Graph Mining Using SQL
15-826 Final Project Report

Nijith Jacob Sharif Doghmi
Carnegie Mellon University Carnegie Mellon University
njacoblandrew.cmu.edu sdoghmi@andrew.cmu.edu
Abstract

Is SQL powerful enough to do complex graph mining on real world datasets? In this paper, we
show that this is in fact true by implementing various graph algorithms for computing the degree
distributions, pagerank, connected components, radii of the vertices, eigendecomposition of the
adjacency matrix, belief propagation and triangle counts. We also perform anomaly detection by
extracting features from the egonet of the nodes. Finally, we apply these operations on 9 real world
datasets and try to identify recurring and anomalous patterns in these graphs.

1 Introduction

Graph Mining is an active area of research in data mining that aims to discover patterns and anomalies in graphs by
looking at their local and global properties. Since several real-world problems can be expressed as a graph problem,
there is a lot of interest in mining useful information from them. From ranking pages in the world wide web, providing
recommendations in social networks, analyzing biological pathways to detecting malicious activity in computer
networks, applications of graph mining are diverse and interdisciplinary.

The most popular method for mining very large graphs is using a distributed MapReduce platform such as Hadoop.
However, for moderately large graphs, SQL commands wrapped in a host programming language provides a much
simpler and less expensive method of mining graphs stored in relational databases. A RDBMS like PostgreSQL
provides query and storage optimization to facilitate mining large graphs with practical space and time complexity.

In this paper, we use SQL commands wrapped in Python programming language to interface with PostgreSQL
RDBMS and implement various graph mining algorithms using matrix and vector operations on tabular graph data.
The algorithms include finding degree distribution, pagerank, weakly connected components, node radii, eigendecom-
position, belief propagation, and count of triangles. We have also implemented an additional task involving anomaly
detection in graphs. We will use these implementations to perform broad-spectrum graph mining, where we apply our
algorithms to many real world graph datasets in order to discover global patterns and detect anomalies.

In section 2, we summarize related work. In section 3, we describe the algorithm and method behind the various
mining tasks. In Section 4, we describe our graph mining experiments and provide the analysis of the results. Finally,
in section 5 we present our conclusions based on the results we obtained.

2 Survey

In this section, we list the surveyed papers.

2.1 Papers Surveyed by Nijith Jacob
2.1.1 QOddBall: Spotting Anomalies in Weighted Graphs [1]

Main Idea

In this paper, anomalous nodes are detected by characterizing some features of its neighbourhood. Here the neigh-
bourhood is chosen as the egonet or the induced subgraph of the 1-step neighbours of a node.

The two main questions this paper addresses are

1. How to choose features for the neighbourhood? and
2. What pattern or law characterize a normal neighbourhood?

The paper narrows down the set of “interesting” features to

1. Number of nodes/degree of the node (N)

2. Number of edges in the egonet (E)

3. Total weight of edges (W)

4. Principal eigenvalue of the adjacency matrix of the egonet (\)

The interesting observation that is employed in detecting outliers is that several real-world graphs obey a power law
between certain pairs of these features. This reduces the problem of anomaly detection to finding the nodes that
deviate from the power law for a particular graph.

Based on the power law violated, different types of anomaly can be detected such as near-Cliques, stars, dominant
pairs, heavy vicinity etc.

Relevance to project
I’m planning to explore the ideas in this paper for the extra task.

Limitations
The method here is useful only when the features follow a power law. Though the law has been observed in several
real world graphs, it will be an interesting problem to find the characteristics of graphs where such laws are violated.

2.1.2 EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large
Graphs [2]

Main Idea

This paper presents a surprising and recurring pattern (termed by the authors as EigenSpokes) in large sparse
social graphs like mobile phone calls, internet, patent citations etc. The pattern can be used to identify community
like structures in large sparse graphs. In particular, two community structures are identified namely cliques and
near-perfect bipartite cores.

Their method is different from traditional methods like spectral clustering and graph partitioning methods in that the
focus is not on partitioning the entire graph. Rather, the focus is on identifying close knit communities that could be
loosely connected to an otherwise random graph core.

The primary method they employ is the singular value decomposition of the adjacency matrix to identify community
like structures in the graph. The intuition behind this is that SVD decomposition gives the principal components
and nodes belonging to a community typically have similar adjacent nodes and hence similar components along the

singular vectors. The surprising observation here is that such nodes in sparse and large graphs tend to have large
components along one of the singular vector.

The algorithm that the paper explores greedily add connected nodes having large components along a singular vector
until adding more nodes decrease the quality score of the community detected.

Relevance to project

In undirected graphs, the adjacency matrix is symmetric and therefore the singular vectors are the same as eigenvec-
tors. Since one of the tasks for the project is eigenvalue decomposition of the adjacency matrix, the pattern discovered
in this paper can be easily applied as part of the project to discover community like structures.

Limitations

The idea expressed in this paper is limited to large sparse graphs. So this approach may not work when the graph is
dense.

2.1.3 GBASE: an efficient analysis platform for large graphs [3]

Main Idea

This paper proposes an efficient analysis platform for very large scale graphs. In particular, the paper proposes
efficient storage mechanisms, common core algorithms and an optimized query execution build on top of HADOOP.

For efficient graph storage, a novel method called ’compressed block encoding’ is used. The community like
structures common in real world graphs are exploited to form a more efficient storage mechanism by first partitioning
the graph into homogeneous blocks. Each block represented by the adjacency matrix of the induced subgraph of a pair
of partitioned nodes is compressed using standard algorithms. Finally, a grid placement of the blocks into different
files is performed to optimize both in-neighbours and out-neighbours queries.

An important observation mentioned in the paper is the generalization of common graph operations as matrix-vector
multiplication where the matrix can be the adjacency matrix or the incidence matrix. Since matrix-vector multipli-
cation can be easily mapped into SQL joins, it can be easily and efficiently implemented using modern database
systems.

The query execution is built on top of HADOOP and MapReduce framework where the matrix-vector multiplication
is carried out over the relevant blocks for a particular graph operation.

Relevance to project

The idea of expressing common graph problems as matrix-vector multiplication or equivalently as a SQL join is
central to the project. In addition this suggests that the various tasks to be implemented in the project has reusable and
common primitives/operations that can be used for writing modular code.

Limitations

This approach may not work for graph operations that cannot be expressed as some form of matrix-vector multiplica-
tion.

2.2 Papers Surveyed by Sharif Doghmi

2.2.1 PEGASUS: Mining Peta-Scale Graphs [4]

Main Idea

This paper describes PeGaSus, an open source Peta Graph Mining library implemented on top of the Hadoop platform
that performs many graph mining operations. PeGaSus uses mainly a single primitive called Generalized Iterative
Matrix-Vector Multiplication (GIM-V), which is a generalized form of matrix-vector multiplication. GIM-V is
composed of three main operations that can be customized to perform various graph mining operations, including

PageRank, node proximity measurement, diameter estimation, and finding connected components.
A new algorithm, HCC, was proposed for finding connected components in large graphs.
GIM-V can be performed naively or with performance optimizations. The following table lists different algorithms for

performing GIM-V. Performance analysis was performed for the algorithms and they are listed ordered by performance
from lowest to highest

Algorithm Takes advantage of

GIM-V Base Nothing (naive method)

GIM-V CL Clustered edges

GIM-V BL Block multiplication

GIM-V BL-CL | Block multiplication and Clustered edges

In addition, there are two more algorithms for GIM-V that can be used to decrease the number of iterations needed
when using HCC to find connected components. GIM-V DI uses repeated diagonal block multiplications within each
iteration. GIM-V NR renumbers a center node with the minimum ID.

Finally, GIM-V was performed on real world graphs to examine connected components, PageRank, and graph
diameter. In agreement with previous research findings, power-law relations and stabilization after the gelling point
were observed. Anomalies were detected.

Relevance to project

GIM-V can be implemented using SQL statements with user-defined functions in combination with another program-
ming language to enable iterations. Typical GIM-V graph mining operations can be performed with the performance
and ease of use advantages of SQL. Analysis methods of real world graphs in this paper can be used as a starting point
for our analyses. Findings in the paper can be compared to our findings.

Limitations

Since we have no control over the internal workings of SQL commands, optimized GIM-V algorithms cannot be taken
advantage of. Also, the graph mining operations performed in this paper were done on Hadoop and using parallel
computations on many machines. Since we will be using SQL on a single system, this limits the performance of our
operations for large data sets and the size and number of the graphs we can analyze.

2.2.2 Mining Large Graphs: Algorithms, Inference, and Discoveries [3]

Main Idea

The paper describes a new efficient parallel algorithm called Hadoop Line Graph Fixed Point (HA-LFP) to implement
belief propagation on large graphs and make inferences about node states. In particular, it finds the most probable
distribution of node states. It is implemented on Hadoop which uses the programming model of MapReduce,
providing performance and scalability advantages, and is particularly valuable for graphs that do not fit in memory.

The algorithm first requires that the original graph be converted to a line graph, whose nodes correspond to edges
in the original graph. The algorithm runs for as many iterations needed to reach convergence. In each iteration,
each node passes messages to its adjacent nodes about its beliefs, updating a global message vector. Convergence is
reached after the message vector stops changing with iterations. After convergence, inferences can be made about the
states of the nodes in the graph.

In the paper, the algorithm was applied to analyze real-world graphs in different ways such as to identify ’good web
pages and bad web pages on the internet, to identify roles of people in social networks and to identify suspicious and
anomalous nodes in real world graphs using several different methods.

Relevance to project

The paper explains the use of an algorithm that uses a primitive very similar to the GIM-V primitive discussed in the
previous paper, for which SQL code was already written. It is a stepping stone to learning how to apply the binary

Fast” belief propagation algorithm needed for the assignment to analyze various graphs using belief propagation. Our
findings can be compared to and contrasted with findings of the paper.

Limitations

The algorithm is computationally expensive. It was designed with parallel computation in mind and might have
performance limitations when run on a single machine with SQL code. It only finds probability distributions of states
and cannot draw absolute conclusions about nodes.

2.2.3 Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms [6]

Main Idea

Guilt-by-Association (GbA) methods can be applied to real-world graphs in order to predict classifications of
unknown nodes based on classifications of known nodes, also known as prior beliefs about those nodes. This process
is called belief propagation. Several GbA methods exist: Random Walk with Restarts, Semi-Supervised Learning, and
Belief Propagation (BP). The paper describes a new algorithm called Fast Belief Propagation (FaBP) that is similar to
BP, but faster, with equal or higher accuracy, and is guaranteed to converge.

All the four previous methods can be expressed as a linear system expressed as a matrix multiplication of the form:
M x b = p, where Mis an n X n matrix (n is number of nodes) unique to that method, b is a vector of the final
propagated beliefs of the nodes, and p is a vector of the initial beliefs. All four methods are related and some of
them will produce identical results using certain values of constants within M. This linear system can be solved by
multiplication of the p vector by the the inverse of M. This is computationally intractable for very large matrices, so
the paper suggests using the power method for FaBP and describes its application.

The paper also describes how to select ¢’ and a, two constants in M in a way to guarantee convergence of the power
method for FaBP. They are calculated from a quantity called the about half homophily factor (h,). This factor is taken
from the maximum of two values calculated based on the 1-norm and the Frobenius norm of a matrix derived from M.

Experiments were conducted using FaBP on real world graphs. In the experiments, it was found that FaBP made the
same predictions as BP. It was shown that the propagated beliefs converge when the homophily factor chosen is within
a certain bound. Otherwise, they diverge. FaBP was implemented on HADOOP and shown to be linearly scalable on
the number of edges. It was also about twice as fast as BP.

Relevance to project

FaBP will be implemented using SQL statements to apply the power method to real world datasets to propagate
beliefs and visualize the outcomes. SQL on Postgres is much more spatially efficient for large graphs than actual
matrix multiplication using a package like MATLAB. The latter is practically impossible to use for very large graphs.

Limitations
Availability of datasets with prior beliefs on nodes is limited. Thus, we will be flexible in our experiments using the
datasets that are available. Plausible scenarios in real-world datasets will be examined.

3 Method

This section describes the various algorithms and SQL code used for the completion of the project.

3.1 Conventions used

For convenience and clarity, the following conventions are used when describing the algorithms and SQL codes.

1. Table signatures
Table signatures specify the general column format of the freqeuntly used tables.
e Adjacency Table: dgraph (src_id integer, dst_id integer, weight real)
e Matrix: matrix (row_id integer, col_id integer, value real)
e Vector: vector (id integer, value real)
2. Notational conventions:
The following are the notational conventions used in describing the algorithms. The matrix and vector operations
mentioned are easily implemented over tables with the table signatures described above using the SQL codes in
section 3.2.
e A x B : matrix multiplication of table A and table B.
u - v : dot product between vector table u and vector table v
[| - ||2 : L2 norm of vector
A < B : Insert all rows in B to A after truncating A
Q(i,4) : value at i*" row and 5" column.
Q(:,7) : 7% column vector.
EIG(A) : Eigen decomposition of A
n : number of nodes in the graph
dgraph(A) : Adjacency table for directed graphs
graph(A,) : Adjacency table for undirected graphs

3.2 Generic SQL codes

This section contain implementations of common SQL codes that accomplish operations that are used in the various
algorithms.

1. Euclidean(L2) norm of vector

SELECT sqgrt (sum((value)"2)) FROM vector
2. Vector dot product (u - v)

SELECT sum(vectorl.value * vector2.value)

FROM vectorl, vector2
WHERE vectorl.id = vector2.id

3. Matrix multiplication (A x B)

SELECT A.row_id, B.col_id, sum(A.value x B.value)
FROM matl "A", mat2 "B"
WHERE A.col_id = B.row_id
GROUP BY A.row_id, B.col_id

4. Adjacency table x vector

SELECT A.src_id, sum(A.weight * V.value)
FROM graph "A", vector "V"
WHERE A.dst_id = V.id
GROUP BY A.src_id

5. Obtaining graph from dgraph

INSERT INTO graph(src_id, dst_id, weight)
SELECT src_id, dst_id, weight FROM dgraph
UNION ALL
SELECT dst_id "src_id", src_id "dst_id", weight FROM dgraph

3.3 Graph mining algorithms

This section describes the graph mining algorithms that are used for the various project and extra tasks. The SQL
code is provided where appropriate. The algorithms for connected components, graph radius, graph eigenvalue, belief
propagation, triangle count and anomaly detection work on the undirected version of the graph.

3.3.1 Degree Distribution

The various degrees of a node are computed as the number of rows in the adjacency table with src_id = node_id (out
degree), dst_id = node_id (in degree) and src_id = node_id or dst_id = node_td (degree). For an undirected graph
all three degrees are equal. The distribution for each of the degrees refer to the frequency distribution of the degree
across all nodes in the graph.

Algorithm: Degree Distribution

e In-Degree Distribution

SELECT indegree, count (x) "count" FROM
(SELECT count (x) "indegree" FROM dgraph GROUP BY dst_id)
GROUP BY indegree

e Out-Degree Distribution

SELECT outdegree, count () "count" FROM
(SELECT count (x) "outdegree" FROM dgraph GROUP BY src_id)
GROUP BY outdegree

e Degree Distribution

SELECT degree, count (x) "count" FROM
(SELECT count (x) "degree" FROM dgraph GROUP BY dst_id
UNION ALL
SELECT count (x) "degree" FROM dgraph GROUP BY src_id)
GROUP BY degree

3.3.2 PageRank

PageRank is the famous algorithm that was originally employed on Google web search engine to rank webpages. The
pagerank score is determined both by the number of links to a page as well as the ranking of the pages linked from.
The algorithm finds the fixed point probabilistic distribution of ranks across all the pages (given by the dominant
eigenvector) using the power method.

To account for disconnected pages, links are added from a page to every other page including itself. The resulting graph
can be best described in the context of a random surfer who follows links across pages with probability propotional to
the weight of the link and also at times probabilistically stop and restart from a random node.

Algorithm: PageRank

Input:

1. damping factor (c) = 0.85 : The damping factors controls the probability of restart for a random surfer
to restart the random walk from another node.

2. Stopping threshold (€), maximum number of iterations (m)
Output:

1. pagerank(node_id, page_rank), p : Probabilistic ranking of every node in the graph.
Auxilary tables:

1. offset_table(node_id, page_rank), p, : This is the offset that is added during each pageRank iteration.
2. pagerank_next(node_id, page_rank), peq, : This vector stores the next iteration of pageRank
3. norm_table(src_id, dst_id, weight), A, orm : Row normalized version of adjacency table.

Algorithm:

1. Initialize:

(a) Compute row normalized adjacency table, norm_table
INSERT INTO norm_table
SELECT src_id, dst_id, weight/weight_sm "weight"
FROM dgraph "TAB1",
(SELECT src_id "node_id", sum(weight) "weight_sm"
FROM dgraph
GROUP BY src_id) "TAB2"
WHERE "TABl".src_id = "TAB2".node_id
(b) Initialize offset_table to (1 — ¢)/n
(c) Initialize pagerank to 1/n
(d) step=1
2. Compute next Pagerank:
The next iteration of PageRank values is computed as p,e, = cAL, . » + ap, where « is the sum of
pageranks in p.
INSERT INTO pagerank_next
SELECT node_id, SUM(page_rank)
FROM (
SELECT dst_id "node_id", SUM(0.85*weight+*page_rank) "page_rank"
FROM norm_table, pagerank
WHERE src_id = node_id GROUP BY dst_id
UNION ALL
SELECT node_id, page_rank * wval "page_rank"
FROM offset_table, (SELECT SUM(page_rank) "val" FROM pagerank)
)
GROUP BY node_id

3. Iterate until Convergence:

If |[prew — pll2 > € and step < m, set p < Ppew, step = step + 1, goto step 2. Otherwise set
P < Dnew and break iteration.

3.3.3 Weakly Connected Components

The weakly connected components of a graph are the maximal undirected subgraphs such that within a component all
nodes are reachable from any other node. The algorithm described below to find such components work by keeping
track of the component (identified by a component id) to which each node belongs. First we initialize such that each
node belongs to a component of its own. We then iterate, updating the component to which each node belongs. At
the k'" iteration, we set a node’s component id as the minimum of the ids of all nodes that are atmost k hops away
(the choice of minimum here is completely arbitrary. We can use any function that determines a unique value from a
set of values). The algorithm will eventually converge when k equals the maximum radii of the graph at which the
neighbourhood around each node would have explanded to include all the reachable nodes.

Algorithm: Weakly Connected Components

Qutput:

1. conn_comp(node_id, component_id), c : The component id is a unique id determined as the minimum
of the ids of the nodes within a neighbourhood around a node.

Auxilary tables:
1. conn_comp_new(node_id, component_id), c,e., : The component ids at the next iteration.
Algorithm:

1. Initialize:
Each node’s component id is initialized to the node’s id.
2. Iterate:

Each node’s component id is set as the
min {node’s component id, component ids of its neighbours}

INSERT INTO conn_comp_new
SELECT node_id, MIN (component_id) "component_id"
FROM (
SELECT src_id "node_id", MIN(component_id) "component_id"
FROM graph, conn_comp
WHERE dst_id = node_id
GROUP BY src_id
UNION
SELECT x FROM conn_comp
)
GROUP BY node_id

3. Iterate until convergence:
If ||¢ — Chewl|2 > 0, ¢ ¢ Cpew, goto step 2. Otherwise break iteration.

3.3.4 Radius of Every Node

Martin-Flajolet method for calculating node radii uses repeated bit-wise OR’s of probabilistic bitstrings of neighboring
nodes to approximate the size of reachable neighbourhood of the nodes. The bitstring of a node obtained at the k"
iteration is an approximation of the number of nodes k£ hops away. The intuition behind this method of approximating

size of a set is that the bit strings are encoded in such a way that the i*” bit is set with probability 71~ The index of

the leftmost 1, r in the bitstring during convergence is therefore a good indicator of the number of reachable nodes and

is given by 2"+1 (after normalizing). The effective radius (the radius at which at least 90% of reachable nodes

lie) of the nodes are computed from this bitstring as the iteration number at which the number of neighbours obtained
from the bitstring is within a threshold (90%) of the maximum number of neighbours approximated at convergence.

Algorithm: Radius of Every Node

Input:
1. maximum number of steps (m)
Qutput:
1. node_radius (node_ id, radius) : The effective radius of all nodes.
Auxilary tables:
1. hop_table_{i}(node_id, bit_string) : Bit string hash for every node after ¢ iterations. h; will be used to

refer to the vector of bitstrings in this table.
2. max_neighbourhood_table(id, value) : The neighbourhood value at the maximum hop.

Algorithm:

1. Initialize:

(a) Bit strings in hop_table_0 is initialized as the output from function given by
5(hash(node,z‘d)xor(hash(node,z’d) — 1) 4+ 1). This function zeros out all but the rightmost 1 in

the hash value. The hash function hash() used for this implementation is given by hash(node_id)
= (node_id mod n) + I where n is the number of nodes. This initialization can be easily performed
in SQL by selecting this functional expression from a table containing the node ids.

2. Iterate for i = 1 to m steps:

(a) Compute next hop bitstrings:

The next hop bitstrings are computed as bitwise-or of a node’s bitstring with that of its neighbours.
This is accomplished by the following SQL.
INSERT INTO hop_table_{i}

SELECT node_id, bit_or(bit_string) FROM
(SELECT src_id "node_id", bit_or(bit_string) "bit_string"
FROM graph, hop_table_{i-1}
WHERE dst_id = node_id GROUP BY src_id
UNION ALL
SELECT % FROM hop_table_{i-1})
GROUP BY node_id
(b) Check for convergence:
If [|h; — hi—1]]2 = 0, set max_hop = i and break iteration.

3. Compute neighbourhood value at max hop:

2% where R is the index of leftmost 0 given by

1
The neighbourhood value i ted as ———
e neighbourhood value is computed as 077351

[logs (bit_string) + 1]
INSERT INTO max_neighbourhood_table
SELECT node_id "id", 2" (floor (log(2,bit_string)+1))/0.77351 "value"
FROM node_table_{max_hop}

4. Tterate for : = 0 to max_hop steps:

(a) Get nodes with effective radius i:
A node’s effective radius is taken as ¢ if the value of the neighbourhood function computed on
hop_table_i is > 0.9 times the value at max hop. This is accomplished by the following SQL
INSERT INTO node_radius
SELECT node_id, {i} "radius"
FROM hop_table_{i}, max_neighbourhood_table
WHERE node_id = id
AND 2° (floor (log(2,bit_string)+1))/0.77351>=0.9xvalue
(b) To avoid inserting as radius all values from ¢ to maxz_hop for converged nodes, the newly inserted
nodes are deleted from the max_neighbourhood_table.
DELETE FROM max_neighbourhood_table
WHERE id IN (SELECT node_id FROM node_radius)

3.3.5 Graph Eigenvalues

Eigenvalues of the adjacency matrix are fundamental in analysis of the spectral properties of graphs. They can
also be used to find approximations to important graph measures such as triangle counts. Since the eigenvalues of
non-symmetric graphs can be complex, only undirected graphs are dealt with here. The algorithm discussed here is
the Lanczos algorithm with selective orthogonalization.

Note: Since the algorithms discussed in this section heavily use matrix operations, the SQL statement for each step
is not provided for clarity. Please refer to the section on generic SQL codes for implementations of these matrix
operations in SQL.

1. Lanczos Algorithm with Selective Orthogonalization
The basic Lanczos algorithm is an iterative algorithm to find the top k eigenvalues of a matrix. The algorithm
works by orthogonalizing the set of intermediate vectors obtained during power iteration to form a basis for the
matrix (A,). At each iteration, a tridiagonal matrix 7" is constructed that is similar to A,, such that T' = BTAuB
where B is the set of basis vectors constructed so far. We can then approximate the eigenvalues and eigenvectors
of A, from the eigendecomposition of 7". This can be performed easily by the QR algorthim (discussed next).

The problem with the basis Lanczos algorithm is that the basis vectors loose their orthogonality due to finite
precision. Since full reorthogonalization with all the previous basis vectors can be expensive, Lanczos selective
orthogonalization is performed where we look for eigenvectors that has converged and reorthogonalize with
respect to them.

10

Algorithm: Lanczos Selective Orthogonalization

Input:
(a) m : the number of steps to iterate
Mg, : the number of steps to iterate for the QR algorithm
(b) €; : threshold used for selective orthogonalization.
€5 : threshold used to end iteration
€qr © threshold used for the QR algorithm
Output:
(a) eigval_table(A') : The eigenvalue vector table.
(b) eigvec_table(U’) : The eigenvector table. The eigenvectors are the column vectors of this table.
Auxilary tables:

(a) basis_vect_0 (vg) : The i — 1'" basis vector.
(b) basis_vect_1 (v;
(¢) basis_vectnew (vnew) : The i + 1" basis vector.
(d) tri_diag_table (T) : Symmetric tridiagonal matrix similar to A,
(e) basis_table (B) : Table with column vectors as the basis vectors upto iteration i
Algorithm:
(a) Initialize:
® 1 is initialized to O
e v is initialized randomnly and then normalized
® fp=0
(b) Iterate for i = 1 to m steps:
i. Get new basis vector: v,,.,, = A, X v1
. 1 = Vpew * V1
iii. Orthogonalize: Orthogonalize the new basis vector against previous two basis vector using the
Gram-Schmidt method.
Unew € Unew — Q1 V1 — 60 Vo

The i*" basis vector.

SELECT "VECT_NEW".id,
("VECT_NEW" .value— (b0+*"VECTO" .value) - (al+«"VECT1".value)) "value"
FROM basis_vect_new "VECT_NEW",
basis_vect_0 "VECTO",
basis_vect_1 "VECT1"
WHERE "VECT_NEW".id = "VECTO".id AND "VECTO".id = "VECT1".id

iv. Build the tridiagonal table:
T(i,i) = a1, T(: — 1,4) = Bo, T(i,1 — 1) = By
v. Build the basis table:
B(t7 Z) — U1
vi. Get the eigen decomposition of T using QR algorithm.
UAUT « EIG(T)
vii. Iterate for j = 1toi:
A. Check whether the j"* eigenvector has converged.
Is abs(U(4, j)) < €1? Then goto next step. Otherwise continue iteration on j.
B. Get the j*" eigenvector
r=B x U(;,j)
C. Do selective orthogonalization with this eigenvector.
Unew = Unew — (’I’ : vnew) T
Vlll 51 = anewHQ
ix. Break iteration if the new basis vector is in the span of previous basis vectors. i.e. if §1 < €2

11

x. Normalize v,,cq,-
xi. Prepare for next iteration:
Vg 4= V1, V1 = Unew, Bo = B1
(c) UAUT « EIG(T)
(d) Get the eigenvalues: A’ < diag(A)
(e) Get the eigenvectors: U’ <+ B x U

2. QR Algorithm
QR algorithm is an iterative algorithm to calculate the eigendecomposition of a matrix. At each iteration we
compute A1 = RipQf = Q;;FAka where A = Q Ry is the QR decomposition of the matrix. The intuition
behind this algorithm is that Ay, is similar to Ay and hence have the same eigenvalues. The eigenvectors after
m iterations can be computed as Q1 Q2..Q.,

The general QR decomposition algorithm is expensive. Since we are concerned only with tridiagonal matrices,
QR decomposition can be adapted to run in linear time (discussed next).

Algorithm: QR Algorithm

Input:
(a) tri_diag-table(T) : Symmetric tridiagonal table
(b) myg, : the maximum number of steps to iterate
(c) €qr : stopping threshold
Output:
(a) eigval_table(A) : The eigenvalue table.
(b) eigvec_table(U) : The eigenvector table.
Algorithm:
(a) Inmitialize: V < T, U < I, where I is the identity matrix
(b) Iterate for i = 1 to m,, steps:
i. QR decomposition:
Compute QR decomposition which satisfies V.= Q x R
ii. V-~RxQ
iii. U+~ UxQ
iv. Check threshold: Is max(abs(Vyon—diagonai)) < €qr? Then break iteration. Otherwise
continue.
Rationale: The maximum non-diagonal element of V is a good indicator of the convergence of
diagonal eigenvalues.
) A~V

3. QR Decomposition
QR decomposition is the decomposition of a matrix 1" such that T = QR where @ is an orthogonal matrix and
R is an upper triangular matrix. The algorithm discussed here is an adaptation to the special case when 7' ia a
tridiagonal matrix. The intuition behind this algorithm is that 7" being nearly upper triangular, we can iterately
set the below diagonal elements to 0 by using the appropriate Givens rotation matrix.

Algorithm: QR Decomposition

Input:

(a) tri_diag_table(T) : Symmetric tridiagonal table

Output:

(a) Q-table(Q)

(b) R_table(R)

Algorithm:

(a) Inmitialize: R < T, Q < I, where I is the identity matrix

12

(b) Iterate for - = 1 ton — 1 steps (where n is the size of T):
i. Compute Givens rotation matrix:
Leta = R(i,7) and 8 = R(i + 1,4)
Letr = \/042—#/82,0:04/7“’5 = _ﬁ/r,«
G+ LG3GiI)=cGi+1,i+1)=¢G(,i+1)=-s5G(i+1,i) =s
ii. Q«+~ QxGT
iii. R+ G xR

3.3.6 Fast Belief Propagation

Belief propogation algorithms are used to find the steady state beliefs of the graph given a set of prior beliefs on the
nodes of the graph. Here we discuss Fast Belief Propagation (FaBP) algorithm that propagate beliefs across a graph
faster than other belief propagation algorithms and with high accuracy.

The algorithm starts with a set of prior beliefs (¢;,) on the nodes such that good nodes have positive belief value,
bad nodes have negative belief value and neutal/unknown nodes have their belief value set at 0. Prior beliefs are
then propagated to the unknown nodes to spot good and bad nodes. FaBP converges very quickly after only a few
iterations. FaBP uses a carefully chosen constant called the about-half homophily factor (h,) to determine the strength
of the similarity in beliefs (speed of diffusion) between adjacent nodes. The homophily factor affects the speed of
the convergence. An incorrectly chosen homophily factor can lead to beliefs diverging and the algorithm never ending.

More formally, FaBP solves a linear system of equations given by [I + aD — ¢ Alb, = ¢}, using the power method.
Here a and ¢’ are choosen based on the homophily factor derived from the graph. D is a diagonal matrix of node
degrees, A is the adjacency matrix and b;, are the about-half unknown beliefs on the graph. The solution involves the
inversion of a matrix of the form I — W where W = ¢/ A — aD. The inverse is obtained by performing power iteration
on W with the next set of belief values computed by by, pext = Wby, + ¢p,.

Algorithm: Fast Belief Propagation

Input:

1. prior_belief (node_id, belief), ¢, : The prior beliefs on the graph

2. Stopping threshold (€), maximum number of iterations (m)
Output:

1. belief (node_id, belief), by, : The final set of beliefs on the graph.
Auxilary tables:

1. node_degrees(node_id, degree), d : The degrees of each node.

2. belief_next (node_id, belief), by, nert : The next set of beliefs on the graph
Algorithm:

1. Initialize:

(a) Get the node degrees.
INSERT INTO node_degrees
SELECT node_id, count (x) "degree"
FROM graph
GROUP BY node_id
(b) Initialize belief table. by, < ¢y,
(c) Get the best homophily factor (hy,) and from it the constants ¢’ and a.

1 - 3+ 4
hy, = maz \/ Cl+m)wherecl=2+Zdii702zzdi‘_1
C2

2+ 2max(d;;)’ 8

13

4h3 , 2hp,
TR Ty
In SQL, these can be easily computed from the node_degrees table.
(d) step=1
2. Compute next beliefs:
The following SQL compute the next set of beliefs.

INSERT INTO belief next
SELECT node_id, SUM(belief) "belief"
FROM
(SELECT src_id "node_id", {c’}*SUM(belief) "belief"
FROM graph, belief
WHERE dst_id = node_id
GROUP BY src_id
UNION ALL
SELECT nodeid "node_id", {-a}xdegreexbelief "belief"
FROM node_degrees "d", belief "b"
WHERE "d".node_id = "b".node_id
UNION ALL
SELECT node_id, belief FROM prior_belief)
GROUP BY node_id

The constants are computed as a =

3. Iterate until Convergence:
If ||bh next — Drll2 > € and step < m, set by, < by, nest, Step = step + 1, goto step 2. Otherwise set
by, < bp newt and break iteration.

3.3.7 Count of triangles

The count of triangles is an important measure in a graph. It can be used to spot anomalous graphs and abnormal

trace(A3)

nodes. The naive method of computing the count of triangles would be to use . The division by 6 is done

since we count the same triangle 3! times. But this becomes intractable fast for large graphs. Therefore, we will use
an approximate algorithm that use eigenvalues to compute the triangle count. The intuition is that trace of a matrix is
equal to the sum of its eigenvalues and that eigenvalues of A are AF where); are the eigenvalues of A,,. For large
graphs this sum can be approximated by the top k eigenvalues obtained using eigendecomposition algorithm discussed
earlier.

Algorithm: Triangle Count

Output:
1. Approximate number of triangles
Algorithm:

1. Eigen decomposition:
Use eigen decomposition algorithm to compute the top k eigenvalues of the graph
A «— EIG(graph)

2N
6

SELECT sum(value”3)/6 FROM eigval_table

2. Count: The count of triangles can be approximated as

3.3.8 Anomaly Detection in Weighted Graphs (Extra)

To detect anomalies in a graph, we use the ideas mentioned in the paper “OddBall: Spotting Anomalies in Weighted
Graphs” [1]] (surveyed in section 2.1.1). The outliers are detected by characterizing the normal behavior in the graph
by a power law and using that to quantify the measure by which they deviate. As suggested in the paper, we extract
three features from the egonet of each node namely, the number of nodes (N), number of edges (E) and the total

14

weight of edges(W). The characterizing power laws between E and N and between W and E are found by linear
fitting. An outlier score is then given to each node propotional to their distance from the best fit line. Finally, nodes
with high score are reported as anomalies.

The power law between E and N detect anomalies like star configuration (£ = N — 1) on one extrema to a perfect
clique (E = N(N — 1)) on the other extrema. The power law between W and F find anomalies where the weight in
the egonet is really large compared to the number of edges (Heavy vicinity). In this paper, we will be working with
undirected graphs.

Algorithm: Anomaly Detection

For the proposed method, we need to extract three features from the egonet of each node. The number of
nodes NV is equal to the degree of the node + 1. This can be easily extracted from the adjacency table. The
number of edges (&) and the total weight of edges (W) for each egonet are extracted in 2 steps. In the first
step, for each node, we add the edges that are are incident on its neighbours. This can be accomplished by
joining the adjacency table to itself twice. Since we are working with undirected graphs, this step would add
the same edge twice which need to be corrected appropriately. In the second step, we add all the edges that
are incident on the node. The set of edges thus obtained from these two steps represent the egonet of the
nodes and the number of edges and the sum of its weight can be extracted from this set.

This can be accomplished by using the following SQL which returns the node’s id, the count of edges
(edge_cnt) and sum of edge weights (wgt_sum)

SELECT node_id, sum(edge_cnt) "edge_cnt", sum(wgt_sum) "wgt_sum"
FROM
(SELECT "T2".dst_id "node_id", count (*)/2 "edge_cnt",
sum ("T2".weight) /2 "wgt_sum"
FROM graph "T1", graph "T2", graph "T3"
WHERE "Tl1".src_id = "T2".src_id
AND "T1".dst_id = "T3".dst_id
AND "T2".dst_id="T3".src_id"
GROUP BY "T2".dst_id"
UNION ALL
SELECT src_id "node_id", count (x) "edge_cnt", sum(weight) "wgt_sum
FROM graph)
GROUP BY node_id

3.4 Implementation Summary

The following are the specific implementation details for our project

e Database: Postgres

e Programming/Scripting Environment: Python

e Libraries:

1. psycopg2: python library for interfacing with postgres

All the data processing is performed in SQL. The scripting environment is used for interfacing and for basic loop and
conditional constructs.
The output for each of the mining algorithm is stored on the database in an appropriate table.
For more details, please refer to the documentation provided with the software packaging.

15

4 Experimental Analysis

This section is divided into 2 subsections. In the first, we elucidate on the various unit tests that were done to verify

the correctness of the implementation. In the second, we give a thorough analysis of the results obtained on various
real-world datasets.

4.1 Correctness Verification

In addition to the unit tests done at the time of coding, the correctness of the algorithms implemented as part of this
project were verified by comparing the results with their implementations in Matlab. The implementation code in

Matlab is provided along with the software packaging. For most of the algorithms, the dataset Advogat(ﬂ was used for
verification. The dataset is a weighted and directed graph with 6, 551 nodes and 51, 332 edges.

1. Degree Distribution

Figure [T] compares the in-degree, out-degree and degree distributions obtained using SQL and Matlab. The
plots are slightly shifted for visual clarity.

4 CutDegree 4 InDegree 4 Degree
10 . 10 : 10
* -
+* *
10} { '} { '} |
P * * *
.4 * ¥
- » i * ¥
ety P ::
% st A4
* "
wE o A8 {1 % AT . 1
1%
k3 i i
P> tt
'y Ll
ol % 1 '} %ﬁ 1 o'}]
% e
e ez d .- L
£ 2] E . L 2 2
.] E] k.
L] . .] L
E L . k. .
o 0 0
10 - 10 - 10
10" 10° T 10° NI 10° 10t

Figure 1: Out-degree, In-degree and degree distributions for implementation in Matlab(Blue) and in SQL(Green)

2. PageRank

PageRank was implemented in Matlab by using eigs() to obtain the dominant eigenvector. The parameters
used for the implementation in SQL were damping_factor = 0.85, max_iterations = 10, stop_threshold = 0.01.
Figure [2] plots the pageranks obtained from the 2 implementations. Note: The scaling factor on the axes are
different since the two pagerank vectors are normalized differently (pagerank obtained has L1 norm as 1
while the one obtained as the eigenvector has L2 norm as 1).

3. Weakly Connected Components

! http://konect.uni-koblenz.de/networks/advogato

16

10

107

107 F

PageRank from S0AL

1

10 -
10
PageRank from Matlab

10
Figure 2: Scatter plot of pageranks obtained from SQL and Matlab

Same algorithms were used in both the SQL and Matlab implementations. Figure [3|is the frequency plot of
component sizes.

4 Connected Components 4 Connected Components from SQL
10 10 .
10°} 4 10’} 1
i 1
1 L
1 |
= 4 = |
g .l 5 !
= 100 7 210y E
e " 2 +
b | L |
I b
i !
'} | : '} | :
I |
| |
| |
! |
! 1
10° L : 10" L :
10" 10° 10* 10°

10°
Component Size

Component Size

Figure 3: Frequency plot for component sizes (log-log) for implementation in Matlab(Left) and in SQL(Right)

4. Radius of every node

The Matlab implementation returns the exact radius for each node. The exact radius was computed by keep-
ing track of the k-hop neighbours. The SQL implementation is approximate and it returns the effective radius
computed as the radii at which 90% of the reachable neighbours are seen. Figure[d]is the histogram distribu-

17

tion of the radius. The figures are a little different since the SQL implementation is approximate, calculates
the effective radius and is dependent on the the choice of hash function. But, it is clear that both the results
follow similar distribtution of radius.

Actual Radius Approx Effective Radius

4000 2500
3500
2000
3000
2500 1500
2000
1200 1000
1000
500
500
0

01

56784

012345867

Figure 4: Histogram of radius for implementation in Matlab(Left) and in SQL(Right)

5. Eigenvalues

We verify the Lanczos-SO algorithm and QR deomposition algorithm using the following matrix T both as
an adjacency matrix (for eigendecomposition) and as a tridiagonal matrix (for QR decomposition).

1 1.0 0 0 O
1110 0 0
01 1100
T=100111 0
0 001 11
0 000 11
(a) QR Decomposition
The @) and R obtained were exactly the same, given by
[—0.7071 0 —0.4082 —0.2887 0 0.50007]
—0.7071 0 0.4082 0.2887 0 —0.5000
_ 0 —1.0000 0 0 0 0
Q= 0 0 0.8165 —0.2887 0 0.5000
0 0 0 —0.8660 0 —0.5000
| 0 0 0 0 —1.0000 (U
[—1.4142 —1.4142 -0.7071 0 0 0
0 —1.0000 —1.0000 —1.0000 0 0
R — 0 0 1.2247 0.8165 0.8165 0
- 0 0 0 —1.1547 —1.1547 —0.8660
0 0 0 0 —1.0000 —1.0000
| 0 0 0 0 0 —0.5000 |
(b) Eigendecomposition
e Eigenvalues(A) and eigenvectors(U) obtained for 7" from Matlab using eig()
—0.2319 —-0.4179 0.5211 0.5211 —0.4179 0.2319
0.4179 0.5211 —0.2319 0.2319 —-0.5211 0.4179
U= —0.5211 —-0.2319 —-0.4179 -0.4179 -0.2319 0.5211
B 0.5211 —0.2319 0.4179 —0.4179 0.2319 0.5211
—0.4179 0.5211 0.2319 0.2319 0.5211 0.4179
0.2319 —0.4179 —-0.5211 0.5211 0.4179 0.2319

18

A =[-0.8019 —0.2470 0.5550 1.4450 2.2470 2.8019]
e Eigenvalues(A) and eigenvectors(U) obtained for 7" using Lanczos-SO algorithm(rounded)

0.2319 —-0.4174 —-0.5215 0.2319 0.5211 0.4179
0.4179 —-0.5209 -0.2324 -0.4179 -0.2319 -0.5211
0.5211 —-0.2323 0.4177 0.5211 —0.4179 0.2319
0.5211 0.2315 0.4181 —0.5211 0.4179 0.2319
0.4179 0.5214 —-0.2314 0.4179 0.2319 —-0.5211
0.2319 0.4184 —-0.5207 —-0.2319 -0.5211 0.4179

A =[2.8019 2.2470 1.4450 —0.8019 0.5550 —0.2470]

6. Fast Belief Propagation

Prior beliefs were assigned randomly to nodes in the Advogato dataset. 10% were positive nodes with as-
signed prior beliefs = +0.01. 30% were negative negative nodes with prior beliefs = —0.01. The rest had
prior beliefs = 0. The beliefs were propagated using both SQL and MATLAB and shown in Figurd3] To the
left, is the initial scatter plot of beliefs. All beliefs are either 0, -0.1, or +0.1. To the right is the scatter plot of
final beliefs for SQL (y-axis) vs. MATLAB (x-axis). Notice how both predicted the same beliefs. All points
lie on the y=x line and there are no differently predicted nodes in the upper left or lower right quadrants. Also
notice that more nodes were shifted to the negative side than to the positive because there were more nodes
with prior negative beliefs than positive.

Prior beliefs Final beliefs using SOL vs MATLAB

Figure 5: Prior belief scatter plot (Left) and the propagated belief scatter plot (Right)

7. Count of triangles
For this, a smaller dataset, Florida ewsyste was used. The correctness was verified by implementing a
t A3
naive algorithm in SQL which computed the exact number of triangles as %().

e Number of triangles (naive) = 8715.0
e Number of triangles (approx from eigenvalues) = 8583.17

8. Anomaly Detection in weighted graphs (Extra)

Similar algorithms were implemented in Matlab and SQL and the plots obtained are shown in Figure|[6]

2http://konect.uni—koblenz.de/networks/foodweb—baydry

19

Implementation in Hatlab Inplementation in SQL
.

10° 10 10
Best ft: Siope = 1.00 Best 1t Siope =100

Best fit: Slope =1.79
——-Star Egonet
-+~ Clique Egonet

Best fit: Slope =1.81
— - — - Star Egonet
- Cligue Egonet

Mumber of sdges
Total va\jgm
Mumber of edges
Total vieight
2

Ll
2

10 T] 10 LR ALL e e] 1o T T

10" 10’ 10 10 10 107 10 10" 10 10 10 10 10° 10
Humber of ridss Hurmser of stiges Hurmer o rodes Hurmber of erigss

Figure 6: Anomaly Detection graphs for implementations in Matlab(Left) and in SQL(Right)

4.2 Graph Mining Results on real world datasets

Graph mining algorithms discussed earlier were applied on a number of real world datasets and in this section we
elaborate and infer some conclusions on the patterns that emerged. We present our analysis on distinctive patterns for
each graph algorithm. The graphs were selected from different categories to identify similarities within and across
the various categories. We discuss the results on 5 graph categories: Social, Co-occurence, Reference, Ratings and
Physical. The datasets used for the graph experiments are shown below.

Dataset Category Directed Weighted Size Edge Count Description

Twitte Social Y N 465K 835K twitter who follows whom
Youtub: Social N N 32M 12.2M youtube friendship connections
Amazo Co-occurence Y N 403K 3.4M bought X also bought Y

Flick Co-occurence N N 106K 2.3M images sharing metadata

Googl Reference Y N 876K 5.1M web hyperlinks

Patent citatiorﬁ Reference Y N 3.8M 16.5M US patent citation

Amazorﬂ Ratings Y Y 34M 5.8M bipartite user product ratings
Stack Overflow Ratings Y N 642K 1.3M bipartite favourite posts of users
Skitterlﬂ-l Physical N N 17M 11M autonomous systems on web

4.2.1 Results Overview

Here we present a summary of the results obtained on the various datasets. For In degree, Out degree, PageRank and
Connected Components, the table indicate whether the result obeyed power law. For Eigendecomposition, the result
indicate whether the dominant eigenvector pairs formed EigenSpokes|2]] pattern. @is used for a positive result, Kfor a
negative result and Ofor intermediate/not sure results.

3http://konect.uni-koblenz.de/networks/munmun,twitter,social
4http://konect.uni-koblenz.de/networks/youtube-u- growth

> http://konect.uni-koblenz.de/networks/amazon0601
6http://konect.uni-koblenz.de/networks/ﬂicklrEdges
7http://konect.uni-koblenz.de/networks/web-Google
8http://snap.sta.nford.edu/data/cit—Patents.html
9http://konect.uni—koblenz.de/networks/amazon-ratings
lOhttp://konect.uni-koblenz.de/networks/stackexchange-stackoverﬂow
1 http://konect.uni-koblenz.de/networks/as-skitter

20

Dataset
Algorithm Twitter Youtube Amazon Flickr Google Patents Amazon Ratings SO Skitter

In Degree v v v O v v v vl v
Out Degree X v X | vl vl v v v
PageRank O v vl v vl v v v v
ConnComp ol v vl v ol v v v v
Eigenvector vl X X vl vl vl v m] X

4.2.2 Degree distributions

In-degree distribution (See Figure[7) and Out-degree distribution (See Figure[8) of most of the graphs follow the power
law. But for some of the graphs,we see a radical departure in the pattern for out-degree distribution in particular. We
discuss these below.

1. Twitter Social: We see that a large fraction of twitter population have zero out-degree (following no one) imply-
ing that they are probably inactive. On the other hand, it is interesting to note that everyone is followed by atleast
one other user. From the in-degree distribution, we see that the maximum number of followers for any user is
199. From the out-degree distribution we see that the count of active users (followers of someone) for a given
out-degree (number of users followed) remains somewhat constant (< 10) until we see a sharp rise at around 400.
These represent over active users and we see that their population size is markedly distinct from the rest. We can
also spot two outlier users having more than 600 followees.

2. Amazon Co-occurence: The in-degree distribution follows a power law showing that really good products are
very rare and that there is a large number of bad/new products in the market. The out-degree distribution provides
some insight into the shopping pattern of users. We see that the maximum out-degree is 10 implying that the
users buy from a set of 10 related products (probably because they are the top 10 products in that category).

3. Flickr Co-occurence: The degree distribution is discontinuos at degree 5 and degree 100. The degree value 100
is very interesting. This probably means that flickr users tend to upload images (having similar tags and location
data) in batches of size 100.

Twitter Sacial

Youtube Social AMazon Co-occurence

10" 107 10 10 107 10
Flickr Co-occurence Google Reference Patents Reference

100 10’ 100 10 10t

Stack Overflow Ratings Skitter Physical

Figure 7: In-degree distribution of the datasets

4.2.3 PageRank

We analyzed the pageRank score and the number of nodes with that score (See Figure[9). We observe a power relation
between them in almost all of the graphs. In the Twitter Social graph we see a sharper increase in the count for low

21

‘foutube Social Amazon Co-gccurence

Twitter Social

10’ 10° 10

Flickr Co-occurence Google Reference Fatents Reference

1 10 s T 10
Stack Overflow Ratings

Figure 8: Out-degree distribution of the datasets

pageRank scores. This can be supported by the observation from Figure [§] that a large fraction of twitter users have
very low degrees.

Twitter Social ‘foutube Social Amazon Co-occurence

i 10° 10° 10° 10° ot 10 107 10 10° 10t 10? 107

Flickr Co-nccurence Google Reference Patents Reference

=)

107 10
Skitter Physical

10° 10°
Arnazon Ratings

10t 10
Stack Qvetlow Ratings

10

Figure 9: PageRank distribution of the datasets

4.2.4 Weakly connected components
We analyze the component size and the number of components with that size (See Figure[I0). We can observe a power

relation for components of small sizes. In all the graphs, we see that either the graph is fully connected or has a giant
component relative to the sizes of the rest of the components.

22

Twitter Social

‘foutube Social

AMmazon Co-occurence

10 107 10¢ 10 10 10 10° 10¢ 10

5 Google Reference Patents Reference

10 10 10t 10 10 10 10t 10 10 10° 10* 10 10
Stack Overflow Ratings . Amazan Ratings Skitter Physical

Figure 10: Connected Component distribution of the datasets

4.2.5 Graph Radius

We analyzed the radius distribution of the nodes in the graph (See Figure [TT). We observed that the average node
radius lie in the range of 4.578 and 7.442 showing that real world datasets have small diameter and are well connected.
We also observe a bimodal/unimodal distribution. This is supported by the observation that was made on the connected
components in a graph. The first mode at low radius values comes from nodes belonging to the smaller components
whose distribution follow a power law. The second mode near the average radius comes from nodes belonging to the
giant component.

In Figure[TT] we observe that datasets Twitter Social, Amazon Co-occurence, Stack Overflow Ratings and Amazon
Ratings are near unimodal distributions. These datasets are fully connected or have very few small components as
shown in Figure [T0} The rest of the datasets follow a bimodal distribution of radius.

4.2.6 Eigendecomposition of Graphs

We analyzed the eigenvectors of the adjacency matrix of the graph (See Figure[I2)) using the method described in the
paper on EigenSpokes[2]. This paper is surveyed in section 2.1.2. We plotted the least correlated pair amongst the
top 4 eigenvectors returned from the Lanczos-SO algorithm. Nodes having strong values along one of the spokes may
belong to near cliques and near bipartite cores.

We see that except for Youtube Social, Amazon Co-occurence and Skitter Physical, the rest of the graphs have
spoke patterns along the axes. For some of the graphs, some plausible explanations can be given. Flickr Co-ocurence
has a very strong pattern and can be explained by the observation that the edge relationship in this graph is somewhat
transitive resulting in cliques. Youtube Social and Skitter Physical shows very striking similarities and the significant
departure from the pattern observed in the rest of the graphs suggest a different graph structure.

4.2.7 Fast Belief Propagation

The fast belief propagation algorithm was run on the DLBPEl dataset. The edges in the graph connect authors who have
published at least one paper together. Prior beliefs were assigned to authors based on their participation in conferences.
Authors in certain conferences were assigned to a positive class, while those in other conferences were assigned to a
negative class. The rest of the authors had unknown priors. These prior beliefs were then propagated to other authors,

12http://snap.stanford.edu/data/com—DBLP.html

23

Youtube Social Amazon Co-occurence

Twitter Social

Flickr Co-occurence Google Reference

0 2 4 6
Stack Overflow Ratings

o

Amazon Ratings

Figure 11: Radius distribution of the datasets

Twitter Social ‘outuhe Social Amazon Co-occurence

-0.08 0 0.0s 01 01§ -0 o 01 0z 0z -n2 o 0z 0.4 0.6 0.8
Flickr Co-occurence Google Reference Patents Reference

-0.02 0 0oz 0.04 0.0g ong -0 o 01 0.z 0z 04 -01s -01 -0.05 o 0.05
Stack Overflow Ratings Amazon Ratings Skitter Physical

Figure 12: Plot of least correlated pair among the 4 top eigenvectors

with neighboring authors affecting each other most. Figure [I3] shows five different distributions of final propagated
beliefs under five different prior belief distributions corresponding to five different scenarios.

1. Scenario 1: Authors participating in the largest conference (the one with the most authors) got prior beliefs of
+0.001. These authors represented about 2.5% of total authors. On the other hand, those participating in the
third largest conference got prior beliefs of -0.001. The two conferences were unrelated and had little overlap in
authors. The rest of the authors were assigned zero (unknown) priors.

Results: There were more positive authors after propagation because there were more to start with. For the same
reason, more unknown authors shifted towards the positive side than towards the negative side. Very few authors
crossed over completely to either side because of the relatively small percentage of labelled authors, reducing their

24

ability to influence other authors, and due to the small maximum homophily factor allowed to ensure convergence
in this setting.

2. Scenario 2: As in scenario 1, authors participating in the largest conference got prior beliefs of +0.001. This time
authors participating in the second largest conference and not in the first were assigned prior beliefs of -0.001.
Unlike the first scenario, there was significant overlap in authors participating in both conferences.

Results: The final distribution was more equal on both sides than in scenario 1. Even though the negative
conference had less authors, more unknown authors shifted to the negative side. Upon examination of the graph,
this can be attributed to the second conference being better connected to the rest of the graph than the first.

3. Scenario 3: There were only positive beliefs assigned in this scenario. Authors participating in the biggest
conference were given prior beliefs of +0.001. There were no negative prior beliefs.
Results: As expected, unkown authors shifted only to the positive side.

4. Scenario 4: Authors pariticipating in the top three conferences were assigned positive prior beliefs of +0.001.
There were no negative prior beliefs.
Results: Beliefs after propagation for uknown authors were noticeably more positive than in scenario 3. Beliefs
of positive authors increased even more than in scenario 3 because there were more of them, and they boosted the
beliefs of each other more, with no counteraction by negative authors in this case.

5. Scenario 5: Same as scenario 1 but with positive authors given the much more positive prior beliefs of +0.1, and
negative authors given the much more negative prior beliefs of -0.1.
Results: The distribution of beliefs after propagation is identical in shape to that of figure 1, except for being on
a different x-axis scale. This shows that the shape of the final distribution depends less on the actual magnitude
of prior beliefs and more on the distribution of prior beliefs and the shape of the graph.

05 Scenario 1: Largest conference +ve. 3rd largest -ve m@cenanoQ Largest conference +ve. 2nd largest -ve. Overlap 5 Scenario 3 Only largest conference +ve
10

Frequency
=]
Frequency
3
Frequency
S

-2 -1 0 1 2 -2 -1 a 1 2 o 1‘ E] | 2
Propagated Beliefs ” 10—3 Propagated Beliefs p 10—3 Propagated Beliefs

Scenario 4 : Three largest conferences +ve
° 2 Scenario 5 : Prior beliefs = +0.1 and -0.1

Frequency
=

Frequency
=)

10’ E 10' I

10 . Al . i
-2 -1 0 1 b 02 015 01 005 0 005 01 015 02

Propagated Beliefs -3 Propagated Beliefs

Figure 13: Propagated beliefs under 5 different prior belief assignments.

4.2.8 Count of Triangles

The number of triangles approximated from the eigenvalues are shown in Figure The huge number of triangles for
Flickr Co-occurence indicate a strongly connected graph and also supports the observation we made in Figure [I2]
The high triangle count in Youtube Social is expected since friends of friends are usually friends themselves.

25

—
]
a

IIIIII|,|,|“II IIIIII‘ 1 IIII|,|,|,| 1 IIIIIII| L111l

—
=]

. Fa

1 IIIII|,|,|

1 IIII|,|,|,|

10°

Figure 14: Count of triangles for each of the graphs. The count and normalized count (count/num of nodes) are given.

4.2.9 Anomaly Detection in weighted graphs

We used a different set of datasets for this task since almost all of the datasets that were used in the previous algorithms
were unweighted and singled edged. The following datasets were used. Though all the datasets are unweighted,

- Twitter Social
Count = 21023, Countin = 0.05
Youtube Socisl
Count = 4418809, Count'n= 1.37
- Amazon Co-0CCUNEnos
Count = 11452, Countin = 0.03

- Flickr Co-occurence
Count = 84548278, Countn = T25.09

Google Reference
Count = 257202, Count'n = 0.28

- Fatents Reference
Count = 101111, Count'n = 0.03
I:I Stack Owerflow Ratings
Count = 35088, Countin = 0.1
I:I Amazon Ratings
Count = 53488, Count'n = 0.04
- Skitter Physical
Count = 3780434, Count'n = 2.23

=

weights are derived from the number of multiple edges between users.

Dataset Category Size Edge Count Description

Faceboolﬁ Social 47K 876K facebook wall posts

Enro Communication 87K 1.15M user X sent mail to user Y
Digﬁ Communication 30K 87K user X replied user Y

From Figure[15] we make the following observations.

1. In the Enron dataset, from the £ vs N plot, we find outliers having a star anomaly. These users sent mail to
a large number of other users that barely sent mail to each other. On the other hand, we see a large number
of closely knit communities (cliques) of about 100 nodes. This is expected of this dataset since people in an

organization from similar departments tend to know and send mail to each other.

From the W vs E plots, we find outlier users who are strongly connected to a single other user (outliers on

the y-axis) and also some users having a heavy vicnity.

2. In the Facebook and Digg datasets, the £/ vs N plot do not provide outliers that significantly stands out
although they tend towards the star configuration like the Enron dataset. The W vs E plot on the other hand

reveals a lot of strongly connected users and user pairs.

13http://konect.uni—koblenz.de/networks/facebook-wosn-wall
l4http://konect.uni-koblenz.de/networks/youtube-u- growth
13 http://konect.uni-koblenz.de/networks/munmun_digg_reply

26

FACEBOOK ENRON
w0 1Us—= 10" o 10" o
Best fit : Slope =1 .60 E Best fit | Slope =122 E Best fit - Slope =1 74 E Best 1t : Slope =1 15
— - — - Star Egonet - .. s — — - Star Egonet s 7
Cligue Egonet . 7 .+ 10 E Cliue Egonet 10 e
10 : 10° 2 PR 3 - E
E| pRY 3 B
] ! 10 10
2 10 107 | ' g
D = oo ‘
g El 210 o 10' o
i B3 773 £
= 23 s 3 ER-
2 T 4 & 3 = J
2 8 L 3 E 3
ERlY =107 £703 =g
= E = 3 E
E 3] 3
1 10 107 =
10 10 = 3]
3 10’ m'?
. J
10" 10 T . 10° L ‘
ilis 10" 10° 10’ ihis s 10t 1 102 10t 1 10°
Humber of nades Mumber of edges Rumber of nodes Rumber of edges
0o -
; Best fit | Slope =1 36 7 Best fit : Slope =1.01
B — - — - - Star Egonet A .
. b Cligue Egonet i A
10
3 107
8 107]
¥ 3 B,
5] ERTE.
b i E E
£ 10° i E
= 73]
] 1
B 10’
' 3
o o
10 AT 10 AL |
10" 10 10’ 10’ 10" 10 10 10’
Mumber of noces Mumber of edges
DIGG

Figure 15: Anomaly Detection on Facebook, Enron and Digg datasets (From Top Left Clockwise). For each, plot of
Number of Edges vs Number of Nodes and Total Weight vs Number of Edges are shown. The red line is the best fit
line and characterizes the power law observed. The blue lines represent the Star Egonet (dashed) and Clique Egonet
(dotted) configurations. The outliers are marked as black dots based on their outlier score.

27

5 Conclusions

Using SQL, we successfully implemented various graph mining algorithms and tested on a number of real world
datasets. We found that SQL is quite powerful in accomplishing complex tasks using only a few lines of code. Several
graph mining algorithms are based on matrix operations and these operations can be implemented very efficiently in
SQL using joins.

We analyzed the patterns found in real world datasets and conclude that quite a lot of them obey power law distribution.

References

[1] Leman Akoglu, Mary McGlohon, Christos Faloutsos: oddball: Spotting Anomalies in Weighted Graphs. PAKDD
(2) 2010: 410-421

[2] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, Christos Faloutsos: EigenSpokes:
Surprising Patterns and Scalable Community Chipping in Large Graphs. PAKDD (2) 2010: 435-448

[3] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, Christos Faloutsos: gbase: an efficient analysis platform
for large graphs. VLDB J. 21(5): 637-650 (2012)

[4] U. Kang, Duen Horng Chau, Christos Faloutsos: Pegasus: Mining billion-scale graphs in the cloud. ICASSP
2012: 5341-5344

[5] U. Kang, Duen Horng Chau, Christos Faloutsos: Mining large graphs: Algorithms, inference, and discoveries.
ICDE 2011: 243-254

[6] Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, Christos Faloutsos: Unifying
Guilt-by-Association Approaches: Theorems and Fast Algorithms. ECML/PKDD (2) 2011: 245-260

28

A Appendix

A.1 Labor Division

The labor division on the various tasks.

Task Attribution
Implementation of Framework Nijith

Task 1: Degree Distribution Nijith

Task 2: PageRank Nijith

Task 3: Connected Components Sharif

Task 4: Radius of every node Sharif

Task 5: Eigenvalue/Singular Value | Nijith

Task 6: Belief Propagation Sharif

Task 7: Count of Triangles Nijith

Task 8: Broad Spectrum Mining Nijith/Sharif
Extra: Anomaly Detection Nijith/Sharif

29

	Introduction
	Survey
	Papers Surveyed by Nijith Jacob
	OddBall: Spotting Anomalies in Weighted Graphs oddball
	EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs eigenspokes
	GBASE: an efficient analysis platform for large graphs gbase

	Papers Surveyed by Sharif Doghmi
	PEGASUS: Mining Peta-Scale Graphs pegasus
	Mining Large Graphs: Algorithms, Inference, and Discoveries mlg
	Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms gbp

	Method
	Conventions used
	Generic SQL codes
	Graph mining algorithms
	Degree Distribution
	PageRank
	Weakly Connected Components
	Radius of Every Node
	Graph Eigenvalues
	Fast Belief Propagation
	Count of triangles
	Anomaly Detection in Weighted Graphs (Extra)

	Implementation Summary

	Experimental Analysis
	Correctness Verification
	Graph Mining Results on real world datasets
	Results Overview
	Degree distributions
	PageRank
	Weakly connected components
	Graph Radius
	Eigendecomposition of Graphs
	Fast Belief Propagation
	Count of Triangles
	Anomaly Detection in weighted graphs

	Conclusions
	Appendix
	Labor Division

