
Foundations of
Software Engineering

Security Development Lifecycles

Christian Kästner

(Based on slides by Michael Maass)

15-313 Software Engineering1

Administrativa

• No class Nov 20,
but HW6a deadline on Nov 20

• HW 5 extended until Nov 13

• In-class interview Thursday

15-313 Software Engineering2

15-313 Software Engineering3

Learning goals

• Understand basic concepts of vulnerabilities
and secure software

• Implement security mechanisms across the
entire software development lifecycle

• Design and inspect architecture for security
with threat modeling

• Decide how do adopt security practices and
educate participants. Who, when, and how
much?

15-313 Software Engineering4

Vulnerability

• A vulnerability is a set of conditions that allows
an attacker to violate an explicit or implicit
security policy
– Not all software security flaws lead to

vulnerabilities. Vulnerabilities require an avenue of
attack known as an attack vector

• A software security flaw can cause a program to
be vulnerable to attack
– Software security flaws that do not result in

vulnerabilities should still be corrected so that they
do not propagate

5

Universe of
Computation

Attack Surfaces

Universe of
Computation

Intended
Computations

“Weird
Machine”
Border

Attack Surfaces

Universe of
Computation

Intended
Computations

“Weird
Machine”
Border

Vulnerabilities

Attack Surfaces

Universe of
Computation

Intended
Computations

“Weird
Machine”
Border

Vulnerabilities

Exploit

Attack Surfaces

Universe of
Computation

Intended
Computations

“Weird
Machine”
Border

Vulnerabilities

ExploitKey: Attack Surface

Attack Surfaces

Vulnerabilities Have Utility

• Bugs and vulnerabilities are typically accidentally
introduced

• Both can cause a system to fail
• Bugs typically cause failures through innocent

interactions
• Bugs often result in a loss of control with no utility
• Vulnerabilities cause failures through intentional and

clever interactions initiated by a malicious actor
• Vulnerabilities give an attacker a route to seize

control

An Airplane Example

• The wings fall off in
violent turbulence

• Power shuts off
when crossing the
international date
line

• Ground control
channels allow
anyone to re-route
active flights

• The fuel system can
be trivially ordered
to dump fuel at
altitude

BUGS VULNERABILITIES

Vulnerabilities and Programming
Errors
• 64% of the vulnerabilities in NISTs National

Vulnerability Database (NVD) in 2004 are due
to programming errors.
– 51% of those due to classic errors like buffer

overflows, cross-site-scripting, injection flaws

• “We wouldn't need so much network
security if we didn't have such bad software
security.”
– Bruce Schneier

13

Vulnerability Root-cause Categories
(non-exhaustive list)

• Logic errors
• Synchronization and timing errors
• Insecure configurations
• Protocol errors
• Cryptographic vulnerabilities
• Input validation errors

– Buffer overflow
– Integer errors
– SQL injection

14

Security Issues

15

Security

• Confidentiality: Data is only available to the people
intended to access it.

• Integrity: Data and system resources are only changed in
appropriate ways by appropriate people.

• Availability: Systems are ready when needed and perform
acceptably.

• Authentication: The identity of users is established (or
you’re willing to accept anonymous users).

• Authorization: Users are explicitly allowed or denied access
to resources.

• Nonrepudiation: Users can’t perform an action and later
deny performing it.

15-313 Software Engineering16

Sources of Software Insecurity

• Complexity, inadequacy,
and change

• Incorrect or changing
assumptions (capabilities,
inputs, outputs)

• Flawed specifications and
designs

• Poor implementation of
software interfaces (input
validation, error and
exception handling)

• Inadequate knowledge of
secure coding practices

17

Sources of Software Insecurity - 2

• Unintended, unexpected interactions

–with other elements

–with the software’s execution
environment

• Absent or minimal consideration of
security during all life cycle phases

• Not thinking like an attacker

18

What Is a Buffer Overflow?

• A buffer overflow occurs when data is
written outside of the boundaries of the
memory allocated to a particular data
structure

19

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

Why Buffer Overflows Matter

• Buffer overflows can allow an attacker to
corrupt memory to execute arbitrary
code
–With the privileges of the running process

• Pervasive
– Legacy code

– Insecure coding practices

–Changing environments

20 https://nvd.nist.gov

https://nvd.nist.gov/

SQL Injection

21

http://xkcd.com/327/

http://xkcd.com/327/

22

Mitigations

23

Mitigations

• Mitigations are methods, techniques,
processes, tools, or runtime libraries that
can prevent or limit exploits against
vulnerabilities

– Sometimes called a workaround

• What are some strategies to eliminate
software vulnerabilities?

24

Two General Strategies

• Find and fix vulnerabilities in existing
software
– Reactive

– Costly in terms of money and reputation

• Prevent vulnerabilities from occurring in new
software
– Proactive

– Develop processes to find and eliminate
vulnerabilities during software development

25

Strategies: Finding Vulnerabilities

• Security-focused testing

– Fuzzing

–Penetration testing

• Inspection/auditing

• Static analysis

• Read the news

26

Security Development Lifecycles
(SDL)

27

Security Development Lifecyles (SDLs)
prescribe security practices for each phase of

a software development project.

Security Practice Goals

• Find vulnerabilities early

• Identify risks and mitigate them

• Reduce attack surface

• Prepare to fix future vulnerabilities quickly

• Gain confidence that
the system is secure

• Build security in!

Microsoft Trustworthy Computing
Initiative (2002)

• see memo

15-313 Software Engineering30

Microsoft SDLs

Microsoft SDLs

15-313 Software Engineering33

CERT: Secure Coding Standards

• https://www.securecoding.cert.org/

15-313 Software Engineering34

https://www.securecoding.cert.org/

(Academic) Design Principles

15-313 Software Engineering35

Saltzer and Schroeder's design principles

“8 Simple Rules for Developing
More Secure Code”
1. Take Responsibility

2. Never Trust Data

3. Model Threats against Your Code

4. Stay One Step Ahead

5. Fuzz!

6. Don’t Write Insecure Code

7. Recognize the Strategic Asymmetry

8. Use the Best Tools You Can

15-313 Software Engineering36

(M. Howard, MSDN Magazine Nov 2006)

Microsoft SDLs

Security Requirements

• Security requirements are as important
as any other requirement category

• Must include individuals with security
expertise

• Deploy vulnerability tracking system

–Can be the same as the bug tracker for most
projects

Example

• “The application shall provide passwords,
smart cards, and one-time passwords to
support user authentication.”

• “The mechanisms for performing
cryptographic operations shall be easily
replaceable at runtime.”

Microsoft SDLs

Certify Security Requirements in
Design

• Traceability from security requirements
to design (and implementation)

• Inspection of design

• Involve security experts

Microsoft SDLs

Threat Modeling

• A structured approach to find threat
scenarios that apply to a product

• Typically:
– Create a data flow diagram showing system

components and the data flowing between
them (requires some expertise in deciding
what to model)

– Apply the STRIDE threat model at each data
flow to enumerate threats

STRIDE

• Spoofing – can an actor use someone else's data as their
own or trick the system into using fake data?

• Tampering – is malicious modification of data possible?
• Repudiation – can an actor claim they didn't perform an

action or easily make it look like someone else did it?
• Information Disclosure – is an actor given private or

sensitive information they don't need?
• Denial of Service – can an actor prevent valid users from

using the system?
• Elevation of Privilege – can an actor gain higher privileges

than they should have?

15-313 Software Engineering44

Inspection per component

STRIDE vs Security Properties

Threat Security Property

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

15-313 Software Engineering45

STRIDE process

• Identify relevant components and data
flows

• Analyze each component for each threat

• Mitigate threats

• -> Gain confidence (no proof)

15-313 Software Engineering46

Data Flow Diagram

Data flows, data stores, processes, interactors, and trust boundaries

Use case: Sales entry

• Collect accounting files from sales force

• Compute sales data

• Produce weekly reports

15-313 Software Engineering48

for details see
Hernan, Shawn, Scott Lambert, Tomasz Ostwald, and Adam Shostack. "Uncover security design flaws
using the STRIDE approach (2006)." MSDN Magazin Nov 2006

15-313 Software Engineering49

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

15-313 Software Engineering50

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

15-313 Software Engineering51

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

15-313 Software Engineering52

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

15-313 Software Engineering53

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

Any unhandled threats
turned up by threat

modeling must be tracked!

Microsoft SDLs

Use Approved Tools

• Some libraries are vulnerable and have safe
alternatives (e.g. string.h bad vs strsafe.h
good)

• Modern compilers automatically mitigate a
number of vulnerabilities (e.g. stack canaries,
heap integrity checks, SAFESEH, etc.)

• Appropriate static and dynamic analysis tools
automate the enforcement of security
practices

15-313 Software Engineering56

Static Analysis, Deprecation

• Microsoft runs static checkers at
checking (quality gates)

• Banned over 100 C functions for new
code

15-313 Software Engineering57

Microsoft SDLs

Conduct Attack Surface Review

• What is every source of input to the
application?

• Are there any new sources since the last
milestone?

• Much more fine grained than threat
modeling

• All sources of input must have a defensive
approach applied

• Tools help automate this practice

15-313 Software Engineering59

Microsoft SDLs

Create Incidence Response Plan

• Attacks always get better
• New threats emerge every day
• Vulnerabilities always exist in non-trivial

systems
• Who should be contacted when an incident

occurs?
• Who should deal with third-party code?
• What priority should be applied to fixing new

vulnerabilities?

15-313 Software Engineering61

Who should implement these
security practices?

`

Security Roles

• Everyone: “security awareness” – buy into
the process

• Developers: know the security capabilities of
development tools and use them, know how
to spot and avoid relevant, common
vulnerabilities

• Managers: enable the use of security
practices

• Security specialists: everything security

15-313 Software Engineering63

https://cwe.mitre.org/

Organizational Architectures

• Centralized: development teams consult with a
core group of security specialists when they need
help

• Distributed: development teams hire security
specialists to be a first-class member of the team

• Weak Hybrid: centralized group of security
specialists and teams with security critical
applications hire specialists

• Strong Hybrid: centralized group of security
specialists and most teams also hire specialists

Tuning SDLs

• No one set of security practices work across every
industry... or even for every project in a given
company

• Expertise is required to determine what set of
practices is the most cost effective

BSIMM

• Building Security In Maturity Model

• See what practices other companies
utilize

• Understand, measure, and plan software
security initiatives

None of this is scientifically validated.

Future: Measures and Standards

• NHTSA inspired star ratings

• Building Codes for Software

• Security Guarantees

• Liability

• Science

Summary

• Security is a quality among others, often
very important

• As all QA, design security QA throughout
the process, not only after the fact

• Security requires special expertise,
awareness by developers + experts

• Use tools, modeling, automate, …

70

