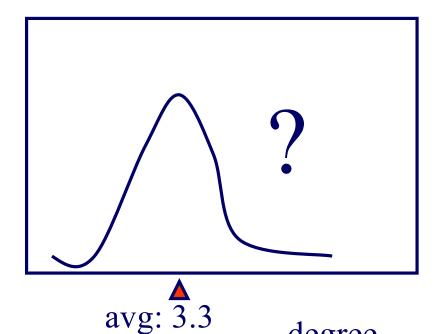
Road map

- Motivation 3 problems / case studies
- Definition of fractals and power laws
- Solutions to posed problems

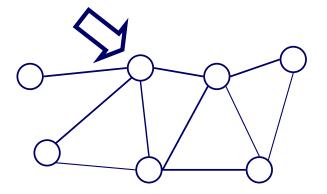
- More tools and examples
- Discussion putting fractals to work!
- Conclusions practitioner's guide
- Appendix: gory details boxcounting plots

A counter-intuitive example

count



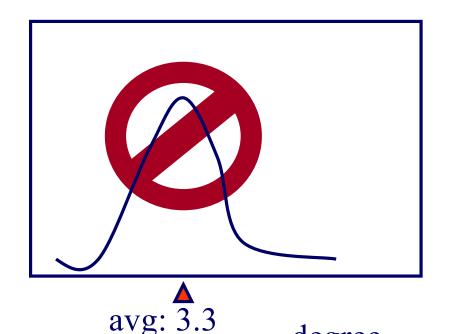
- avg degree is, say 3.3
- pick a node at random
 guess its degree,
 exactly (-> "mode")



degree
Copyright: C. Faloutsos (2024)

A counter-intuitive example

count

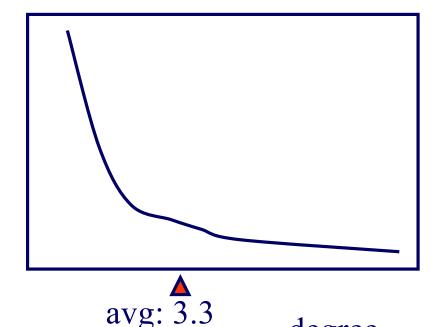


- avg degree is, say 3.3
- pick a node at random
 guess its degree,
 exactly (-> "mode")
- A: 1!!

degree

A counter-intuitive example

count



- avg degree is, say 3.3
- pick a node at random
 what is the degree
 you expect it to have?
- A: 1!!
- A': very skewed distr.
- Corollary: the mean is meaningless!
- (and std -> infinity (!))

15-826

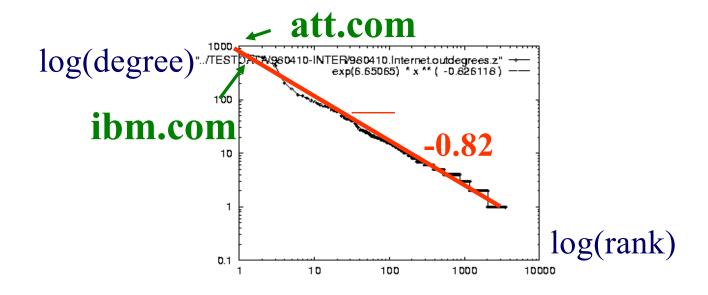
degree
Copyright: C. Faloutsos (2024)

65

Rank exponent R

• Power law in the degree distribution [SIGCOMM99]

internet domains

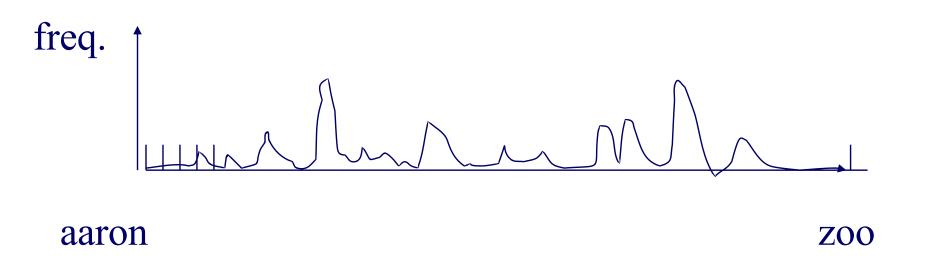


More tools

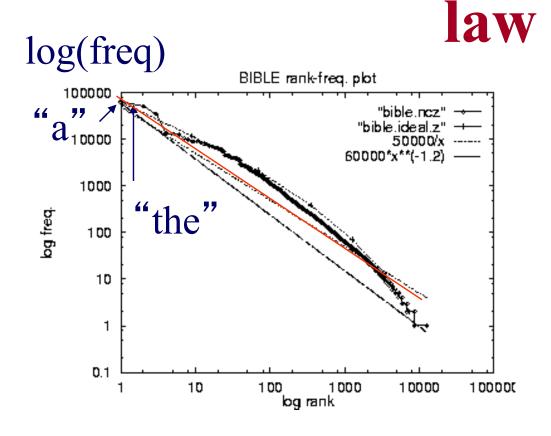
- Zipf's law
- Korcak's law / "fat fractals"

A famous power law: Zipf's law

- Q: vocabulary word frequency in a document
- any pattern?



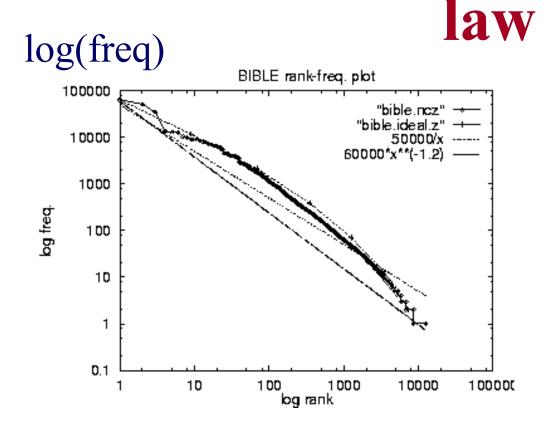
A famous power law: Zipf's



• Bible - rank vs frequency (log-log)

log(rank)

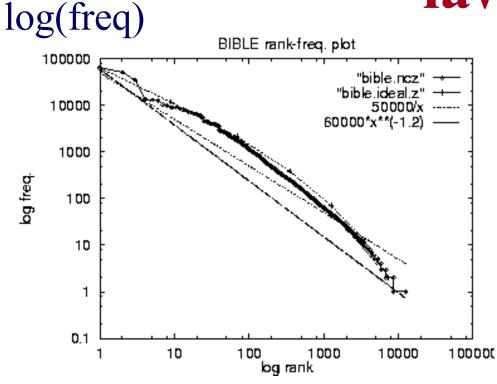
A famous power law: Zipf's



log(rank)

- Bible rank vs frequency (log-log)
- similarly, in many other languages; for customers and sales volume; city populations etc etc

A famous power law: Zipf's law



•Zipf distr:

freq = 1/ rank

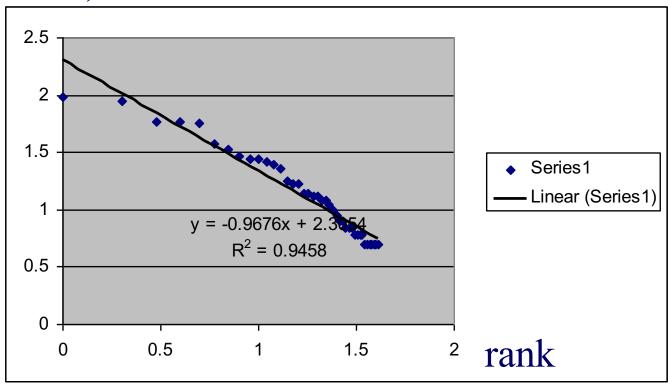
•generalized Zipf:

$$freq = 1 / (rank)^a$$

log(rank)

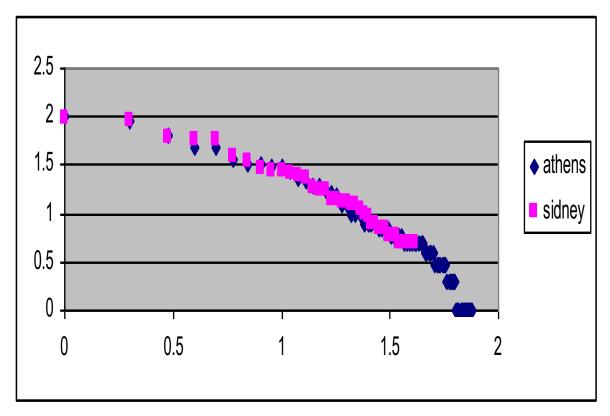
Olympic medals (Sydney):

log(#medals)



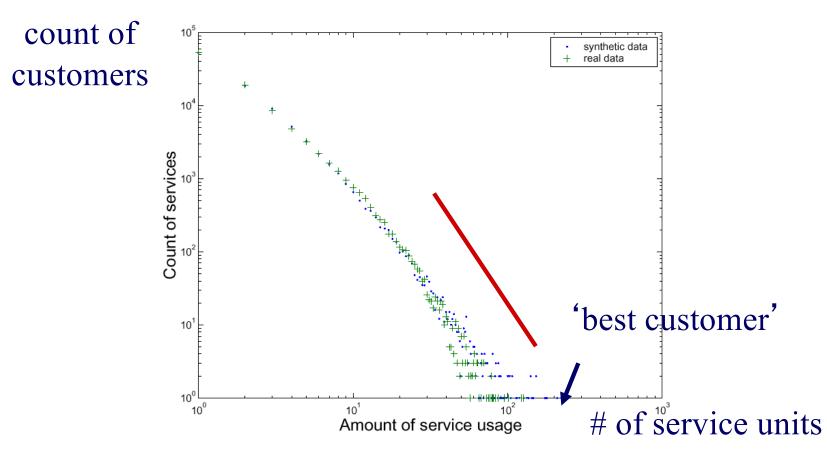
Olympic medals (Sydney' 00, Athens' 04):

log(#medals)



log(rank)

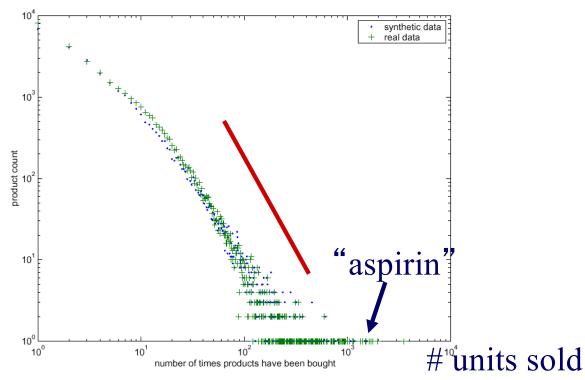
TELCO data



Count-frequency plot of real and synthetic data

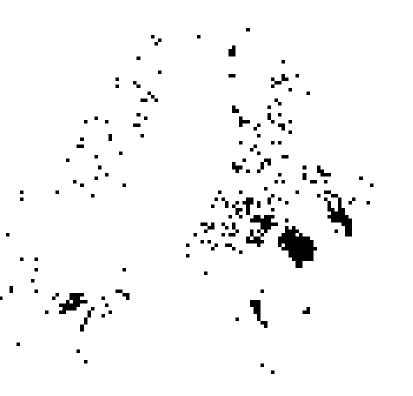
SALES data – store#96

count of products



Count-frequency plot for store no. 96.

More power laws: areas – Korcak's law



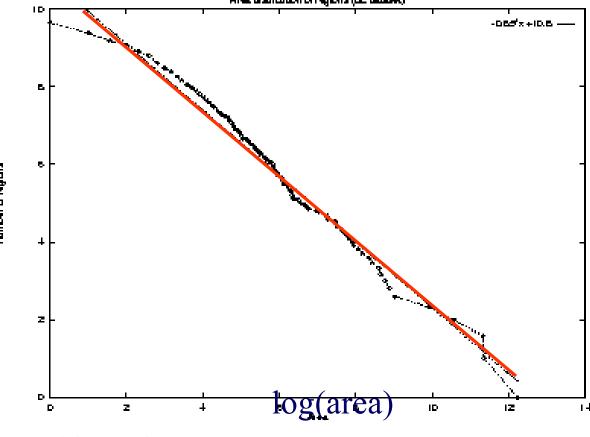
Scandinavian lakes

Any pattern?

More power laws: areas – Korcak's law

log(count(>= area))

Scandinavian lakes area vs complementary cumulative count (log-log axes)



15-826

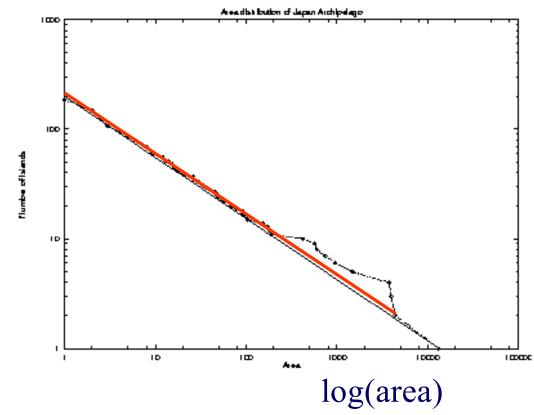
Copyright: C. Faloutsos (2024)

More power laws: Korcak

Japan islands;

area vs cumulative count (log-log axes)

log(count(>= area))



Copyright: C. Faloutsos (2024)

(Korcak's law: Aegean islands)

Korcak's law & "fat fractals"

How to generate such regions?

Korcak's law & "fat fractals"

Q: How to generate such regions?

A: recursively, from a single region 15-826 Copyright: C. Faloutsos (2024)

so far we' ve seen:

- concepts:
 - fractals, multifractals and fat fractals
- tools:
 - correlation integral (= pair-count plot)
 - rank/frequency plot (Zipf's law)
 - CCDF (Korcak's law)

so far we' ve seen:

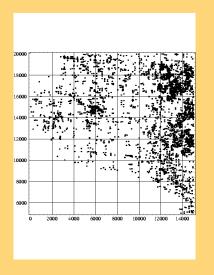
- concepts:
 - fractals, multifractals and fat fractals
- tools:
 - correlation integral (= pair-count plot)
- rank/frequency plot (Zipf's law)CCDF (Korcak's law)

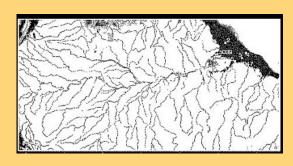
Next:

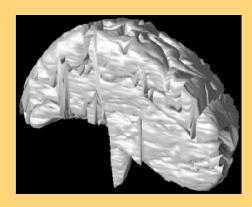
- More examples / applications
- Practitioner's guide
- Box-counting: fast estimation of correlation integral

Problem

• What patterns are in real *k*-dim points?

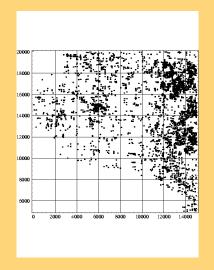


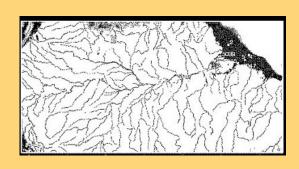


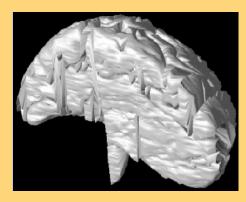


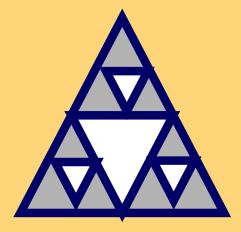
Conclusions

- What patterns are in real *k*-dim points?
- Self-similarity (= fractals -> power laws)





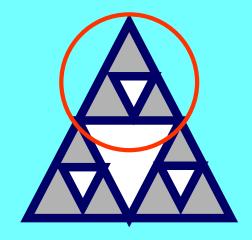




Definitions of f.d.

For mathematical fractal:

$$fd = \frac{\log(n)}{\log(f)}$$



For real set of points: fd in the **range** (r1, r2): Slope of corr. integral

