15-826: Multimedia (Databases) and Data Mining

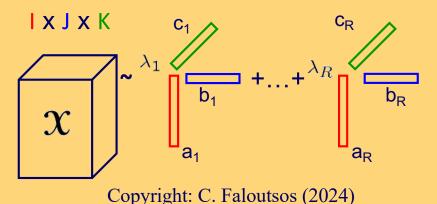
Lecture #19: Tensor decompositions C. Faloutsos

Problem

- Q: who-calls-whom-when patterns?
 - Triplets (source-ip, dest-ip, port#)
 - KB (subject, verb, object)

Conclusions

- Q: who-calls-whom-when patterns?
 - Triplets (source-ip, dest-ip, port#)
 - KB (subject, verb, object)
- A: Tensor analysis (PARAFAC)
 - http://www.tensortoolbox.org/



Must-read Material

• [Graph-Textbook] Ch.16.

 Tensors survey: Papalexakis, Faloutsos, Sidiropoulos <u>Tensor for Data Mining and</u> <u>Data Fusion: Models, Applications, and</u> <u>Scalable Algorithms</u> ACM Trans. on Intelligent Systems and Technology, 8,2, Oct. 2016. (local copy)

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Data Mining

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- text
- Singular Value Decomposition (SVD)
 - ...
 - Tensors
- multimedia

Outline

- Motivation Definitions
- Tensor tools
- Case studies

Most of foils by

- Dr. Tamara Kolda (Sandia N.L.)
- <u>csmr.ca.sandia.gov/~tgkolda</u>
- Prof. Jimeng Sun (UIUC)
- <u>https://cs.illinois.edu/about/people/fa</u> <u>culty/jimeng</u>

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/

Motivation 1: Why "matrix"?

• Why matrices are important?

Examples of Matrices: Graph - social network

	John		Peter	Mary	Nick	•••
John Peter Mary Nick		0	11	22	55	
Peter		5	0	6	7	
Mary						
N1CK			•			
•••						

Examples of Matrices: cloud of n-d points

	chol#	blood#	age	••	•••
John	13	11	22	55	
John Peter Mary Nick	5	4	6	7	
Mary					
N1CK				•••	
•••				•••	

Examples of Matrices: Market basket

• market basket as in Association Rules milk bread choc. wine

John	13	11	22	55	
Peter	5	4	6	7	
John Peter Mary Nick					
•••		•••			

Examples of Matrices: Documents and terms

	data	mining	classif.	tree	•••
Paper#1	13	11	22	55	
Paper#2	5	4	6	7	
Paper#3					
Paper#3 Paper#4			•••		
•••			•••	•••	

Examples of Matrices: Authors and terms

	data		mining	classif.	tree	•••
John Peter Mary Nick	1	13	11	22	55	
Peter		5	4	6	7	
Mary						
N1CK						
•••		•••				

Examples of Matrices: sensor-ids and time-ticks

	temp1	temp2	humid.	pressure	•••
t 1	13	11	22	55	
t2 t3 t4	5	4	6	7	
t3					
t4				•••	

Motivation: Why tensors?

• Q: what is a tensor?

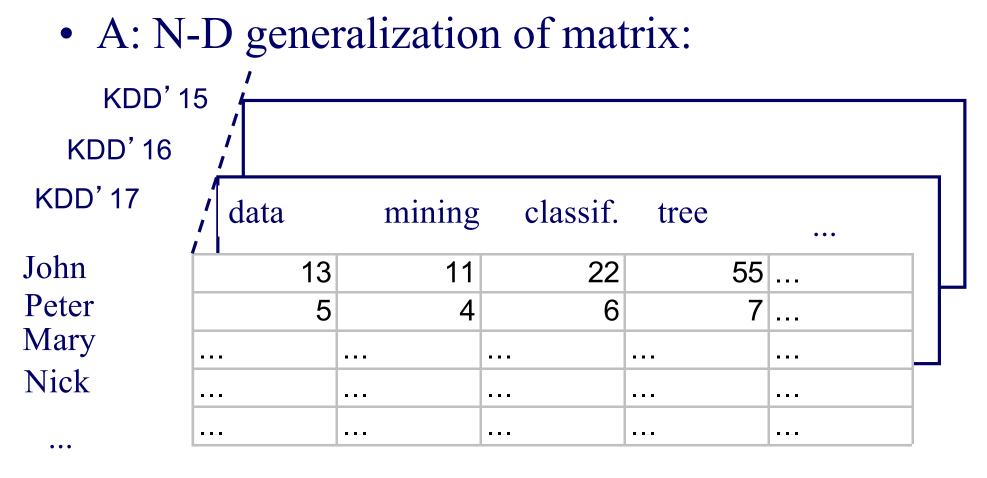
Motivation 2: Why tensor?

• A: N-D generalization of matrix:

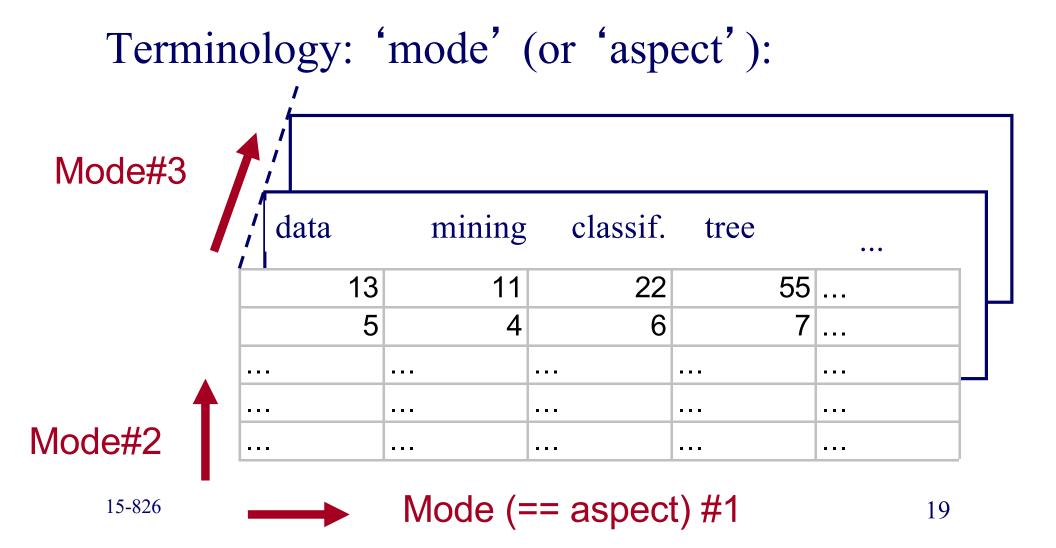
KDD' 17	data	mining	classif.	tree	•••
John Peter	13	11	22	55	
Peter	5	4	6	7	
Mary Nick					
N1ck					
•••					

15-826

Motivation 2: Why tensor?



Tensors are useful for 3 or more modes

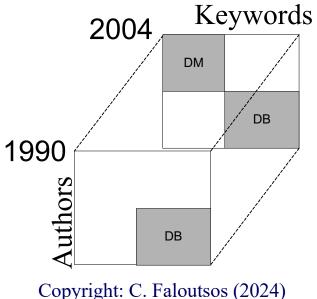


Motivating Applications

- Why matrices are important?
- Why tensors are useful?
 - P1: social networks
 - P2: web mining

P1: Social network analysis

- Traditionally, people focus on static networks and find community structures
- We plan to monitor the change of the community structure over time



P2: Web graph mining

- How to order the importance of web pages?
 - Kleinberg's algorithm HITS
 - PageRank
 - Tensor extension on HITS (TOPHITS)
 - context-sensitive hypergraph analysis

Outline

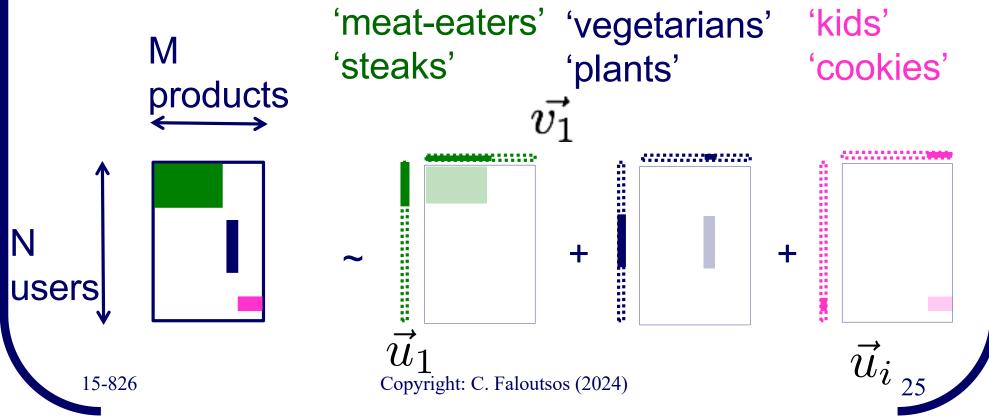
- Motivation Definitions
- Tensor tools
- Case studies

- Tensor Basics
- TuckerPARAFAC

Tensor Basics

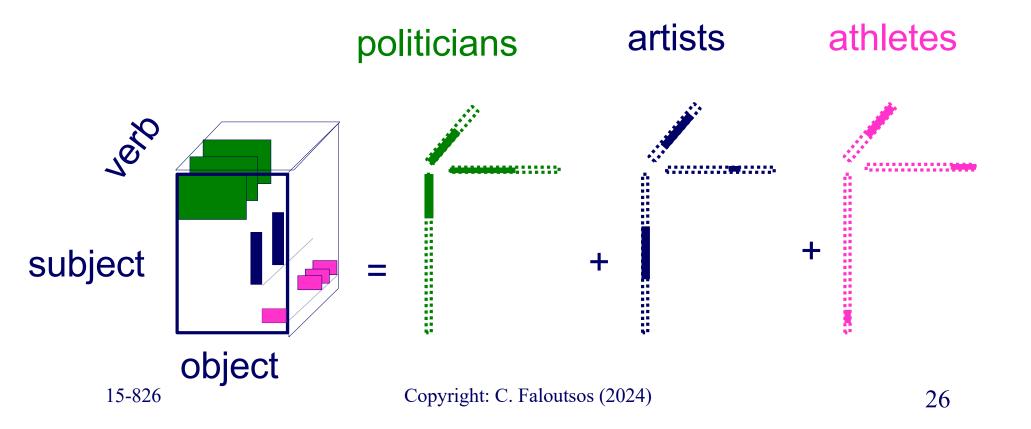
Answer to both: tensor factorization

• Recall: (SVD) matrix factorization: finds blocks



Answer to both: tensor factorization

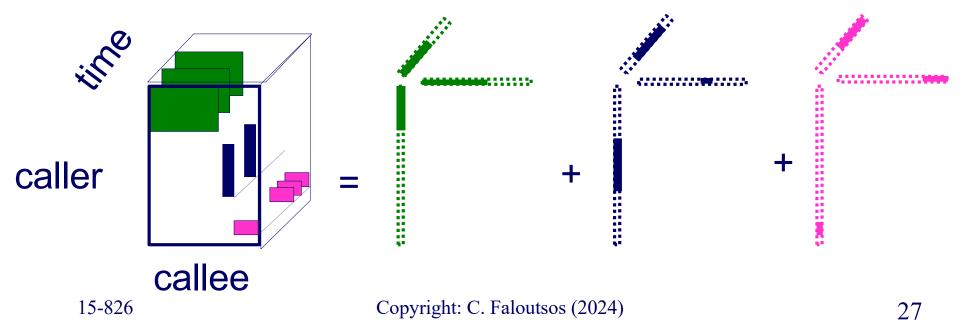
• PARAFAC decomposition

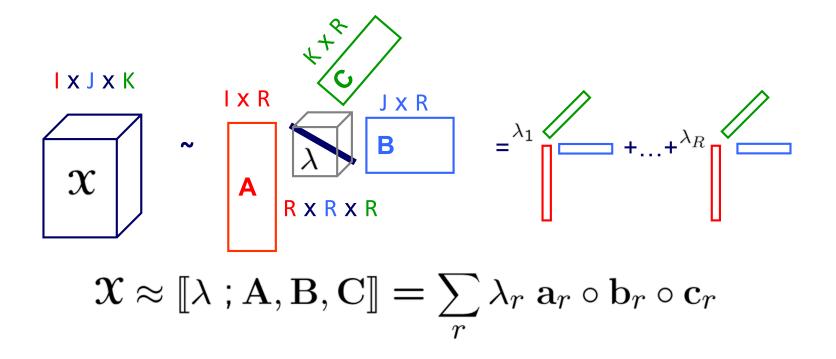


Answer: tensor factorization

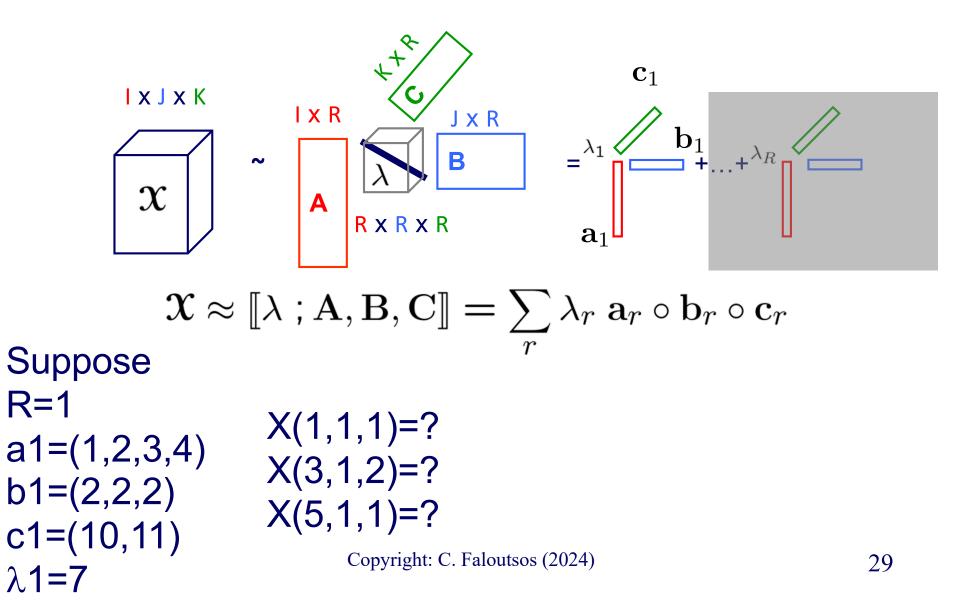
??

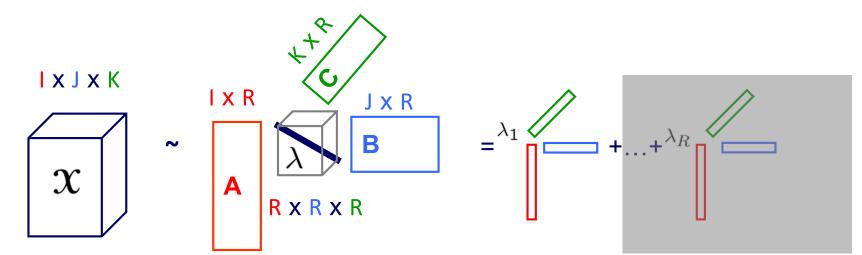
- PARAFAC decomposition
- Results for who-calls-whom-when - 4M x 15 days ?? ??





Example of outer product 'o':

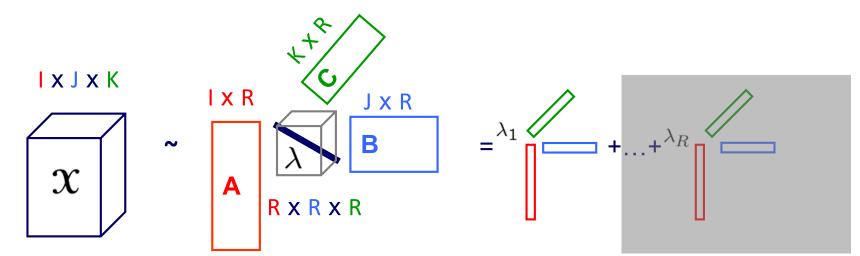




$$\mathfrak{X} \approx \llbracket \lambda ext{ ; A, B, C}
rbracket = \sum_r \lambda_r extbf{a}_r \circ extbf{b}_r \circ extbf{c}_r$$

Suppose r=1 a1=(**1**,2,3,4) b1=(**2**,2,2) c1=(**10**,11) λ1=**7**

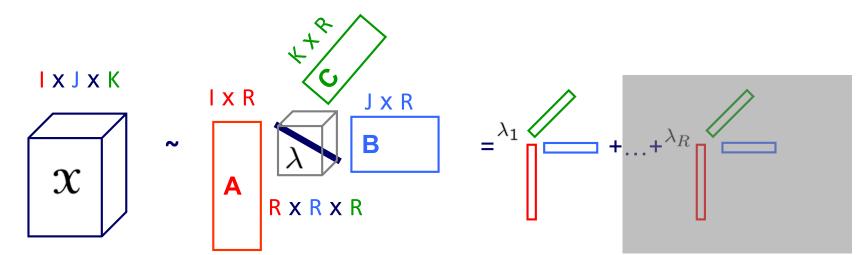
X(1,1,1)=7 *1*2*10 X(3,1,2)=? X(5,1,1)=?



$$\mathfrak{X} \approx \llbracket \lambda ext{ ; A, B, C}
rbracket = \sum_r \lambda_r extbf{a}_r \circ extbf{b}_r \circ extbf{c}_r$$

Suppose r=1 a1=(1,2,3,4) b1=(2,2,2) c1=(10,11) λ1=7

```
X(1,1,1)=7*1*2*10
X(3,1,2)= 7*3*2*11
X(5,1,1)= ??
```



$$\mathfrak{X} \approx \llbracket \lambda \; ; \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket = \sum_r \lambda_r \; \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

Suppose r=1 a1=(1,2,3,4) b1=(2,2,2) c1=(10,11) λ1=7

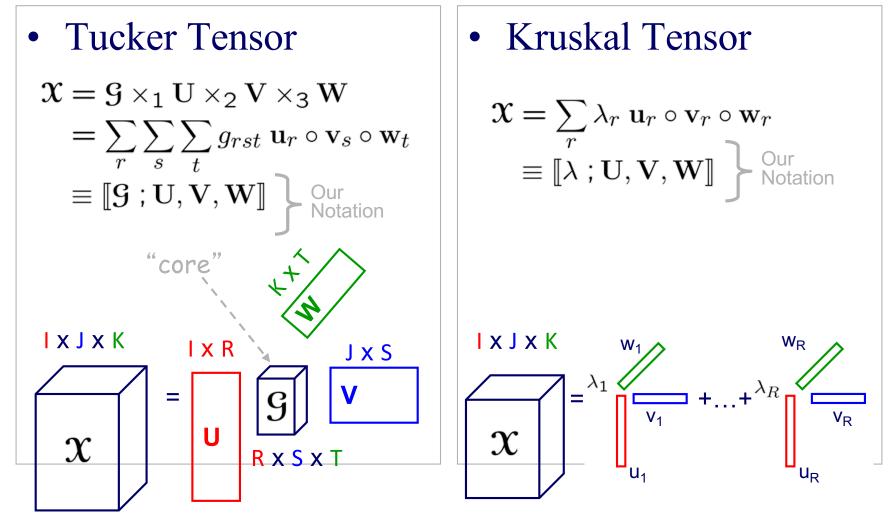
X(1,1,1)=7*1*2*10 X(3,1,2)= 7*3*2*11 X(5,1,1)= N/A - TRICK QUESTION

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ``alternating least squares'' (ALS)
- Details follow

Specially Structured Tensors

Specially Structured Tensors



Specially Structured Tensors

• Tucker Tensor $\mathbf{x} = \mathbf{g} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W}$ $= \sum_r \sum_s \sum_t g_{rst} \mathbf{u}_r \circ \mathbf{v}_s \circ \mathbf{w}_t$ $\equiv [\mathbf{g}; \mathbf{U}, \mathbf{V}, \mathbf{W}]$

In matrix form:

$$\begin{aligned} \mathbf{X}_{(1)} &= \mathbf{U}\mathbf{G}_{(1)}(\mathbf{W}\otimes\mathbf{V})^{\mathsf{T}} \\ \mathbf{X}_{(2)} &= \mathbf{V}\mathbf{G}_{(2)}(\mathbf{W}\otimes\mathbf{U})^{\mathsf{T}} \\ \mathbf{X}_{(3)} &= \mathbf{W}\mathbf{G}_{(3)}(\mathbf{V}\otimes\mathbf{U})^{\mathsf{T}} \end{aligned}$$

 $\mathsf{vec}(\mathfrak{X}) = (\mathbf{W} \otimes \mathbf{V} \otimes \mathbf{U})\mathsf{vec}(\mathfrak{G})$

In matrix form:

Let
$$\Lambda = \operatorname{diag}(\lambda)$$

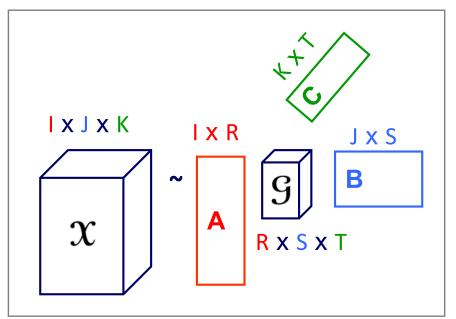
 $\mathbf{X}_{(1)} = \mathbf{U} \Lambda (\mathbf{W} \odot \mathbf{V})^{\mathsf{T}}$
 $\mathbf{X}_{(2)} = \mathbf{V} \Lambda (\mathbf{W} \odot \mathbf{U})^{\mathsf{T}}$
 $\mathbf{X}_{(3)} = \mathbf{W} \Lambda (\mathbf{V} \odot \mathbf{U})^{\mathsf{T}}$

$$\operatorname{vec}(\mathfrak{X}) = (\mathbf{W} \odot \mathbf{V} \odot \mathbf{U}) \lambda$$

Tensor Decompositions

Carnegie Mellon

Tucker Decomposition - intuition



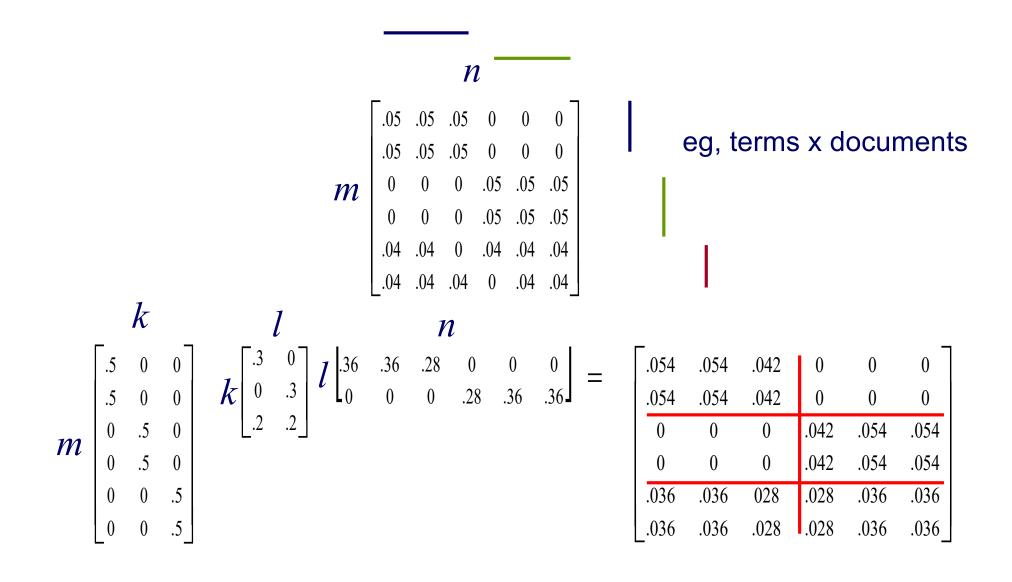
- author x keyword x conference
- A: author x author-group
- B: keyword x keyword-group
- C: conf. x conf-group
- G: how groups relate to each other 15-826 Copyright: C. Faloutsos (2024)

Needs elaboration!

Intuition behind core tensor

- 2-d case: co-clustering
- [Dhillon et al. <u>Information-Theoretic Co-</u> <u>clustering</u>, KDD' 03]

Carnegie Mellon



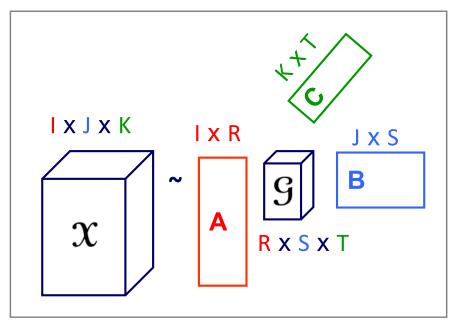
med	. doc cs doc					
	$\begin{bmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \end{bmatrix}$	med	. ter	ms)	
torm group y	0 0 0 .05 .05 .05 0 0 0 .05 .05 .05	CS	s ter	ms		
term group x doc. group	$\begin{bmatrix} .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{bmatrix}$		com	nmc	on te	erms
$\begin{bmatrix} .5 & 0 & 0 \end{bmatrix} \begin{bmatrix} .3 & 0 \end{bmatrix} \begin{array}{c} .36 \end{bmatrix}$.36 .28 0 0 0 =	.054 .054	.042	0	0	0
	$\begin{bmatrix} .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & .28 & .36 & .36 \end{bmatrix} =$.054 .054	.042	0	0	0
$\begin{bmatrix} 0 & .5 & 0 \end{bmatrix}$ $\begin{bmatrix} .2 & .2 \end{bmatrix}$		0 0	0	.042	.054	.054
0 .5 0		0 0	0	.042	.054	.054
0 0 .5	doc x	.036 .036	028	.028	.036	.036
0 0 .5	doc group	.036 .036	.028	.028	.036	.036

term x ter^{fm⁸²}group

Carnegie Mellon

Carnegie Mellon

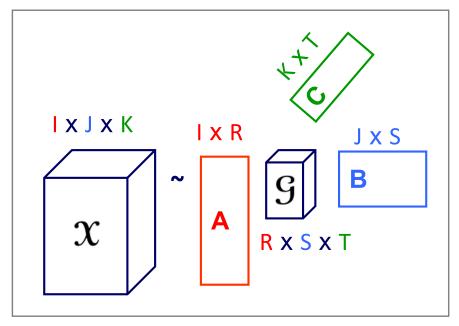
Tucker Decomposition



$\mathfrak{X} \approx \llbracket \mathfrak{G} ; \mathbf{A}, \mathbf{B}, \mathbf{C} rbracket$

- Proposed by Tucker (1966)
- AKA: Three-mode factor analysis, three-mode PCA, orthogonal array decomposition
- A, B, and C generally assumed to be orthonormal (generally assume they have full column rank)
- G is <u>not</u> diagonal
- Not unique

Tucker Decomposition



- Proposed by Tucker (1966)
- AKA: Three-mode factor analysis, three-mode PCA, orthogonal array decomposition
- A, B, and C generally assumed to be orthonormal (generally assume they have full column rank)
- G is <u>not</u> diagonal
- Not unique

$$\mathfrak{X} \approx \llbracket \mathfrak{G} \ ; \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket$$

Given A, B, C, the optimal core is: $\mathbf{G} = [\![\mathfrak{X} ; \mathbf{A}^{\dagger}, \mathbf{B}^{\dagger}, \mathbf{C}^{\dagger}]\!]$

> Recall the equations for converting a tensor to a matrix $X_{(1)} = AG_{(1)}(C \otimes B)^{\mathsf{T}}$ $X_{(2)} = BG_{(2)}(C \otimes A)^{\mathsf{T}}$ $X_{(3)} = CG_{(3)}(B \otimes A)^{\mathsf{T}}$ $\operatorname{vec}(\mathfrak{X}) = (C \otimes B \otimes A)\operatorname{vec}(\mathfrak{G})$

15-826

Kronecker product
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 10 & 20 & 30 \end{bmatrix}$ $m1 \times n1$ $m2 \times n2$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1 * \mathbf{B} & 2 * \mathbf{B} \\ 3 * \mathbf{B} & 4 * \mathbf{B} \end{bmatrix}$$
$$= \begin{bmatrix} 1 * 10 & 1 * 20 & 1 * 30 & 2 * 10 & 2 * 20 & 2 * 30 \\ 3 * 10 & 3 * 20 & 3 * 30 & 4 * 10 & 4 * 20 & 4 * 30 \end{bmatrix}$$

Copyright: C. Faloutsos (2024)

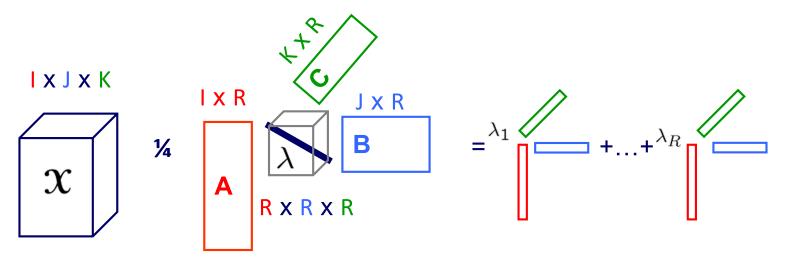
45

Outline

- Motivation Definitions
- Tensor tools
- Case studies

- Tensor Basics
- TuckerPARAFAC

CANDECOMP/PARAFAC Decomposition



$$\mathbf{X} \approx \llbracket \lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket = \sum_r \lambda_r \ \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

- CANDECOMP = Canonical Decomposition (Carroll & Chang, 1970)
- PARAFAC = Parallel Factors (Harshman, 1970)
- Core is <u>diagonal</u> (specified by the vector λ)
- Columns of **A**, **B**, and **C** are <u>not</u> orthonormal
- If R is *minimal*, then R is called the **rank** of the tensor (Kruskal 1977)
- Can have rank $(X) > min\{I,J,K\}$ 15-826 Copyright: C. Faloutsos (2024)

Tucker vs. PARAFAC Decompositions

- Tucker
 - Variable transformation in each mode
 - Core G may be dense

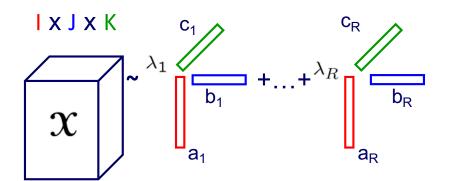
I x R

Α

- A, B, C generally orthonormal
- Not unique

 \sim

- Sum of rank-1 components
- No core, i.e., superdiagonal core
- A, B, C may have linearly dependent columns
- Generally unique



I X J X K

X

JxS

Β

G

R x S x T

Tensor tools - summary

- Two main tools
 - PARAFAC
 - Tucker
- Both find row-, column-, tube-groups - but in PARAFAC the three groups are identical
- To solve: Alternating Least Squares
- Toolbox: from Tamara Kolda:

http://www.tensortoolbox.org/

Outline

- Motivation Definitions
- Tensor tools
- Case studies
 - P1: web graph mining ('TOPHITS')
 - P2: phone-call patterns
 - P3: N.E.L.L. (never ending language learner)
 - P4: network traffic
 - P5: FaceBook activity

P1: Web graph mining

- How to order the importance of web pages? – Kleinberg's algorithm HITS
 - PageRank

Web Images Video News Maps more » Google Web Images Video Local Shopping more Advanced Search Preferences tensor Search tensor Search Services | Advanced Search Preferences Search Results 1 - 10 of about 2,870,000 for tensor - 0.74 sec. (About this page) Turn OFF Personalized Search (Beta) for these results » Web Personalized Results 1 - 10 of about 12,800,000 for tensor [definition]. (0.31 seconds) Also try: tensor lamps, tensor lighting, tensor corporation. SPONSOR RESULTS tensor product More_ Tensor Tensor - Wikipedia, the free encyclopedia Sponsored Links Find Deals on Tensor and other Examples of physical tensors are the energy-momentum tensor, the inertia tensor ... SPONSOR RESULTS Sporting Equipment at DealTime Tensor Skateboard Trucks Tensorial 3.0 Tensorial is a general purpose tensor calculus package for ... Tensor www.dealtime.com www.AllegroMedical.com-Great Selection and Fast Shipping Order Online en.wikipedia.org/wiki/Tensor - 55k - Cached - Similar pages Bargain Prices. Smart Deals. Today and Save. Save on Tensor! Tensor: Compare Prices Tensor product - Wikipedia, the free encyclopedia Shopzilla.com Purchase Tensor Bandages at HCD Find Bargains on Tensor at thousands of trusted online stores. www.homecaredelivered.com-Save on our full line of wound care supplies There is a general formula for the product of two (or more) tensors, as ... The Get. Wire Tensioners tensor product inherits all the indices of its factors. ... www.bizrate.com For coil and motor winding machines en.wikipedia.org/wiki/Tensor product - 41k - Cached - Similar pages 1. Tensor-from MathWorld Mechanical or electronic tensioners An nth-rank tensor in m-dimensional space is a mathematical object that Tensor www.diamotor.com Tensor Trucks has n ... Each index of a tensor ranges over the number of dimensions of We are writing an on-line e-book space. Manufacturer of skateboard trucks. Check out team members, videos and apparel with code: "Pseduocolor in Pure.. mathworld.wolfram.com/Tensor.html-More from this site Tensor www.tensortrucks.com/ - 3k - Cached - Similar pages www.vouvan.com Looking for Tensor? 2. Tensor-Wikipedia, the free encyclopedia Time and Attendance & Access Control through Smart Cards ... Find exactly what you want today Tensor at Shopping.com The term tensor' has slightly different meanings in mathematics and www.eBay.com Tensor manufacture and supply Smart Card and Biometric Time and Attendance & Find, compare and buy products in physics. ... algebra and differential geometry, a tensor is a multilinear Access Control Software and Systems. categories ranging from sports.. function www.tensor.co.uk/ - 7k - Cached - Similar pages Tensor www.shopping.com Quick Links: Importance and applications - History - The choice of

Free Textbook Tensor Calculus and Continuum Mechanics A free downloadable textbook on introductory tensor analysis and continuum

15-826

Shop For Tensor Here With The Convenience Of OneCart™! SHOP.COM

VAHOO SEARCH

approach en.wikipedia.org/wiki/Tensor-50k-Cached - More from this site

Tensor Shop eBay for anything and

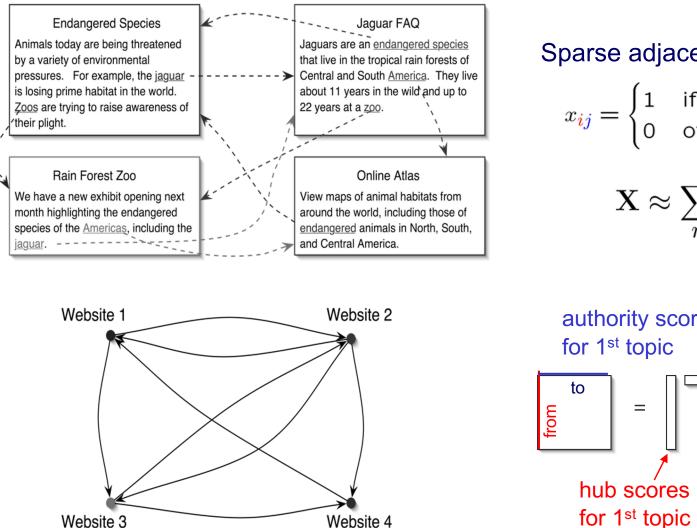
Copyright: C. Faloutsos (2024)

51

P1: Web graph mining

 T. G. Kolda, B. W. Bader and J. P. Kenny, *Higher-Order Web Link Analysis Using Multilinear Algebra*, ICDM 2005: ICDM, pp. 242-249, November 2005, <u>doi:10.1109/ICDM.2005.77</u>. [PDF]

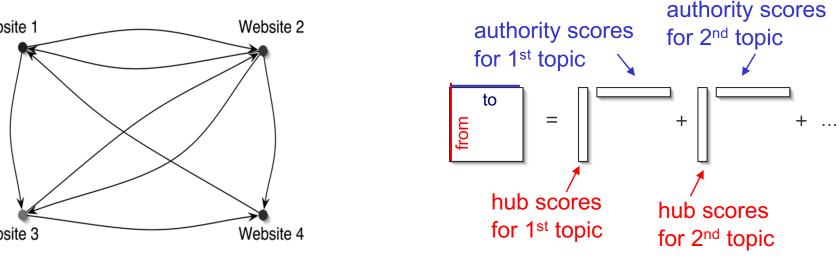
Kleinberg's Hubs and Authorities (the HITS method)



Sparse adjacency matrix and its SVD:

 $x_{ij} = \begin{cases} 1 & \text{if page } i \text{ links to page } j \\ 0 & \text{otherwise} \end{cases}$

$$\mathbf{X} \approx \sum_{r} \sigma_r \, \mathbf{h}_r \circ \mathbf{a}_r$$

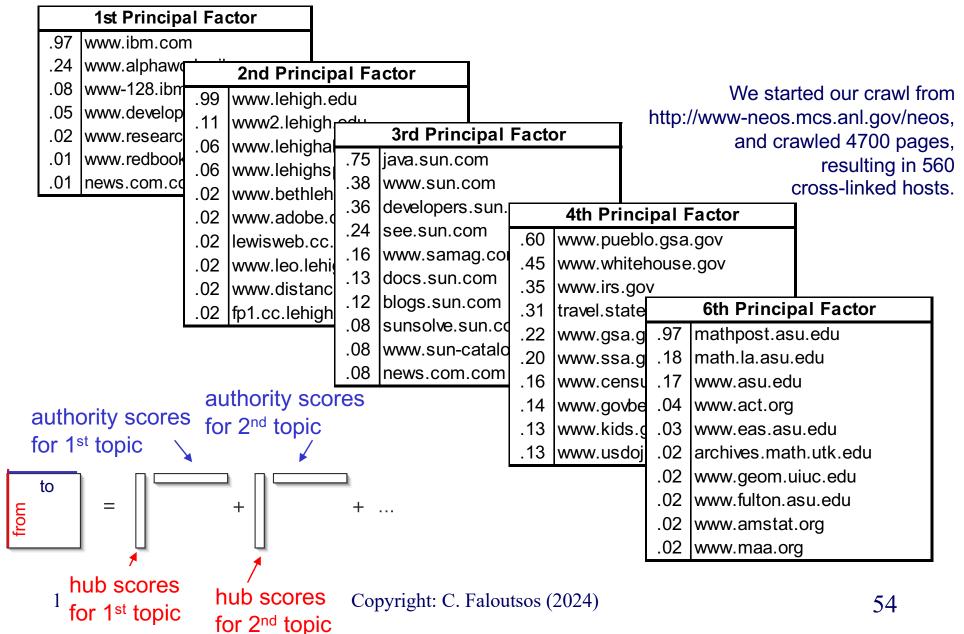


Copyright: C. Faloutsos (2024)

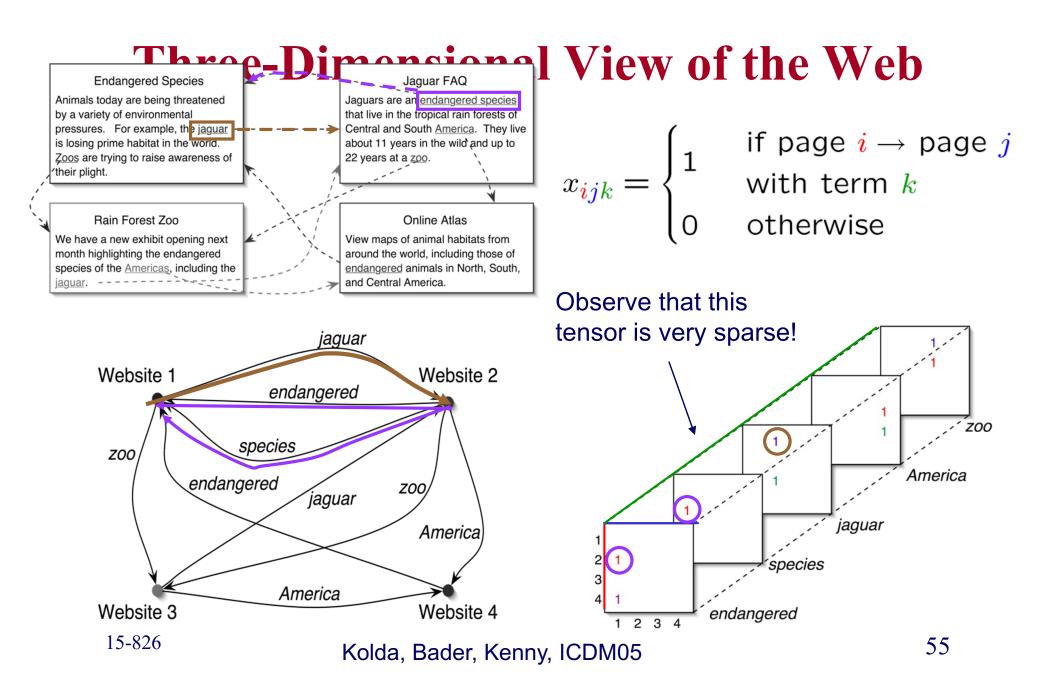
Kleinberg, JACM, 1999

15-826

HITS Authorities on Sample Data



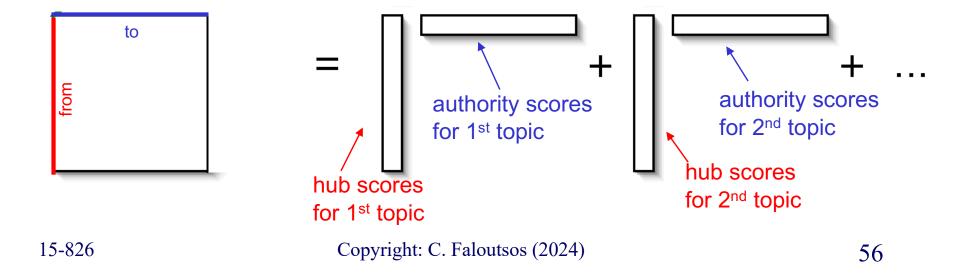
Carnegie Mellon



Topical HITS (TOPHITS)

<u>Main Idea</u>: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

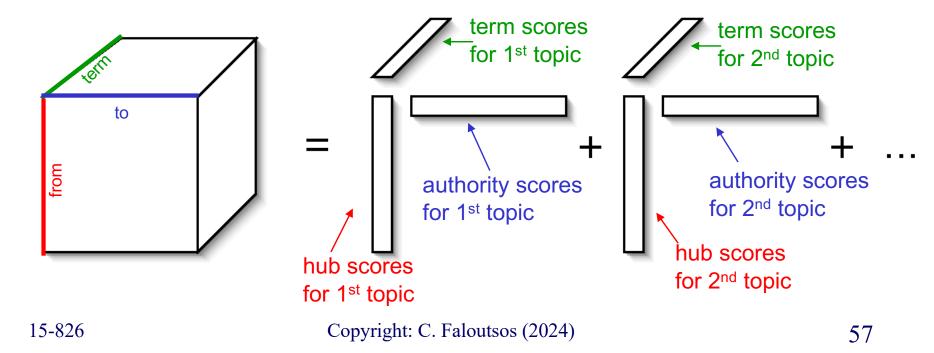
$$\mathfrak{X} \approx \sum_{r=1}^{R} \lambda_r \, \mathbf{h}_r \circ \mathbf{a}_r$$



Topical HITS (TOPHITS)

<u>Main Idea</u>: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$\mathfrak{X} \approx \sum_{r=1}^{R} \lambda_r \, \mathbf{h}_r \circ \mathbf{a}_r \circ \mathbf{t}_r$$



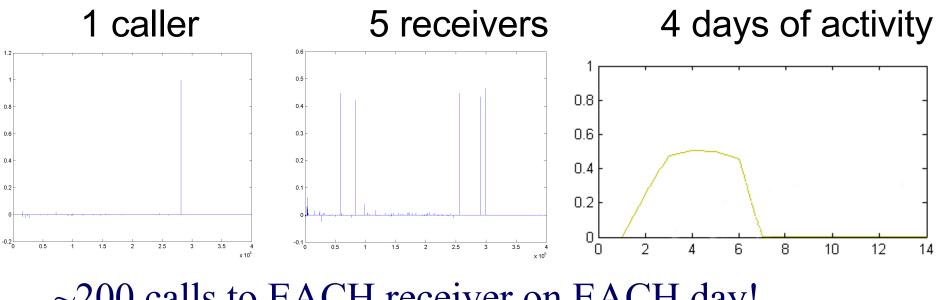
Carnegie Mellor **FOPHITS Terms & Authorities on Sample Data**



Outline

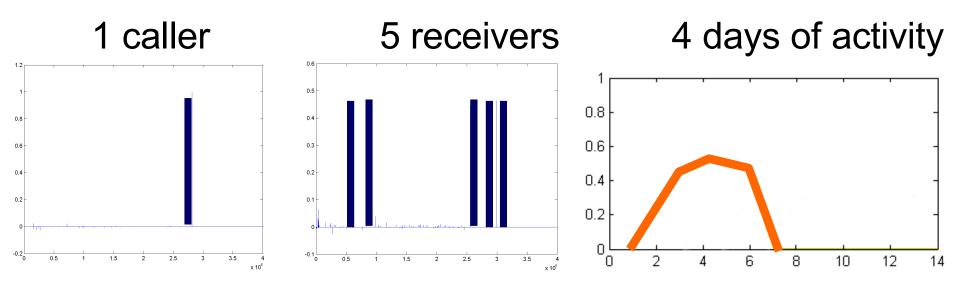
- Motivation Definitions
- Tensor tools
- Case studies
 - P1: web graph mining ('TOPHITS')
 - P2: phone-call patterns
 - P3: N.E.L.L. (never ending language learner)
 - P4: network traffic
 - P5: FaceBook activity

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



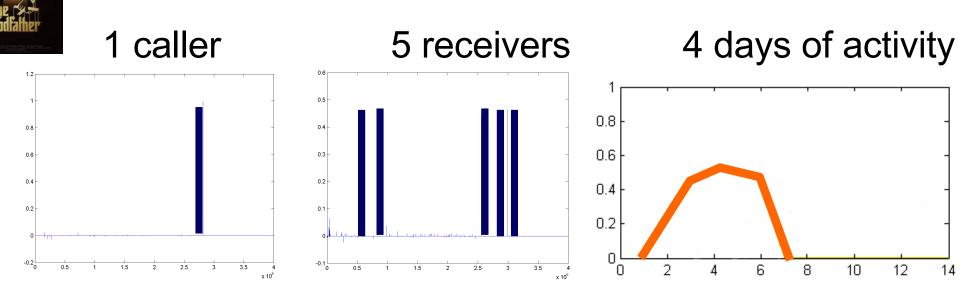
~200 calls to EACH receiver on EACH day!

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

15-826

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Outline

- Motivation Definitions
- Tensor tools
- Case studies
 - P1: web graph mining ('TOPHITS')
 - P2: phone-call patterns
 - P3: N.E.L.L. (never ending language learner)
 - P4: network traffic
 - P5: FaceBook activity

GigaTensor: Scaling Tensor Analysis Up By 100 Times – Algorithms and Discoveries

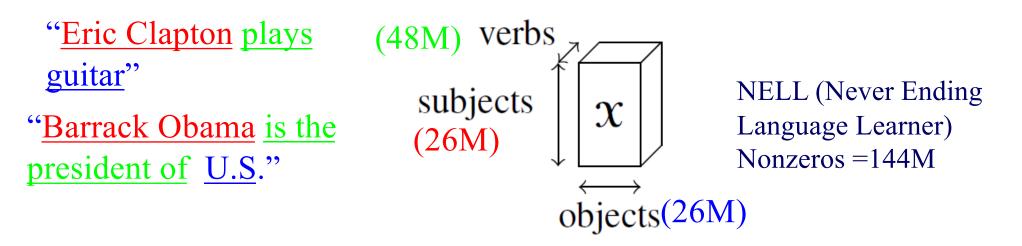
UEvangelosAbhayChristosKangPapalexakisHarpaleFaloutsos

KDD 2012

P3: N.E.L.L. analysis

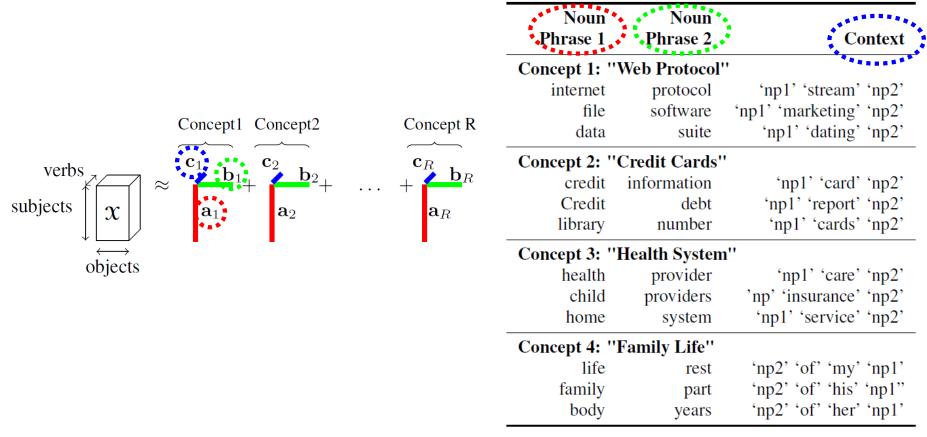
NELL: Never Ending Language Learner

 Q1: dominant concepts / topics?
 Q2: synonyms for a given new phrase?



A1: Concept Discovery

• Concept Discovery in Knowledge Base



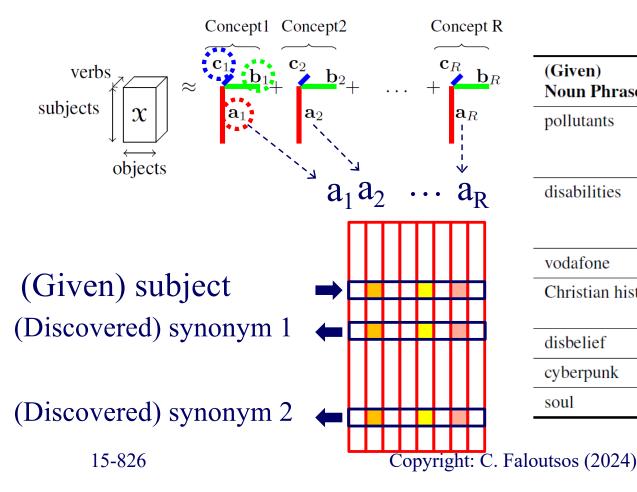
15-826

A1: Concept Discovery

Noun Phrase 1	Noun Phrase 2	Context				
Concept 1: "Web Protocol"						
internet	protocol	'np1' 'stream' 'np2'				
file	software	'np1' 'marketing' 'np2'				
data	suite	'np1' 'dating' 'np2'				
Concept 2: "Credit Cards"						
credit	information	'np1' 'card' 'np2'				
Credit	debt	'np1' 'report' 'np2'				
library	number	'np1' 'cards' 'np2'				
Concept 3: "Health System"						
health	provider	'np1' 'care' 'np2'				
child	providers	'np' 'insurance' 'np2'				
home	system	'np1' 'service' 'np2'				
Concept 4: "Family Life"						
life	rest	'np2' 'of' 'my' 'np1'				
family	Copyright C. Fal	loutsos (1024) of 'his' 'np1"				
body	years	'np2' 'of' 'her' 'np1'				

68

A2: Synonym Discovery Synonym Discovery in Knowledge Base



(Given) Noun Phrase	(Discovered) Potential Synonyms
pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast
Christian history	European history, American history, Islamic history, history
disbelief	dismay, disgust, astonishment
cyberpunk	online-gaming
soul	body

69

Carnegie Mellon

A2: Synonym Discovery

(Given) Noun Phrase	(Discovered) Potential Synonyms	
pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol	
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries	
vodafone	verizon, comcast	
Christian history	European history, American history, Islamic history, history	
disbelief	dismay, disgust astonishment	
cyberpunk	online-gaming	
soul	body	

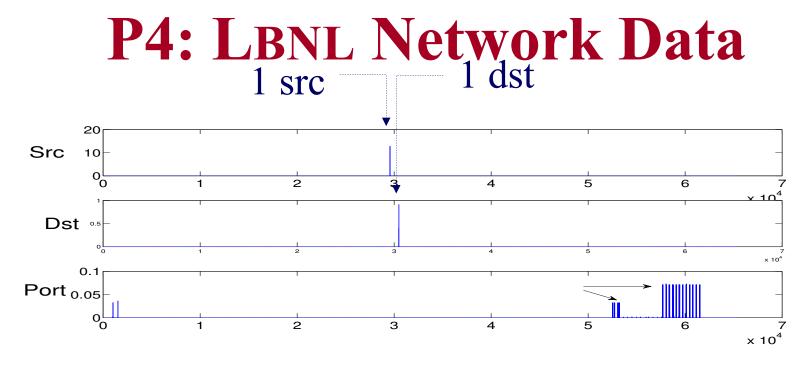
Outline

- Motivation Definitions
- Tensor tools
- Case studies
 - P1: web graph mining ('TOPHITS')
 - P2: phone-call patterns
 - P3: N.E.L.L. (never ending language learner)
 - P4: network traffic
 - P5: FaceBook activity

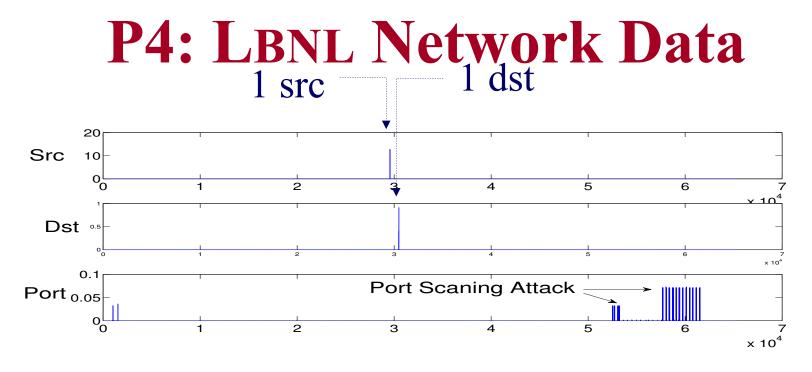
ParCube: Sparse Parallelizable Tensor Decompositions

Evangelos E. Papalexakis, Christos Faloutsos, Nikos Sidiropoulos, ECML/PKDD 2012

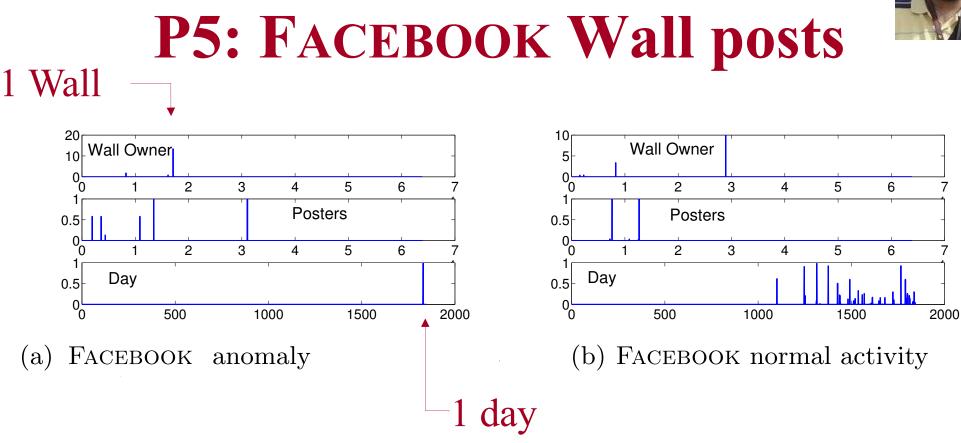
Evangelos E. Papalexakis Email: <u>epapalex@cs.ucr.edu</u> Web: http://www.cs.ucr.edu/~epapalex



- Modes: src IP, dst IP, port #
- Q: what could it be?
- A:

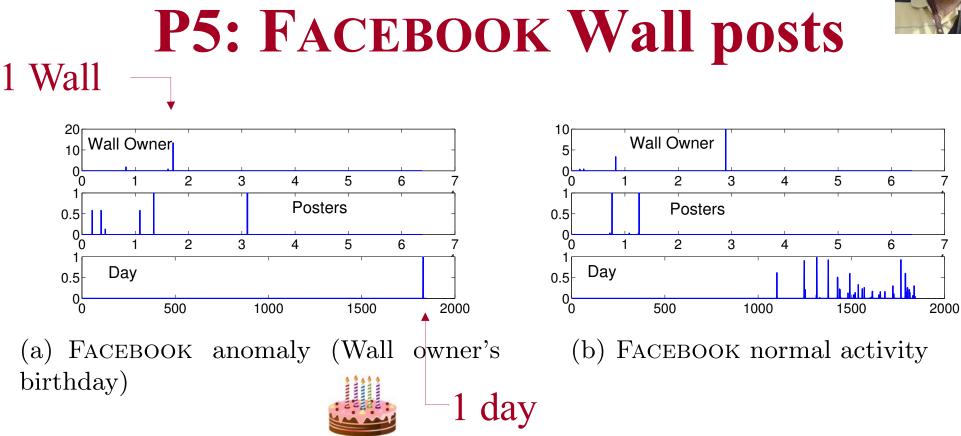


- Modes: src IP, dst IP, port #
- Q: what could it be?
- A: ~ Port Scanning Attack



- Modes: wall-owner, poster, timestamp
- Discovery: What could it be?

15-826

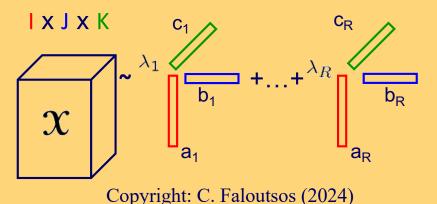


- Modes: wall-owner, poster, timestamp
- Discovery: What could it be? A: Birthday

15-826

Conclusions

- Q: who-calls-whom-when patterns?
 - Triplets (source-ip, dest-ip, port#)
 - KB (subject, verb, object)
- A: Tensor analysis (PARAFAC)
 - http://www.tensortoolbox.org/



References

- Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha: Information-theoretic co-clustering. KDD 2003: 89-98
- T. G. Kolda, B. W. Bader and J. P. Kenny. *Higher-Order Web Link Analysis Using Multilinear Algebra*. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. *Windowbased Tensor Analysis on High-dimensional and Multiaspect Streams*, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006

References

 Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, Christos Faloutsos: <u>Tensor Decomposition for Signal Processing</u> <u>and Machine Learning</u>. IEEE Trans. Signal Process. 65(13): 3551-3582 (2017)

Software

- Tensorly: <u>http://tensorly.org/stable/index.html</u>
- Tensor toolbox (in matlab) https://www.tensortoolbox.org/