15-826: Multimedia (Databases) and Data Mining

Lecture #26: Graph mining - patterns Christos Faloutsos

Must-read Material – 1-of-2

 [Graph minining textbook] Deepayan Chakrabarti and Christos Faloutsos <u>Graph</u> <u>Mining: Laws, Tools and Case Studies</u>, Springer, 2012 (internal evaluation copy)
 – Part I (patterns)

Must-read Material 2-of-2

- Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM 1999.
- R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World Wide Web Nature, 401, 130-131 (1999).
- Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47 (2002).
- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Problem

• Are real graphs random?

Conclusions

- Are real graphs random?
- NO!
 - Static patterns
 - Small diameters
 - Skewed degree distribution
 - Shrinking diameters
 - Weighted
 - Time-evolving

Conclusions

- Are real graphs random?
- Nany power laws log-logistic Nany power laws Take logarithms

Main outline

- Introduction
- Indexing
- Mining
 - Graphs patterns
 - Graphs generators and tools
 - Association rules

Outline

- Introduction Motivation
 - Problem: Patterns in graphs
 - Problem#2: Scalability
 - Conclusions

Graphs - why should we care?

Food Web [Martinez '91]

Internet Map [lumeta.com]

Copyright: C. Faloutsos (2024)

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

• • • •

Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Scalability
 - Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?
 anomalies (rarities) <-> patterns

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?

- anomalies (rarities) <-> patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter ('6 degrees', 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns

• So, let's look at the data

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Q: So what?

Copyright: C. Faloutsos (2024) DCO @ CMU 24

Gaussian trap Solution# S.1 ?) ~ 10M^2 • Q: So what? • A1: # of two-step-aw^r inter suchP a data center(!) 0.1 10 100 1000 10000

Copyright: C. Faloutsos (2024)

• $O(N^2)$ algorithms are ~intractable - N=1B

• N^2 seconds = 31B years (>2x age of universe) 1B

1B

15-826

Copyright: C. Faloutsos (2024)

- $O(N^2)$ algorithms are ~intractable N=1B
- N^2 seconds = 31B years
- 1,000 machines

15-826

Copyright: C. Faloutsos (2024)

27

- $O(N^2)$ algorithms are ~intractable N=1B
- N^2 seconds = 31B years
- 1M machines

1B

15-826

Google **W**!

• $O(N^2)$ algorithms are ~intractable - N=1B

• N^2 seconds = 31B years

• 10B machines ~ \$10Trillion

Solution# S.2: Eigen Exponent E

Solution# S.2: Eigen Exponent E

But:

How about graphs from other domains?

More power laws:

• web hit counts [w/ A. Montgomery]

Ο

epinions.com

(out) degree

Copyright: C. Faloutsos (2024)

And numerous more

- # of sexual contacts
- Income [Pareto] –' 80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
 - S.3 small diameter
 - S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

In textbook

S.3 small diameters

- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
- ✓• S.3 small diameter
 - S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

In textbook

Solution# S.4: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.4: Triangle 'Laws'

- Real social networks have a lot of triangles

 Friends of friends are friends
- Any patterns?

Triangle Law: #S.4 [Tsourakakis ICDM 2008]

Triangle Law: #S.4 [Tsourakakis ICDM 2008]

Triangle Law: #S.5 [Tsourakakis ICDM 2008]

SN

X-axis: degree Y-axis: mean # triangles n friends -> $\sim n^{1.6}$ triangles

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)Q: Can we do that quickly?

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum (λ_i³)

(and, because of skewness (S2), we only need the top few eigenvalues!

15-826

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

15-826

Yahoo!
Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

15-826

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
- ✓ S.3 small diameter
- ✓ S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

In textbook

Generalized Iterated Matrix Vector Multiplication (GIMV)

<u>PEGASUS: A Peta-Scale Graph Mining</u> <u>System - Implementation and Observations</u>. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up) and 10-yr highest impact award (2018)

• Connected Components – 4 observations:

• Connected Components

• Connected Components

• Connected Components

Connected Components

Connected Components

S.6: persists over time

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Carnegie Mellon

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
- ✓• S.3 small diameter
- ✓ S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

15-826

In textbook

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos
Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

2nd Principal

u2

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points (a) origin
 - A few scattered ~randomly

u1

1st Principal component

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin

u1

EigenSpokes - pervasiveness

• Present in mobile social graph

across time and space

Copyright: C. Faloutsos (2024)

EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

Copyright: C. Faloutsos (2024)
EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

Bipartite Communities!

Bipartite Communities!

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
- ✓ S.3 small diameter
- ✓ S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- \checkmark (S.7) eigen plots
 - (S.8) radius plot

In textbook

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

• Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores. 15-826

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores. 15-826

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores. 15-826

List of Static Patterns

- S.1 degree
- ✓• S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws

S.4/5 Thangle laws (S.6) NLCC non-largest conn. components

- \checkmark (S.7) eigen plots
- \checkmark (S.8) radius plot
 - Other observations / patterns?

In textbook

Yes!

- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'
- disconnected components

power-laws in communities (bi-partite cores)
 [Kumar+, '99]

- "Jellyfish" for Internet [Tauro+'01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes

Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

Observations on weighted graphs?

• A: yes - even more 'laws' !

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

15-826

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': 1.01 < iw < 1.26

Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

• and Jon Kleinberg (Cornell – sabb. @ CMU)

List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
- D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

In textbook

D.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - [diameter \sim O(N^{1/3})]
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$

diameter

D.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - [diameter $\sim O(N^{1/3})$]
 - diameter \sim (($\ln x$)
 - diameter $\sim O(\log \log N)$

- What is happening in real data?
- Diameter shrinks over time

D.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

Copyright: C. Faloutsos (2024)

List of Dynamic Patterns

- ✓ D.1 diameter
 - D.2 densification
 - D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that N(t+1) = 2 * 1

N(t+1) = 2 * N(t)

• Q: what is your guess for E(t+1) =? 2 * E(t)

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

- Q: what is your guess for
 E(t+1) = ??* E(t)
- A: over-doubled!

- But obeying the ``Densification Power Law''

15-826
D.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

Copyright: C. Faloutsos (2024)

110

List of Dynamic Patterns

- ✓ D.1 diameter
- ✓ D.2 densification
 - D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

D.3 Gelling Point

• Diameter, over time

Time

D.3 Gelling Point

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

D.3 Gelling Point

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

Copyright: C. Faloutsos (2024)

List of Dynamic Patterns

- ✓ D.1 diameter
- ✓ D.2 densification
- ✓• D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

- *Q: How do NLCC's emerge and join with the GCC?*
- (``NLCC' ' = non-largest conn. components)
- -Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Q: How do NLCC's emerge and join with the GCC?

- (``NLCC' ' = non-largest conn. components)
- -Do they continue to grow in size?
- or do they <u>shrink</u>?
- or stabilize?

Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)
YES - Do they continue to grow in size?
YES - or do they shrink?
YES - or stabilize?

• After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, oscillate).

List of Dynamic Patterns

- ✓ D.1 diameter
- ✓ D.2 densification
- ✓• D.3 gelling point
- ✓ D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

Timing for Blogs

Cascading Behavior in Large Blog Graphs: Patterns and a model

Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst SDM'07

D.6 : popularity over time

Post popularity drops-off – exponentially?

(a)

@t + lag

D.6 : popularity over time

Exponent?

D.6 : popularity over time

125

• and like the zero-crossings of a random walk 15-826 Copyright: C. Faloutsos (2024)

-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. *Nature* **437**, 1251 (2005) . [PDF]

List of Dynamic Patterns

- ✓ D.1 diameter
- ✓ D.2 densification
- ✓• D.3 gelling point
- ✓ D.4 NLCC over time
 - D.5 Eigenvalue over time
- D.6 Popularity over time
 - D.7 phonecall duration

In textbook

D.7: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, LemanAkoglu, Christos Faloutsos, AntonioA. F. LoureiroPKDD 2010

Probably, power law (?)

Copyright: C. Faloutsos (2024)

No Power Law!

Copyright: C. Faloutsos (2024)

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

- CDF(t)/(1-CDF(t)) == OR(t)
- For log-logistic: $log[OR(t)] = \beta + \rho * log(t)$

- CDF(t)/(1 CDF(t)) == OR(t)
- For log-logistic: $\log[OR(t)] = \beta + \rho * \log(t)$

PDF looks like hyperbola;
and, if clipped, like power-law

- CDF(t)/(1-CDF(t)) == OR(t)
- For log-logistic: $\log[OR(t)] = \beta + \rho \log(t)$

134

Logistic distribution: LOG-Logistic
 CDF -> sigmoid distribution:

CDF(x) = 1/(1 + exp(-x))

Copyright: C. Faloutsos (2024)

distribution:

• Logistic distribution: • LOG-Logistic CDF -> sigmoid

CDF(x) = 1/(1+exp(-(x-m)/s)) CDF(x) = 1/(1+exp(-(ln(x)-m)/s))

Copyright: C. Faloutsos (2024)

Nice 1 page description: section II of

Pravallika Devineni, Danai Koutra, Michalis Faloutsos, and Christos Faloutsos. <u>If walls could talk: Patterns and anomalies in</u> Facebook wallposts.

ASONAM 2015, pp 367-374.

Log-logistic: ~ power law

Copyright: C. Faloutsos (2024)

Log-logistic: ~ power law

Copyright: C. Faloutsos (2024)

Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outliers:

15-826

Conclusions

- Are real graphs random?
- NO!
 - Static patterns
 - Small diameters
 - Skewed degree distribution
 - Shrinking diameters
 - Weighted
 - Time-evolving

Conclusions

- Are real graphs random?
- Nany power laws log-logistic Nany power laws Take logarithms