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Must-read Material – 1-of-2
• [Graph minining textbook] Deepayan 

Chakrabarti and Christos Faloutsos Graph 
Mining: Laws, Tools and Case Studies, 
Springer, 2012 (internal evaluation copy)
– Part I (patterns)

215-826 Copyright: C. Faloutsos (2024)

https://link.springer.com/book/10.1007/978-3-031-01903-6
https://link.springer.com/book/10.1007/978-3-031-01903-6
https://www.cs.cmu.edu/~christos/courses/826-resources/BOOK/book_graph_mining_prepub.pdf
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Must-read Material 2-of-2
• Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On 

Power-Law Relationships of the Internet Topology, SIGCOMM 
1999. 

• R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World 
Wide Web Nature, 401, 130-131 (1999). 

• Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of 
complex networks, Reviews of Modern Physics, 74, 47 (2002).  

• Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over 
Time: Densification Laws, Shrinking Diameters and Possible 
Explanations, KDD 2005, Chicago, IL, USA

315-826 Copyright: C. Faloutsos (2024)
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Problem
• Are real graphs random?
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Conclusions
• Are real graphs random?
• NO!

– Static patterns
• Small diameters
• Skewed degree distribution
• Shrinking diameters

– Weighted
– Time-evolving
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Conclusions
• Are real graphs random?
• NO!

– Static patterns
• Small diameters
• Skewed degree distribution
• Shrinking diameters

– Weighted
– Time-evolving

• Many power laws – log-logistic

• Take logarithms



CMU SCS

Main outline
• Introduction
• Indexing
• Mining

– Graphs – patterns
– Graphs – generators and tools
– Association rules
– …

15-826 Copyright: C. Faloutsos (2024) 7
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Copyright: C. Faloutsos (2024) 8

Outline

• Introduction – Motivation
• Problem: Patterns in graphs
• Problem#2: Scalability
• Conclusions

15-826
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Copyright: C. Faloutsos (2024) 9

Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

Friendship Network 
[Moody ’01]

15-826
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Copyright: C. Faloutsos (2024) 10

Graphs - why should we care?
• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

D1

DN

T1

TM

... ...

15-826
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Graphs - why should we care?
• ‘viral’ marketing
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic 

and anomaly detection
• ....

15-826
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Copyright: C. Faloutsos (2024) 12

Outline

• Introduction – Motivation
• Problem: Patterns in graphs

– Static graphs
– Weighted graphs
– Time evolving graphs

• Problem#2: Scalability
• Conclusions

15-826
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Copyright: C. Faloutsos (2024) 13

Problem #1 - network and graph 
mining

• What does the Internet look like?
• What does FaceBook look like?

• What is ‘normal’/‘abnormal’?
• which patterns/laws hold?

15-826
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Problem #1 - network and graph 
mining

• What does the Internet look like?
• What does FaceBook look like?

• What is ‘normal’/‘abnormal’?
• which patterns/laws hold?

– anomalies (rarities) <-> patterns

15-826
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Problem #1 - network and graph 
mining

• What does the Internet look like?
• What does FaceBook look like?

• What is ‘normal’/‘abnormal’?
• which patterns/laws hold?

– anomalies (rarities) <-> patterns
– Large datasets reveal patterns/anomalies 

that may be invisible otherwise…

15-826
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Copyright: C. Faloutsos (2024) 16

Graph mining
• Are real graphs random?

15-826
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Laws and patterns
• Are real graphs random?
• A: NO!!

– Diameter (‘6 degrees’, ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

15-826
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Solution# S.1

• Power law in the degree distribution 
[SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

15-826
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Solution# S.1

• Power law in the degree distribution 
[SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826
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Solution# S.1

• Q: So what?

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826
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Copyright: C. Faloutsos (2024) 21

Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs:

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826

= friends of friends (F.O.F.)
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826

= friends of friends (F.O.F.)
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826

= friends of friends (F.O.F.)



CMU SCS

Copyright: C. Faloutsos (2024) 24

Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826

~0.8PB ->
a data center(!)

DCO @ CMU

Gaussian trap

= friends of friends (F.O.F.)
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

15-826

~0.8PB ->
a data center(!)

Such patterns ->

New algorithms

Gaussian trap
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years (>2x age of 
universe)

15-826 Copyright: C. Faloutsos (2024) 26

1B

1B
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 1,000 machines

15-826 Copyright: C. Faloutsos (2024) 27

1B

31M
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 1M machines

15-826 Copyright: C. Faloutsos (2024) 28

1B

31K
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 10B machines ~ $10Trillion

15-826 Copyright: C. Faloutsos (2024) 29

1B

3
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years
• 10B machines ~ $10Trillion

15-826 Copyright: C. Faloutsos (2024) 30

1B

3
And parallelism might not help
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Copyright: C. Faloutsos (2024) 31

Solution# S.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001

15-826

A x = l x
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Solution# S.2: Eigen Exponent E

• [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001

15-826
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Copyright: C. Faloutsos (2024) 33

But:
How about graphs from other domains?

15-826
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Copyright: C. Faloutsos (2024) 34

More power laws:
• web hit counts [w/ A. Montgomery]

Web Site Traffic

in-degree (log scale)

Count
(log scale)

Zipf

users
sites

``ebay’’

15-826
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Copyright: C. Faloutsos (2024) 35

epinions.com
• who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001]

(out) degree

count

trusts-2000-people user

15-826
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And numerous more
• # of sexual contacts
• Income [Pareto] –’80-20 distribution’
• Duration of downloads [Bestavros+]
• Duration of UNIX jobs (‘mice and 

elephants’)
• Size of files of a user
• …
• ‘Black swans’
15-826 Copyright: C. Faloutsos (2024) 36
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright: C. Faloutsos (2024) 3715-826

In textbook

✔

✔
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38

S.3 small diameters
• Small diameter (~ constant!) –

– six degrees of separation / ‘Kevin Bacon’
– small worlds [Watts and Strogatz]

15-826 Copyright: C. Faloutsos (2024)
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright: C. Faloutsos (2024) 3915-826

In textbook

✔

✔

✔
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Copyright: C. Faloutsos (2024) 40

Solution# S.4: Triangle ‘Laws’

• Real social networks have a lot of triangles 

15-826
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Solution# S.4: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?

15-826
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Copyright: C. Faloutsos (2024) 42

Triangle Law: #S.4 
[Tsourakakis ICDM 2008]

ASNHEP-TH

Epinions X-axis: # of  participating
triangles
Y: count (~ pdf)

15-826
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Triangle Law: #S.4 
[Tsourakakis ICDM 2008]

ASNHEP-TH

Epinions

15-826

X-axis: # of  participating
triangles
Y: count (~ pdf)
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Triangle Law: #S.5 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

15-826
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Copyright: C. Faloutsos (2024) 45

Triangle Law: Computations 
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
 (3-way join; several approx. algos)
Q: Can we do that quickly?

details

15-826
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Triangle Law: Computations 
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
 (3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
 #triangles = 1/6 Sum ( li3 )
      (and, because of skewness (S2) , 
 we only need the top few eigenvalues!

details

15-826
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Copyright: C. Faloutsos (2024) 47

Triangle Law: Computations 
[Tsourakakis ICDM 2008]

1000x+ speed-up, >90% accuracy

details

15-826
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

4815-826 48Copyright: C. Faloutsos (2024)

? ?

?
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

4915-826 49Copyright: C. Faloutsos (2024)
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

5015-826 50Copyright: C. Faloutsos (2024)
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

5115-826 51Copyright: C. Faloutsos (2024)
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

5215-826 52Copyright: C. Faloutsos (2024)
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright: C. Faloutsos (2024) 5315-826

In textbook

✔

✔

✔
✔
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Generalized Iterated Matrix 
Vector Multiplication (GIMV)

Copyright: C. Faloutsos (2024) 54

PEGASUS: A Peta-Scale Graph Mining 
System - Implementation and Observations. 
U Kang, Charalampos E. Tsourakakis, 
and Christos Faloutsos. 
(ICDM) 2009, Miami, Florida, USA. 
Best Application Paper (runner-up) and
10-yr highest impact award (2018)

15-826

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.umbc.edu/ICDM09/
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S.6: NLCC
• Connected Components – 4 observations:

Size

Count

Copyright: C. Faloutsos (2024)15-826
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S.6: NLCC
• Connected Components

Size

Count

Copyright: C. Faloutsos (2024)15-826

1) 10K x 
larger
than next



CMU SCS

57

S.6: NLCC
• Connected Components

Size

Count

Copyright: C. Faloutsos (2024)15-826

2) ~0.7B 
singleton
 nodes
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S.6: NLCC
• Connected Components

Size

Count

Copyright: C. Faloutsos (2024)15-826

3) SLOPE!
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S.6: NLCC
• Connected Components

Size

Count
300-size 

cmpt
X 500.
Why?1100-size cmpt

X 65.
Why?

Copyright: C. Faloutsos (2024)15-826

4) Spikes!
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S.6: NLCC
• Connected Components

Size

Count

suspicious
financial-advice sites

(not existing now)

Copyright: C. Faloutsos (2024)15-826
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S.6: persists over time
• Connected Components over Time
• LinkedIn: 7.5M nodes and 58M edges

Stable tail slope
after the gelling point

Copyright: C. Faloutsos (2024)15-826
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright: C. Faloutsos (2024) 6215-826

In textbook

✔

✔

✔
✔

✔
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EigenSpokes
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010.

Copyright: C. Faloutsos (2024) 6315-826

Useful for fraud detection!
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

64Copyright: C. Faloutsos (2024)15-826
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
65Copyright: C. Faloutsos (2024)15-826

N

N
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
66Copyright: C. Faloutsos (2024)15-826
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
67Copyright: C. Faloutsos (2024)15-826

N

N
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = U�UT

�u1 �ui
68Copyright: C. Faloutsos (2024)15-826

N

N
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EigenSpokes
• EE plot:
• Scatter plot of 

scores of u1 vs u2
• One would expect

– Many points @ 
origin

– A few scattered 
~randomly

Copyright: C. Faloutsos (2024) 69

u1

u2

15-826

1st Principal 
component

2nd Principal 
component
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EigenSpokes
• EE plot:
• Scatter plot of 

scores of u1 vs u2
• One would expect

– Many points @ 
origin

– A few scattered 
~randomly

Copyright: C. Faloutsos (2024) 70

u1

u2
90o

15-826



CMU SCS

EigenSpokes - pervasiveness
• Present in mobile social graph

§ across time and space

• Patent citation graph

71Copyright: C. Faloutsos (2024)15-826
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

72Copyright: C. Faloutsos (2024)15-826
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

73Copyright: C. Faloutsos (2024)15-826
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

74Copyright: C. Faloutsos (2024)15-826
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EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely 
connected

So what?
§ Extract nodes with high 

scores 
§ high connectivity
§ Good “communities”

spy plot of top 20 nodes

75Copyright: C. Faloutsos (2024)15-826
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Bipartite Communities!

magnified bipartite community

patents from
same inventor(s)

`cut-and-paste’
bibliography!

76Copyright: C. Faloutsos (2024)15-826

Useful for fraud detection!
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Bipartite Communities!

IP – port scanners

victims

77Copyright: C. Faloutsos (2024)

Useful for fraud detection!

15-826
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot

Copyright: C. Faloutsos (2024) 7815-826

In textbook

✔

✔

✔
✔

✔

✔
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HADI for diameter estimation
• Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10

• Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B)

• Our HADI: linear on E (~10B)
– Near-linear scalability wrt # machines
– Several optimizations -> 5x faster

Copyright: C. Faloutsos (2024) 7915-826
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????

19+ [Barabasi+]

80Copyright: C. Faloutsos (2024)

Radius

Count

15-826

~1999, ~1M nodes
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• Largest publicly available graph ever studied.

????

19+ [Barabasi+]

81Copyright: C. Faloutsos (2024)

Radius

Count

15-826

??

~1999, ~1M nodes
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• Largest publicly available graph ever studied.

????

19+? [Barabasi+]

82Copyright: C. Faloutsos (2024)

Radius

Count

15-826

14 (dir.)
~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
•7 degrees of separation (!)
•Diameter: shrunk

????

19+? [Barabasi+]

83Copyright: C. Faloutsos (2024)

Radius

Count

15-826

14 (dir.)
~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
Q: Shape?

????

84Copyright: C. Faloutsos (2024)

Radius

Count

15-826

~7 (undir.)
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality (?!)

15-826
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Radius Plot of GCC of YahooWeb.

86Copyright: C. Faloutsos (2024)15-826
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality: probably mixture of cores .

15-826



CMU SCS

88Copyright: C. Faloutsos (2024)

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality: probably mixture of cores .

15-826

EN

~7

Conjecture:
DE
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality: probably mixture of cores .

15-826

~7

Conjecture:
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List of Static Patterns
• S.1 degree
• S.2 eigenvalues
• S.3 small diameter
• S.4/5 Triangle laws
• (S.6) NLCC non-largest conn. components
• (S.7) eigen plots
• (S.8) radius plot
• Other observations / patterns?

Copyright: C. Faloutsos (2024) 9015-826

In textbook

✔

✔

✔
✔

✔

✔
✔
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Any other ‘laws’?
Yes!
• Small diameter (~ constant!) –

– six degrees of separation / ‘Kevin Bacon’
– small worlds [Watts and Strogatz]

15-826 Copyright: C. Faloutsos (2024)
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Any other ‘laws’?

• Bow-tie, for the web [Kumar+ ‘99]
• IN, SCC, OUT, ‘tendrils’
• disconnected components

15-826 Copyright: C. Faloutsos (2024)
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Any other ‘laws’?

• power-laws in communities (bi-partite cores) 
[Kumar+, ‘99]

2:3 core
(m:n core)

Log(m)

Log(count)

n:1

n:2n:3

15-826 Copyright: C. Faloutsos (2024)
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Any other ‘laws’?

• “Jellyfish” for Internet [Tauro+ ’01]
• core: ~clique
• ~5 concentric layers
• many 1-degree nodes

15-826 Copyright: C. Faloutsos (2024)
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Copyright: C. Faloutsos (2024) 96

Outline

• Introduction – Motivation
• Problem: Patterns in graphs

– Static graphs 
• degree, diameter, eigen, 
• Triangles

– Weighted graphs
– Time evolving graphs

• Problem#2: Scalability
• Conclusions
15-826
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Observations on  weighted 
graphs?

• A: yes - even more ‘laws’!

M. McGlohon, L. Akoglu, and C. Faloutsos 
Weighted Graphs and Disconnected 
Components: Patterns and a Generator. 
SIG-KDD 2008 

15-826
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Observation W.1: Fortification

Q: How do the weights 
of nodes relate to degree?

15-826
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Observation W.1: Fortification

More donors, 
more $ ?
$10

$5

15-826

‘Reagan’

‘Clinton’$7
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Edges (# donors)

In-weights
($)
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Observation W.1: fortification:
Snapshot Power Law

• Weight: super-linear on in-degree 
• exponent ‘iw’: 1.01 < iw < 1.26

Orgs-Candidates

e.g. John Kerry, 
$10M received,
from 1K donors

More donors, 
even more $
$10

$5

15-826
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Outline

• Introduction – Motivation
• Problem: Patterns in graphs

– Static graphs 
– Weighted graphs
– Time evolving graphs

• Problem#2: Scalability
• Conclusions

15-826
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Problem: Time evolution
• with Jure Leskovec (CMU -> 

Stanford)

•  and Jon Kleinberg (Cornell – 
sabb. @ CMU)

15-826
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright: C. Faloutsos (2024) 10315-826

In textbook
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D.1 Evolution of the Diameter
• Prior work on Power Law graphs hints 

at   slowly growing diameter:
– [diameter ~ O( N1/3)]
– diameter ~ O(log N)
– diameter ~ O(log log N)

• What is happening in real data?

15-826

diameter
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D.1 Evolution of the Diameter
• Prior work on Power Law graphs hints 

at   slowly growing diameter:
– [diameter ~ O( N1/3)]
– diameter ~ O(log N)
– diameter ~ O(log log N)

• What is happening in real data?
• Diameter shrinks over time

15-826
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D.1 Diameter – “Patents”

• Patent citation 
network

• 25 years of data
• @1999

– 2.9 M nodes
– 16.5 M edges

time [years]

diameter

15-826
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration
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In textbook

✔
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D.2 Temporal Evolution of the 
Graphs

• N(t) … nodes at time t
• E(t) … edges at time t
• Suppose that

  N(t+1) = 2 * N(t)
• Q: what is your guess for 

  E(t+1) =? 2 * E(t)

15-826
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D.2 Temporal Evolution of the 
Graphs

• N(t) … nodes at time t
• E(t) … edges at time t
• Suppose that

  N(t+1) = 2 * N(t)
• Q: what is your guess for 

  E(t+1) =? 2 * E(t)
• A: over-doubled!

– But obeying the ``Densification Power Law’’
15-826
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D.2 Densification – Patent 
Citations

• Citations among 
patents granted

• @1999
– 2.9 M nodes
– 16.5 M edges

• Each year is a 
datapoint

N(t)

E(t)

1.66

15-826
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration
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In textbook

✔

✔
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More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos 
Weighted Graphs and Disconnected 
Components: Patterns and a Generator. 
SIG-KDD 2008 

15-826
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D.3 Gelling Point
• Diameter, over time

Time

Diameter

IMDB

t=1914

15-826 Copyright: C. Faloutsos (2024)

??
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D.3 Gelling Point
• Most real graphs display a gelling point
• After gelling point, they exhibit typical behavior.  

This is marked by a spike in diameter.

Time

Diameter

IMDB
t=1914

15-826 Copyright: C. Faloutsos (2024)
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D.3 Gelling Point
• Most real graphs display a gelling point
• After gelling point, they exhibit typical behavior.  

This is marked by a spike in diameter.

Time

Diameter

IMDB
t=1914

15-826 Copyright: C. Faloutsos (2024)
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

Copyright: C. Faloutsos (2024) 11615-826

In textbook

✔

✔

✔
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
–  or do they shrink?
–  or stabilize?

15-826
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
–  or do they shrink?
–  or stabilize?
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Observation D.4: NLCC behavior
Q: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
–  or do they shrink?
–  or stabilize?

15-826
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Observation D.4: NLCC behavior
• After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate).

IMDB

CC size

Time-stamp
15-826
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration
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In textbook

✔

✔

✔

✔



CMU SCS

Copyright: C. Faloutsos (2024) 122

Timing for Blogs

Cascading Behavior in Large Blog Graphs: 
Patterns and a model

Jure Leskovec, Mary McGlohon, Christos 
Faloutsos, Natalie Glance, Matthew Hurst

SDM’07

15-826
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D.6 : popularity over time

Post popularity drops-off – exponentially?

lag: days after post

# in links

1 2 3

@t

@t + lag
15-826
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D.6 : popularity over time

Post popularity drops-off – exponentially?
POWER LAW!
Exponent?

# in links
(log)

days after post
(log)

15-826
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D.6 : popularity over time

Post popularity drops-off – exponentially?
POWER LAW!
Exponent? -1.6 
• close to -1.5: Barabasi’s stack model
• and like the zero-crossings of a random walk

# in links
(log) -1.6

days after post
(log)

15-826
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-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The 
Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF] 

http://www.nd.edu/~networks/HumanDynamics_20Oct05/correspondence_patterns.pdf
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List of Dynamic Patterns
• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration
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In textbook

✔

✔

✔

✔

✔
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D.7: duration of phonecalls
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro

PKDD 2010
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Probably, power law (?)

15-826 Copyright: C. Faloutsos (2024) 129

??
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No Power Law!
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‘TLaC: Lazy Contractor’
• The longer a task (phonecall) has taken,
• The even longer it will take

15-826 Copyright: C. Faloutsos (2024) 131

Odds ratio=

Casualties(<x):
Survivors(>=x)

== power law
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Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

15-826 Copyright: C. Faloutsos (2024) 132

Odds ratio=

Casualties(<x):
Survivors(>=x)

== power law
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Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

15-826 Copyright: C. Faloutsos (2024) 133

• PDF looks like hyperbola;
• and, if clipped, like power-law

OR(t)
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Log-logistic distribution
• CDF(t)/(1- CDF(t)) == OR(t)
• For log-logistic: log[OR(t)] = b + r*log(t)

15-826 Copyright: C. Faloutsos (2024) 134

OR(t)

Duration ( t )
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Log-logistic distribution
• Logistic distribution: 

CDF -> sigmoid

15-826 Copyright: C. Faloutsos (2024) 135

CDF(x) = 1/(1+exp(-x))

• LOG-Logistic 
distribution:

CDF(x) = 1/(1+1/x )

x-> ln(x)
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Log-logistic distribution
• Logistic distribution: 

CDF -> sigmoid

15-826 Copyright: C. Faloutsos (2024) 136

CDF(x) = 1/(1+exp(-(x-m)/s))

• LOG-Logistic 
distribution:

CDF(x) = 1/(1+exp(-(ln(x)-m)/s))
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Log-logistic distribution
Nice 1 page description: section II of

Pravallika Devineni, Danai Koutra,  Michalis 
Faloutsos, and Christos Faloutsos. 
If walls could talk: Patterns and anomalies in 
Facebook wallposts. 
ASONAM 2015, pp 367-374. 
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http://www.cs.cmu.edu/~christos/PUBLICATIONS/15-asonam-powerWall.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS/15-asonam-powerWall.pdf
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Log-logistic: ~ power law

15-826 Copyright: C. Faloutsos (2024) 138
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Log-logistic: ~ power law
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Data Description

n Data from a private mobile operator of a large 
city
n 4 months of data
n 3.1 million users
n more than 1 billion phone records

n Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls)

15-826 Copyright: C. Faloutsos (2024)
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Outliers:
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Conclusions
• Are real graphs random?
• NO!

– Static patterns
• Small diameters
• Skewed degree distribution
• Shrinking diameters

– Weighted
– Time-evolving
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Conclusions
• Are real graphs random?
• NO!

– Static patterns
• Small diameters
• Skewed degree distribution
• Shrinking diameters

– Weighted
– Time-evolving

• Many power laws – log-logistic

• Take logarithms


