# 15-826: Multimedia (Databases) and Data Mining

Lecture #27: Graph mining -Generators & tools

Christos Faloutsos

### **NOT** in the final exam

#### Sit back and enjoy the show ③



Copyright: C. Faloutsos (2024)

# Must-read material (1 of 2)

Fully Automatic Cross-Associations,
by D. Chakrabarti, S. Papadimitriou, D.
Modha and C. Faloutsos, in KDD 2004
(pages 79-88), Washington, USA

# **Must-read material (2 of 2)**

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, <u>Realistic, Mathematically</u> <u>Tractable Graph Generation and</u> <u>Evolution, Using Kronecker</u> <u>Multiplication</u>, in PKDD 2005, Porto, Portugal

## **Main outline**



- Introduction
- Indexing
- Mining
  - Graphs patterns
  - Graphs generators and tools
  - Association rules



# **Detailed outline**

- Graphs generators
  - Erdos-Renyi
  - Other generators
  - Kronecker
- Graphs tools

# Problem



#### • Q: How to generate realistic graphs?





#### Answer:

- Q: How to generate realistic graphs?
- A: self-similarity 'Kronecker' graphs







### Generators

- How to generate random, realistic graphs?
  - Erdos-Renyi model: beautiful, but unrealistic
  - degree-based generators
  - process-based generators
  - recursive/self-similar generators



# **Erdos-Renyi**

- random graph 100 nodes, avg degree = 2
- Fascinating properties (phase transition)
- But: unrealistic

   (Poisson degree
   distribution != power
   law)







# **E-R model & Phase transition**

- vary avg degree D
- watch Pc =
  - Prob( there is a giant connected component) 1
- How do you expect it to be?





# **E-R model & Phase transition**

- vary avg degree D
- watch Pc =
  - Prob( there is a giant connected component)
- How do you expect it to be?



# **Degree-based**

- Figure out the degree distribution (eg., 'Zipf')
- Assign degrees to nodes
- Put edges, so that they match the original degree distribution

#### **Process-based**

- Barabasi; Barabasi-Albert: Preferential attachment -> power-law tails!
  - 'rich get richer'
- [Kumar+]: preferential attachment + mimick
  - Create 'communities'

# **Process-based (cont'd)**

- [Fabrikant+, '02]: H.O.T.: connect to closest, high connectivity neighbor
- [Pennock+, '02]: Winner does NOT take all



# **Detailed outline**

- Graphs generators
  - Erdos-Renyi
  - Other generators
  - Kronecker
- Graphs tools

# **Recursive generators**

- (RMAT [Chakrabarti+,'04])
- Kronecker product

# Wish list for a generator:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- shrinking/constant diameter
- Densification Power Law
- communities-within-communities
- Q: how to achieve all of them?
- A: Kronecker matrix product [Leskovec+05b]

# Graph gen.: Problem dfn

- Given a growing graph with count of nodes  $N_1$ ,  $N_2$ , ...
- Generate a realistic sequence of graphs that will obey all the patterns
  - Static Patterns
    - S1 Power Law Degree Distribution
    - S2 Power Law eigenvalue and eigenvector distribution Small Diameter
  - Dynamic Patterns
    - T2 Growth Power Law (2x nodes; 3x edges)
    - T1 Shrinking/Stabilizing Diameters





# **Graph Patterns**



#### How to match all these properties (+ small diameters, etc)?

# Hint: self-similarity

- A: RMAT/Kronecker generators
  - With self-similarity, we get all power-laws, automatically,
  - And small/shrinking diameter
  - And `no good cuts'

*R-MAT: A Recursive Model for Graph Mining*, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal





 $G_1$ 

Adjacency matrix





Intermediate stage



Adjacency matrix







Intermediate stage



 $G_1$ 

Adjacency matrix



 $G_2 = G_1 \otimes G_1$ 

Adjacency matrix

# **Kronecker product**



Copyright: C. Faloutsos (2024)

• Continuing multiplying with  $G_1$  we obtain  $G_4$  and so on ...



• Continuing multiplying with  $G_1$  we obtain  $G_4$  and so on ...



• Continuing multiplying with  $G_1$  we obtain  $G_4$  and so on ...



- Continuing multiplying with  $G_1$  we obtain  $G_4$  and so on ...
- Holes within holes; Communities within communities





#### **Properties:**

- We can PROVE that
  - Degree distribution is multinomial ~ power law
- new Diameter: constant
  - Eigenvalue distribution: multinomial
  - First eigenvector: multinomial

# **Problem Definition**

- Given a growing graph with nodes  $N_1$ ,  $N_2$ , ...
- Generate a realistic sequence of graphs that will obey all the patterns
  - Static Patterns
    - ✓ Power Law Degree Distribution
    - ✓ Power Law eigenvalue and eigenvector distribution
    - ✓ Small Diameter
  - Dynamic Patterns
    - ✓ Growth Power Law
    - ✓ Shrinking/Stabilizing Diameters
- First generator for which we can **prove** all these properties

# **Impact: Graph500**

- Based on RMAT (= 2x2 Kronecker)
- Standard for graph benchmarks
- <u>http://www.graph500.org/</u>
- Competitions 2x year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...
   *To iterate is human, to recurse is devine*

*R-MAT: A Recursive Model for Graph Mining*, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004. Orlando. Florida. USA

# **Conclusions - Generators**

- Erdos-Renyi: phase transition
- Preferential attachment (Barabasi)
   Power-law-tail in degree distribution
- Variations
- Recursion Kronecker graphs
  - Numerous power-laws, + small diameters



#### Answer:

- Q: How to generate realistic graphs?
- A: self-similarity 'Kronecker' graphs







#### Resources

Generators:

- Kronecker (christos@cs.cmu.edu)
- BRITE http://www.cs.bu.edu/brite/
- INET: http://topology.eecs.umich.edu/inet

#### **Other resources**

Visualization - graph algo's:

- Graphviz: http://www.graphviz.org/
- pajek: http://vlado.fmf.unilj.si/pub/networks/pajek/

#### Kevin Bacon web site: http://www.cs.virginia.edu/oracle/
## References

- [Aiello+, '00] William Aiello, Fan R. K. Chung, Linyuan Lu: *A random graph model for massive graphs*. STOC 2000: 171-180
- [Albert+] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi: *Diameter of the World Wide Web*, Nature 401 130-131 (1999)
- [Barabasi, '03] Albert-Laszlo Barabasi *Linked: How Everything Is Connected to Everything Else and What It Means* (Plume, 2003)

- [Barabasi+, '99] Albert-Laszlo Barabasi and Reka Albert. *Emergence of scaling in random networks*. Science, 286:509--512, 1999
- [Broder+, '00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. *Graph structure in the web*, WWW, 2000

- [Chakrabarti+, '04] *RMAT: A recursive graph generator*, D. Chakrabarti, Y. Zhan, C. Faloutsos, SIAM-DM 2004
- [Dill+, '01] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins: *Self-similarity in the Web*. VLDB 2001: 69-78

- [Fabrikant+, '02] A. Fabrikant, E. Koutsoupias, and C.H. Papadimitriou. *Heuristically Optimized Trade-offs: A New Paradigm for Power Laws in the Internet*. ICALP, Malaga, Spain, July 2002
- [FFF, 99] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "*On power-law relationships of the Internet topology*," in SIGCOMM, 1999.

- [Jovanovic+, '01] M. Jovanovic, F.S. Annexstein, and K.A. Berman. *Modeling Peer-to-Peer Network Topologies through "Small-World" Models and Power Laws*. In TELFOR, Belgrade, Yugoslavia, November, 2001
- [Kumar+ '99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins: *Extracting Large-Scale Knowledge Bases from the Web*. VLDB 1999: 639-650

15-826

 [Leskovec+05b] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication* (ECML/PKDD 2005), Porto, Portugal, 2005.

 [Leskovec+07] Jure Leskovec and Christos Faloutsos, <u>Scalable Modeling of Real Graphs using</u> <u>Kronecker Multiplication</u>, <u>ICML</u> 2007.

 [Pennock+, '02] David M. Pennock, Gary William Flake, Steve Lawrence, Eric J. Glover, C. Lee Giles: *Winners don't take all: Characterizing the competition for links on the web* Proc. Natl. Acad. Sci. USA 99(8): 5207-5211 (2002)

- [Watts+ Strogatz, '98] D. J. Watts and S. H. Strogatz *Collective dynamics of 'small-world' networks*, Nature, 393:440-442 (1998)
- [Watts, '03] Duncan J. Watts Six Degrees: The Science of a Connected Age W.W. Norton & Company; (February 2003)

## **Graph mining:** tools

## **Main outline**



- Introduction
- Indexing
- Mining
  - Graphs patterns
  - Graphs generators and tools
  - Association rules



## **Detailed outline**

- Graphs generators
- Graphs tools
  - Community detection / graph partitioning
    - Algo's
    - Observation: 'no good cuts'
  - (Node proximity personalized RWR)
  - Influence/virus propagation & immunization
  - 'Belief Propagation' & fraud detection
  - Anomaly detection

#### Problem



- Given a graph, and k
- Break it into k (disjoint) communities





#### **Short answer**

#### • METIS [Karypis, Kumar]



#### Problem

- Given a graph, and k
- Break it into k (disjoint) communities



#### Problem

- Given a graph, and k
- Break it into k (disjoint) communities



### **Solution #1: METIS**

- Arguably, the best algorithm
- Open source, at
  - http://www.cs.umn.edu/~metis
- and \*many\* related papers, at same url
- Main idea:
  - coarsen the graph;
  - partition;
  - un-coarsen



### **Solution #1: METIS**

- G. Karypis and V. Kumar. *METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system.* TR, Dept. of CS, Univ. of Minnesota, 1998.
- <and many extensions>





## **Solution #2**

(problem: hard clustering, *k* pieces) Spectral partitioning:

 Consider the 2<sup>nd</sup> smallest eigenvector of the (normalized) Laplacian

### **Solutions #3, ...**

Many more ideas:

- Clustering on the A<sup>2</sup> (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD'00]



#### **Detailed outline**

- Motivation
- Hard clustering -k pieces
- Hard co-clustering -(k, l) pieces
- Hard clustering optimal # pieces
- Soft clustering matrix decompositions
- Observations

#### **Problem definition**

- Given a bi-partite graph, and *k*, *l*
- Divide it into *k* row groups and *l* row groups
- (Also applicable to uni-partite graph)

### **Co-clustering**

- Given data matrix and the number of row and column groups *k* and *l*
- Simultaneously
  - Cluster rows into k disjoint groups
  - Cluster columns into *l* disjoint groups





### **Co-clustering**

- Let *X* and *Y* be discrete random variables
  - X and Y take values in  $\{1, 2, ..., m\}$  and  $\{1, 2, ..., n\}$
  - p(X, Y) denotes the joint probability distribution—if not known, it is often estimated based on <u>co-occurrence</u> data
  - Application areas: <u>text mining</u>, market-basket analysis, analysis of browsing behavior, etc.
- Key Obstacles in Clustering Contingency Tables
  - High Dimensionality, Sparsity, Noise
  - Need for robust and scalable algorithms

Reference:

1. Dhillon et al. Information-Theoretic Co-clustering, KDD'03

#### **Carnegie Mellon**



**Carnegie Mellon** 

med. doc \_\_\_\_ cs doc



term x term-group

Copyright: C. Faloutsos (2024)

-62

### **Co-clustering**

Observations

- uses KL divergence, instead of L2
- the middle matrix is **not** diagonal
  - Like in the Tucker tensor decomposition
- s/w at:

www.cs.utexas.edu/users/dml/Software/cocluster.html



#### **Detailed outline**

- Motivation
- Hard clustering k pieces
- Hard co-clustering (k,l) pieces
- Hard clustering optimal # pieces
  - Soft clustering matrix decompositions
  - Observations

## Problem with Information Theoretic Co-clustering

• Number of row and column groups must be specified

#### Desiderata:

- ✓ Simultaneously discover row and column groups
- **×** Fully Automatic: No "magic numbers"
- ✓ Scalable to large graphs

## **Graph partitioning**

- Documents x terms
- Customers x products
- Users x web-sites



## **Graph partitioning**

- Documents x terms
- Customers x products
- Users x web-sites
- Q: HOW MANY PIECES?



## **Graph partitioning**

- Documents x terms
- Customers x products
- Users x web-sites
- Q: HOW MANY PIECES?
- A: MDL/ compression



## **Cross-association**



#### Desiderata:

- ✓ Simultaneously discover row and column groups
- ✓ Fully Automatic: No "magic numbers"
- ✓ Scalable to large matrices

#### Reference:

1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD'04

# What makes a cross-association "good"?



# What makes a cross-association "good"?



# simpler; easier to describe easier to compress!

# What makes a cross-association "good"?





Problem definition: given an encoding scheme

- decide on the # of col. and row groups k and l
- and reorder rows and columns,
- to achieve best compression


## Main Idea



### for lossless compression

15-826

## Algorithm



Copyright: C. Faloutsos (2024)

| - 사업에 있는 수는 것이 같아. 이 문제에서 가장에 나갔다. 나                                                                           |                         |
|----------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                |                         |
| 그는 것 같은 것은 것을 잘 하는 것을 못했다.                                                                                     |                         |
| - [14] : 비난 문제의 물리, 비원 4, 11 원                                                                                 | 1 . A                   |
|                                                                                                                |                         |
|                                                                                                                |                         |
|                                                                                                                |                         |
|                                                                                                                |                         |
|                                                                                                                | 1.1                     |
|                                                                                                                | 100 <sup>10</sup> 01 01 |
|                                                                                                                | · . · · · · · · . · · . |
|                                                                                                                | CHI.                    |
| 2 Providence Selection and the second se |                         |
|                                                                                                                |                         |
|                                                                                                                |                         |
| المحمد ومقلح فالهوام فاردوا موا                                                                                | 199                     |
|                                                                                                                | - 194 B - 19            |
| 이 집에 방법을 해 물로 있는데요 이용을 물                                                                                       |                         |
|                                                                                                                |                         |
| · · · · · · · · · · · · · · · · · · ·                                                                          |                         |
| <ul> <li>Section of stars (d) a second star</li> </ul>                                                         | 1 4 1 4 1 H             |
|                                                                                                                | Adda to                 |
|                                                                                                                |                         |
|                                                                                                                |                         |

Words

"CLASSIC"

- 3,893 documents
- 4,303 words
- 176,347 "dots"

Combination of 3 sources:

- MEDLINE (medical)
- CISI (info. retrieval)
- CRANFIELD (aerodynamics)

**Carnegie Mellon** 



rules, community

construct, bibliographies

#### **Carnegie Mellon**

## **Experiments**



#### **Carnegie Mellon**

## **Experiments**



**Carnegie Mellon** 



**Carnegie Mellon** 





## Algorithm

#### Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/CrossAssociations-01-27-2005.tgz

#### Variations and extensions:

- 'Autopart' [Chakrabarti, PKDD'04]
- <u>www.cs.cmu.edu/~deepay</u>





# Algorithm

#### • Hadoop implementation [ICDM'08]





Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce: A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521

#### **Detailed outline**

- Motivation
- Hard clustering -k pieces
- Hard co-clustering -(k, l) pieces
- Hard clustering optimal # pieces
- (Soft clustering matrix decompositions
   PCA, ICA, non-negative matrix factorization,
   …)
  - Observations

#### **Detailed outline**

- Motivation
- Hard clustering -k pieces
- Hard co-clustering -(k, l) pieces
- Hard clustering optimal # pieces
- (Soft clustering)
- Observations



- Skewed degree distributions there are nodes with huge degree (>O(10^4), in facebook/linkedIn popularity contests!)
- TRAP: 'find all pairs of nodes, within 2 steps from each other'
   A



15-826



- TRAP: shortest-path between two nodes
- (cheat: look for 2, at most 3-step paths)
- Why:
  - If they are close (within 2-3 steps): solved
  - If not, after ~6 steps, you'll have ~ the whole graph, and the path won't be very meaningful, anyway.



 Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+'04], [Leskovec+,'08]







- Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+,'04],
  - [Leskovec+,'08]



## Jellyfish model [Tauro+]



A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

*Jellyfish: A Conceptual Model for the AS Internet Topology* G. Siganos, Sudhir L Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 2006.

#### Strange behavior of min cuts

• 'negative dimensionality' (!)

*NetMine: New Mining Tools for Large Graphs*, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

• Do min-cuts recursively.



N nodes

#### • Do min-cuts recursively.



log (mincut-size / #edges)





#### N nodes

#### • Do min-cuts recursively.



log (mincut-size / #edges)



log (# edges)

For a d-dimensional grid, the slope is -1/d

Copyright: C. Faloutsos (2024)

15-826

N nodes



• What does it look like for a real-world graph?<sub>log (mincut-size / #edges)</sub>



- Datasets:
  - Google Web Graph: 916,428 nodes and 5,105,039 edges
  - Lucent Router Graph: Undirected graph of network routers from <u>www.isi.edu/scan/mercator/maps.html</u>; 112,969 nodes and 181,639 edges
  - User → Website Clickstream Graph: 222,704 nodes and 952,580 edges

*NetMine: New Mining Tools for Large Graphs*, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

• Used the METIS algorithm [Karypis, Kumar, 1995]



- Google Web graph
- Values along the y-axis are averaged
- We observe a "lip" for large edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

• Used the METIS algorithm [Karypis, Kumar, 1995]



Copyright: C. Faloutsos (2024)

### **Conclusions – Practitioner's guide**

- Hard clustering -k pieces **METIS**
- Hard co-clustering -(k, l) pieces **Co-clustering**
- Hard clustering optimal # pieces Cross-associations
- Observations



'jellyfish': Maybe, there are <u>no good cuts</u>



#### **Short answer**

#### • METIS [Karypis, Kumar]



But: maybe there are NO good cuts!





Copyright: C. Faloutsos (2024)

15-826