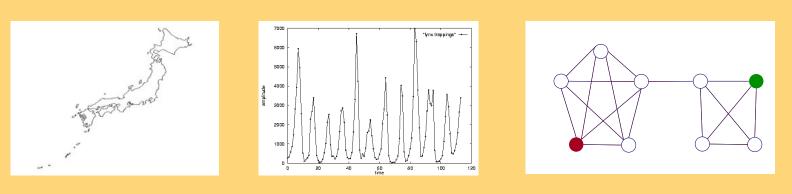
15-826: Multimedia (Databases) and Data Mining

Lecture #31: Conclusions C. Faloutsos

Problem

- Given a large dataset (points; text doc's; time series; images; nodes in a graph)
- Find similar/interesting things



Copyright: C. Faloutsos (2024)

Summary

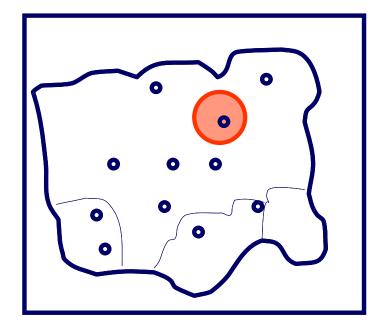
- **T1: fractals / power laws** lead to startling discoveries
 - 'the mean may be meaningless'
 - Don't assume Gaussian (average, k-means, etc)
- **T2: SVD**: behind PageRank/HITS/tensors/...
- T3: Wavelets: Nature seems to prefer them
- T4: RLS: matrix inversion, without inverting

Outline

Goal: 'Find similar / interesting things'

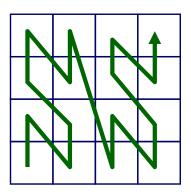
- Intro to DB
- Indexing similarity search
 - Points
 - Text
 - Time sequences; images etc
 - Graphs

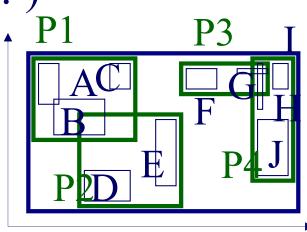
Indexing - similarity search



Indexing - similarity search

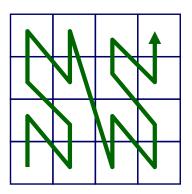
- R-trees
- z-ordering / hilbert curves
- M-trees
- (DON' T FORGET ...)

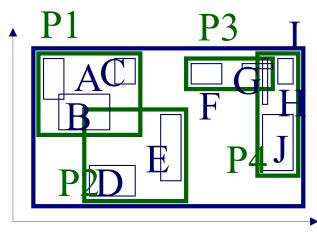




Indexing - similarity search

- R-trees
- z-ordering / hilbert curves
- M-trees
- beware of high intrinsic dimensionality





Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Points
- Text
 - Time sequences; images etc
 - Graphs

Text searching

• 'find all documents with word *bla*'

Text searching

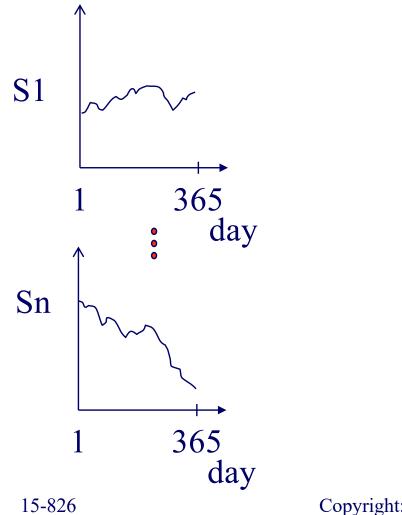
- Full text scanning ('grep')
- Inversion (B-tree or hash index)
- signature files Bloom filters
- Vector space model
 - Ranked output
 - Relevance feedback
- String editing distance (-> dynamic prog.)

Outline

Goal: 'Find similar / interesting things'

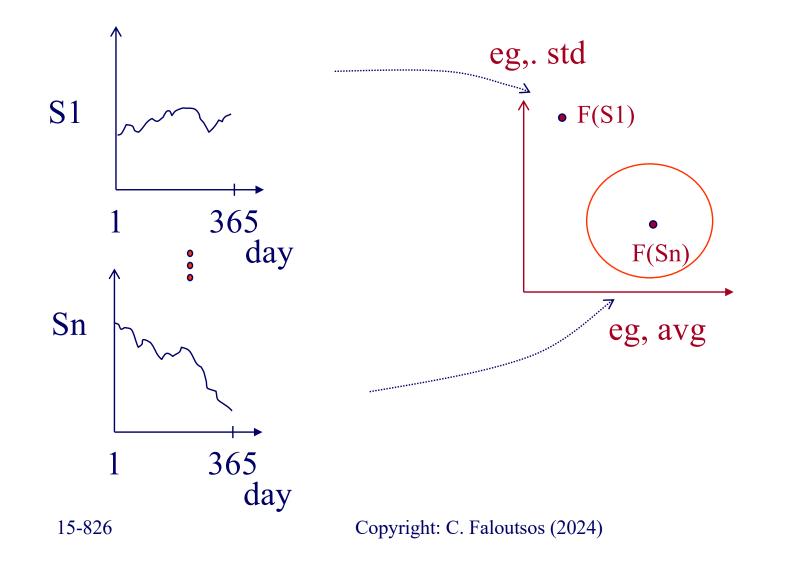
- Intro to DB
- Indexing similarity search
 - Points
 - Text
- Time sequences; images etc
 - Graphs

Multimedia indexing



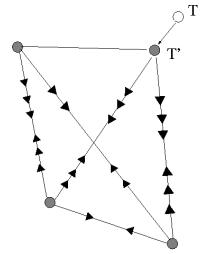
Copyright: C. Faloutsos (2024)

'GEMINI' - Pictorially



Multimedia indexing

- Feature extraction for indexing (GEMINI)
 - Lower-bounding lemma, to guarantee no false alarms
- MDS/FastMap
- tSNE/UMap



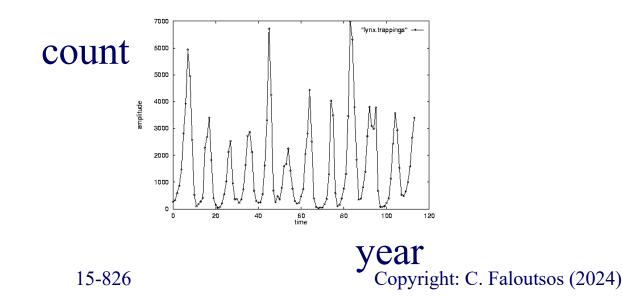
Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Points
 - Text
- Time sequences; images etc DFT/DWT
 Graphs

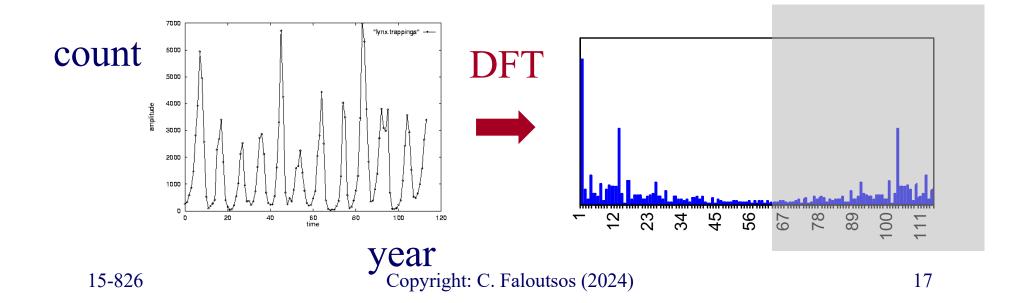
Time series & forecasting

- Goal: given a signal (eg., sales over time and/or space)
- Find: patterns and/or compress



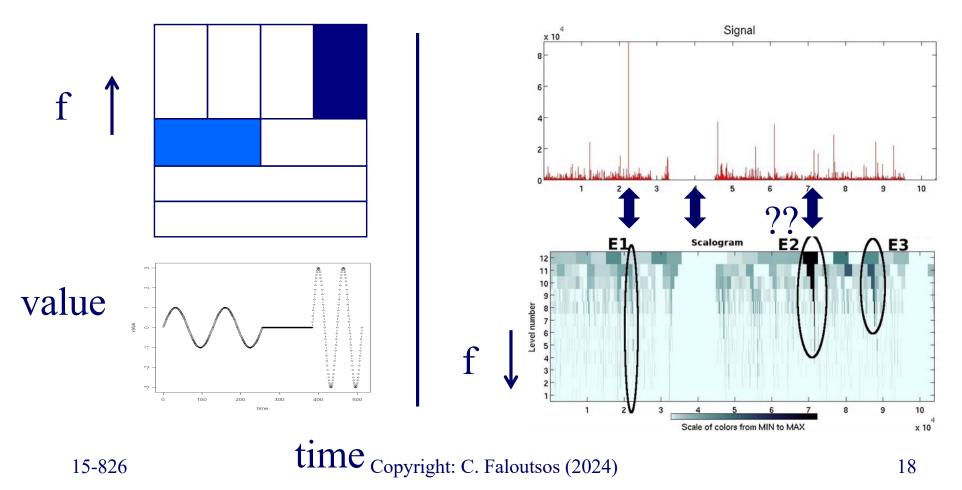
Time series & forecasting

- Goal: given a signal (eg., sales over time and/or space)
- Find: patterns and/or compress



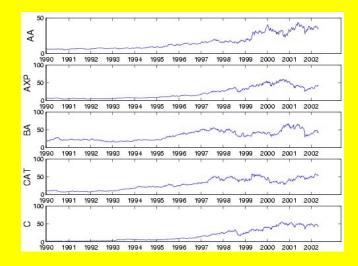
Wavelets

• Q: baritone/silence/soprano - DWT?



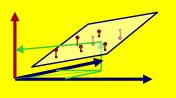
Not in the final exam **Problem:**

Q: mine/forecast (one, or more) time sequences



Not in the final exam **Answers**

- Similarity search: Euclidean/time-warping; feature extraction and SAMs
- Linear Forecasting: AR (Box-Jenkins)
- Non-linear forecasting: lag-plots
- Gray-box modeling: Lotka-Volterra





15-826

Copyright: C. Faloutsos (2024)

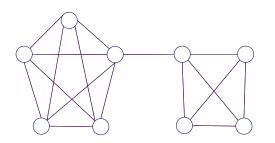
Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Points
 - Text
 - Time sequences; images etc
- Graphs

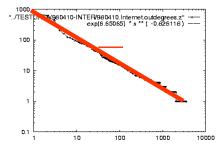
Graphs

Real graphs: surprising patterns
 -??

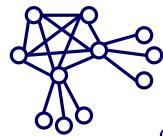


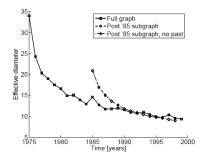
Graphs

- Real graphs: surprising patterns
 - 'six degrees'



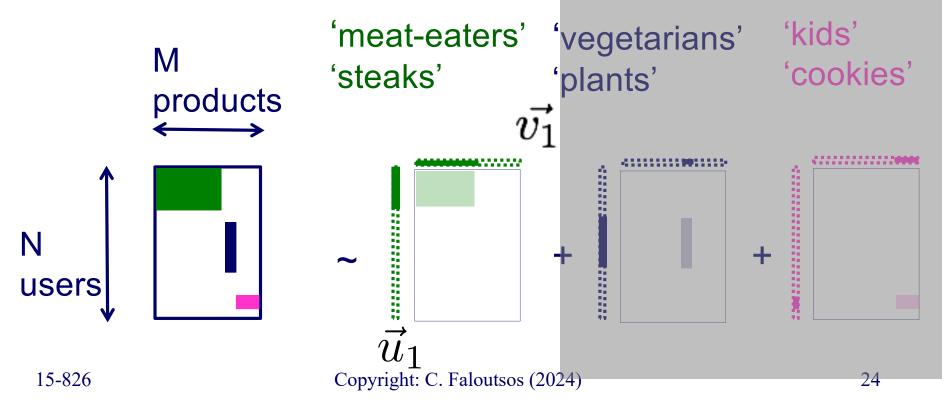
- Skewed degree distribution ('rich get richer')
- Super-linearities (2x nodes -> 3x edges)
- Diameter: shrinks (!)
- Might have **no** good cuts





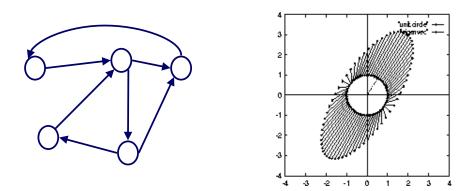
Graphs - SVD

• Hubs/Authorities (SVD on adjacency matrix)



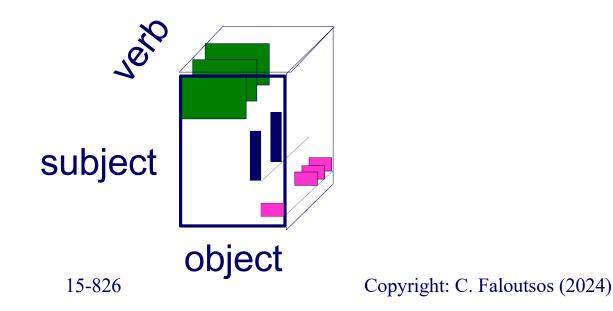
Graphs - PageRank

- Hubs/Authorities (SVD on adjacency matrix)
- PageRank (fixed point -> eigenvector)



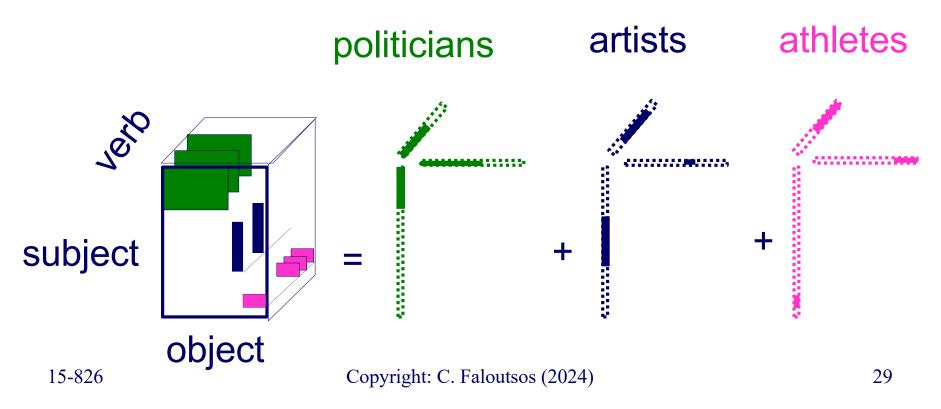
Tensors

• Eg., time evolving graphs; Subject-verbobject triplets; etc



Tensors

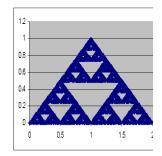
• Eg., time evolving graphs; Subject-verbobject triplets; etc



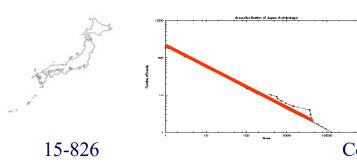
Taking a step back:

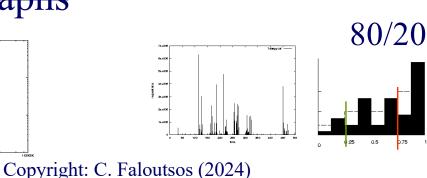
We saw some fundamental, recurring concepts and tools:

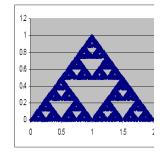
• Fractals/ self similarity

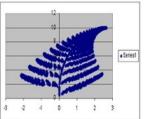


- Fractals/ self similarity <-> Power laws
 - Zipf, Korcak, Pareto' s laws
 - intrinsic dimension (Sierpinski triangle)
 - correlation integral
 - Barnsley's IFS compression
 - Kronecker graphs



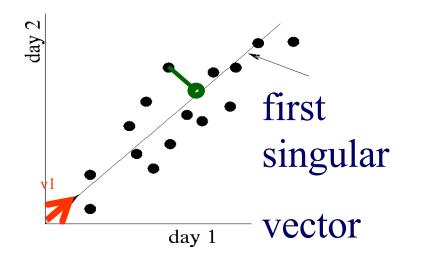




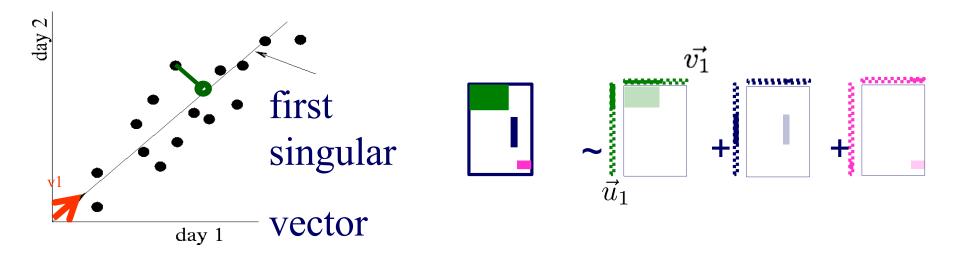


15-826

• SVD (optimal L2 approx)



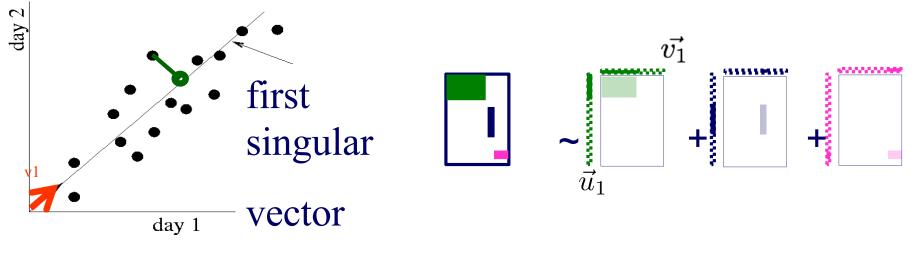
- Q: Cases we have a matrix as input?
- A: ...



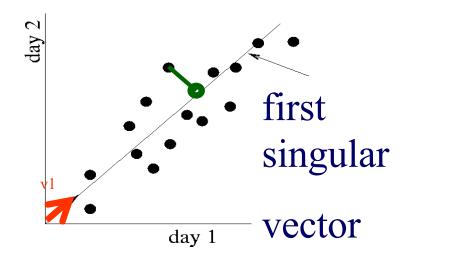
- Q: Cases we have a matrix as input?
- A1: graphs

15-826

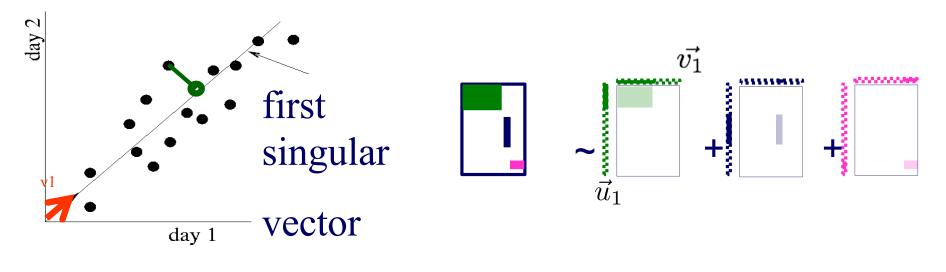
- A2: co-evolving time sequences
- A3: entities in feature space



- SVD (optimal L2 approx)
- Algorithms in course, where SVD worked?

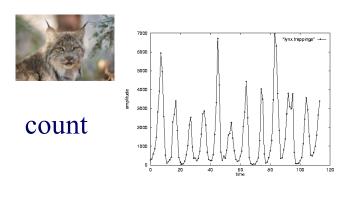


SVD (optimal L2 approx)
– LSI, KL, PCA, 'eigenSpokes', (& in ICA)
– HITS (PageRank)



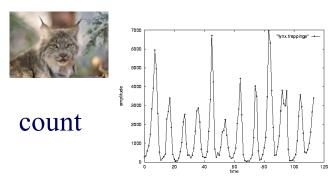
15-826

DFT (Discrete Fourier Transform) DWT (Discrete Wavelet Transform)

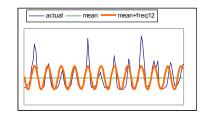


year

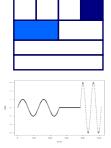
DFT (Discrete Fourier Transform)DWT (Discrete Wavelet Transform)



A1: Fourier (DFT)



A2: Wavelets (DWT)



Copyright: C. Faloutsos (2024)

Summary of summary

- T1: fractals / power laws lead to startling discoveries
 - 'the mean may be meaningless'
 - Don't assume Gaussian (average, k-means, etc)
- **T2: SVD**: behind PageRank/HITS/tensors/...
- T3: Wavelets: Nature seems to prefer them
- T4: RLS: matrix inversion, without inverting

Summary of summary

Thank you!

- Feel free to contact me:
 - Cell#; christos@cs; GHC 7003
- Reminder: faculty course eval's:
 - <u>http://www.cmu.edu/hub/fce/</u>
- Have a great holiday!

