
Foundations of
Software Engineering

26 lectures in 30 min (245 slides)

17-313 Software Engineering1

Learning Goals

• Broad scope of software engineering

• Importance of nontechnical issues

• Overview key challenges

• Syllabus, introduction and team forming

17-313 Software Engineering2

Smoking Section

17-313 Software Engineering3

17-313 Software Engineering4

17-313 Software Engineering5

Vasa

17-313 Software Engineering6

Case Study 1: PeopleCars

• Scenario and question from prior final

• Read scenario and question

• Discuss answers with your neighbors

• Keep answers until last lecture

15-313 Software Engineering7

Foundations of
Software Engineering

Part 2: Quick intro to process, teamwork,
risk and scheduling

Christian Kästner

15-313 Software Engineering8

Learning Goals

• Recognize the Importance of process
• Understand the difficulty of measuring progress
• Identify what why software development has

project characteristics
• Use milestones for planning and progress

measurement
• Ability to divide work and planning and replan it
• Model dependencies and schedule work with

network plans and Gantt diagrams
• Identifying and managing risks

15-313 Software Engineering9

15-313 Software Engineering10

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Trashing / Rework

Process

15-313 Software Engineering11

15-313 Software Engineering12

Accepting and Coping with Risks

• Selectively innovate to increase value

• Improve capability and competitiveness

• Focus risk where it is needed

• Rely on precedent and convention
(experience)

• Use iteration and feedback
– prototypes, spiral development, sprints

15-313 Software Engineering13

15-313 Software Engineering14

Project Planning

15

Identify constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate
constraints

Technical review

Problem?

no

yes

Done?
yes

no

Abort?

Budget,
Personal,
Deadlines

new
feature

requests

Planning

• Plans are worthless, but planning is
everything.

17-313 Software Engineering16

HW1: Planning and Building
PhD Application System

17-313 Software Engineering17

Foundations of
Software Engineering

Part 3: Healthcare.gov

Michael Hilton

17-313 Software Engineering18

Foundations of
Software Engineering

Lecture 5: Requirements are hard

Michael Hilton

15-313 Software Engineering19

Learning goals

• Explain the importance and challenges of
requirements in software engineering.

• Explain how and why requirements articulate
the relationship between a desired system
and its environment. Identify assumptions.

• Distinguish between and give examples of:
functional and quality requirements;
informal statements and verifiable
requirements.

• State quality requirements in measurable
ways

20

15-313 Software Engineering21

Communication problem

Goal: figure out
what should be
built.

Express those
ideas so that the
correct thing is
built.

22

Four Kinds of Denial

• Denial by prior knowledge – we have done this
before, so we know what is required

• Denial by hacking – our fascination with machines
dominates our focus on the how

• Denial by abstraction – we pursue elegant models
which obscure, remove or downplay the real world

• Denial by vagueness – imply (vaguely) that machine
descriptions are actually those of the world

Michael Jackson, “The World and the Machine,” International Conference on Software Engineering,
pp. 283-292, 1995.

Environment and the Machine

Machine DomainEnvironmental Domain

Requirements

Domain Knowledge

Computers

Software Programs
Specifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.24

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

25

Lufthansa Flight 2904

Avoiding implementation bias

• Requirements describe what is
observable at the environment-machine
interface.

• Indicative mood describes the
environment (as-is)

• Optative mood to describe the
environment with the machine (to-be).

26

27

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

DeadlineVariability

Software
interoperability

Convenience

Interface

User
interaction

Device

interaction

Accuracy

Cost

Foundations of
Software Engineering

Lecture 5: Measurement

Christian Kaestner

28

Learning Goals

• Use measurements as a decision tool to
reduce uncertainty

• Understand difficulty of measurement;
discuss validity of measurements

• Examples of metrics for software qualities
and process

• Understand limitations and dangers of
decisions and incentives based on
measurements

29

30

Visual Studio since 2007

“Maintainability Index calculates an index value between 0 and 100 that
represents the relative ease of maintaining the code. A high value means better
maintainability. Color coded ratings can be used to quickly identify trouble spots
in your code. A green rating is between 20 and 100 and indicates that the code
has good maintainability. A yellow rating is between 10 and 19 and indicates
that the code is moderately maintainable. A red rating is a rating between 0 and
9 and indicates low maintainability.”

31

The Index

Maintainability Index =

MAX(0,(171 –

5.2 * log(Halstead Volume) –

0.23 * (Cyclomatic Complexity) –

16.2 * log(Lines of Code)

)*100 / 171)

32

About You

Could explain Cyclomatic Complexity

No

Vaguely

Yes

33

Everything is measurable

1. If X is something we care about, then X, by definition,
must be detectable.
– How could we care about things like “quality,” “risk,” “security,”

or “public image” if these things were totally undetectable,
directly or indirectly?

– If we have reason to care about some unknown quantity, it is
because we think it corresponds to desirable or undesirable
results in some way.

2. If X is detectable, then it must be detectable in some
amount.
– If you can observe a thing at all, you can observe more of it or

less of it

3. If we can observe it in some amount, then it must be
measurable.

D. Hubbard, How to Measure Anything, 2010

34

Trend analyses

35

36

http://dilbert.com/strips/comic/1995-11-13/

37

Autonomy
Mastery
Purpose

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity
Can crowd out good behavior

Can encourage cheating, shortcuts,
and unethical behavior
Can become addictive

Can foster short-term thinking
38

Foundations of
Software Engineering

Lecture 6: Requirements Solicitation and
Documentation

Christian Kästner
15-313 Software Engineering39

Learning goals

• Basic proficiency in executing effective
requirements interviews

• Understand tradeoffs of different
documentation strategies

• Document requirements using use cases
and user stories

• Recognize and resolve conflicts with
priorities

40

Stakeholders, a NASA example

From HSI NAP 11893

Interviews

42

Studying Artifacts
(Content Analysis)

• Learn about the domain

–Books, articles, wikipedia

• Learn about the system to be replaced

–How does it work? What are the problems?
Manuals? Bug reports?

• Learn about the organization

• Knowledge reuse from other systems?

43

44
http://gendermag.org

Handling inconsistencies

• Terminology, designation, structure:
Build glossary, domain model

• Weak, strong conflicts: Negotiation
required
–Cause: different objectives of stakeholders

=> resolve outside of requirements

–Cause: quality tradeoffs => explore
preferences

Examples?

High- vs low- fidelity mockups

46

Software Requirements
Specification (SRS)

• Formal requirements document

• Several standards exists

• Often basis for
contracts

47

Use Case Name (Title)

Scope System under design

Level User level, subprocess level

Primary actor (actors can be primary, supporting, or offstage)

Stakeholders, interests Important! A use case should include everything necessary to satisfy the
stakeholders’ interests.

Preconditions What must always be true before a scenario begins. Not tested; assumed. Don’t
fill with pointless noise.

Success guarantees. Aka post conditions

Main success scenario Basic flow, “happy path”, typical flow. Defer all conditions to the extensions.
Records steps: interaction between actors, a validation, a state change by the
system.

Extensions Aka alternate flows. Usually the majority of the text. Sometimes branches off
into another use case.

Special requirements Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to I/O technologies.

Frequency of
occurrence

Miscellaneous
48

Use of User Stories

• Keep a board of user stories, group them
into “epics”

49

Foundations of
Software Engineering

Lecture 7: User stories and Risk

Michael Hilton

50

Learning goals

• Document requirements as user stories

• Evaluate the quality of a user story

• Understand risk and its role in
requirements, specifically how it can be
identified, analyzed, and then
mitigated/handled in system design.

Requirements should be

1. Correct

2. Consistent

3. Unambiguous

4. Complete

5. Feasible

6. Relevant

7. Testable

8. Traceable

52

According to both the engineer and the customer

In that there are no conflicting requirements. Quality
requirements are particularly dangerous.

Ambiguous: multiple readers can walk away with different
but valid interpretations.

Covers all required behavior and output for all inputs under
all constraints.

Can it be done at all? Again, quality/non-functional reqs are
particularly vulnerable.

Acceptance tests and metrics are possible/obvious.

Organized, uniquely labeled.

Bird Risks

How to evaluate user story?

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/

Interview
Josh Gardner!

BS in Computer Science from University of Buffalo

Developer at SPAWAR 4 years

Server Lead at Mobiquity Inc. 5 years

Mobiquity is a software services company, meaning we sell our

skills in building software (mobile apps, web apps and now Alexa skills) and

building cloud infrastructure to other companies. That covers the whole range

of activites, visual design, project management, and dragging what they actually

want out of them ('gathering requirements'), and then building the system.

My personal role has become a combination of actually writing nodejs code, and

managing a pack of fellow server devs on one of our large health care projects.

Previously I was a rank and file developer for a few consumer services type apps,

and then was a full stack lead on a smaller Healthcare app (Novartis Heart Partner).

Software services is interesting in that you have to frequently deal with different

customers and different types of work (both technically and managerially) so I have

sometimes a fairly different view of the business than folks who work in a more

product company type setup, where the vision can often extend years in advance.

17-313 Software Engineering55

HW2: Requirements Collection

17-313 Software Engineering56

Foundations of
Software Engineering

Lecture 8: Introduction to Software
Architecture and Documentation

Michael Hilton

17-313 Software Engineering57

Learning Goals

• Understand the abstraction level of architectural
reasoning

• Approach software architecture with quality
attributes in mind

• Distinguish software architecture from (object-
oriented) software design

• Use notation and views to describe the architecture
suitable to the purpose

• Document architectures clearly, without ambiguity
• Understand the benefits and challenges of

traceability.

17-313 Software Engineering58

17-313 Software Engineering59

Requirements

Miracle /
genius developers

Implementation

Architecture

Foundations of
Software Engineering

Lecture 9: Architecture Documentation,
Patterns, and Tactics

Christian Kaestner

15-313 Software Engineering61

Learning Goals

• Use notation and views to describe the architecture
suitable to the purpose

• Document architectures clearly, without ambiguity
• Understand the benefits and challenges of

traceability.
• Understand key parts of architectural process
• Use architectural styles and tactics for design

decisions
• Make justified architectural decisions for new

systems and within existing systems

15-313 Software Engineering62

Design vs. Architecture

Design Questions

• How do I add a menu item in
Eclipse?

• How can I make it easy to add
menu items in Eclipse?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for
secure communication?

• What is the interface between
objects?

Architectural Questions

• How do I extend Eclipse with a
plugin?

• What threads exist and how do
they coordinate?

• How does Google scale to billions
of hits per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

15-313 Software Engineering69

15-313 Software Engineering70

Orders Inventory Users

Order AppShipping AppAddInventoryA
pp

Security
Facade

Data Model

15-313 Software Engineering71

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

What could the arrow mean?

• Many possibilities

– A passes control to B

– A passes data to B

– A gets a value from B

– A streams data to B

– A sends a message to B

– A creates B

– A occurs before B

– B gets its electricity from A

– …

BA

Layered system

15-313 Software Engineering73

Source: eclipse.org

15-313 Software Engineering74

Foundations of
Software Engineering

Architecture – Styles and Hypes

Michael Hilton

17-313 Software Engineering75

Learning Goals

• Recognize architectural styles and their
implications

• Reason about system structures and their
tradeoffs with architectural views and styles

• Reason about tradeoffs of Microservice
architectures

• Understand the key ideas of DevOps
• Appreciate challenge of architecture in

practice

17-313 Software Engineering76

17-313 Software Engineering77

Netflix Discussion
17-313 Software Engineering78

17-313 Software Engineering79

source: http://martinfowler.com/articles/microservices.html

17-313 Software Engineering80

Continuous Integration
/Deployment

• Release several times per day

• Incremental rollout, quick rollback

17-313 Software Engineering81

17-313 Software Engineering82

• Lightweight virtualization
• Sub-second boot time
• Sharable virtual images with full setup incl.

configuration settings
• Used in development and deployment
• Separate docker images for separate services

(web server, business logic, database, …)

HW3: Architecture

17-313 Software Engineering83

Foundations of Software
Engineering

Lecture 12 – Intro to QA, Testing

Christian Kaestner

84

Learning goals

• Define software analysis
• Distinguish validation and verification
• Understand a range of QA techniques
• Apply testing and test automation for functional

correctness
• Understand opportunities and challenges for testing

quality attributes; enumerate testing strategies to
help evaluate the following quality attributes:
usability, reliability, security, robustness (both
general and architectural), performance, integration.

• Discuss the limitations of testing

85

“We had initially scheduled time to write
tests for both front and back end systems,

although this never happened.”

86

Validation vs Verification

• Verification: Does the system meet its specification?
– i.e. did we build the system correctly?

• Verification: are there flaws in design or code?
– i.e. are there incorrect design or implementation

decisions?

• Validation: Does the system meet the needs of
users?
– i.e. did we build the right system?

• Validation: are there flaws in the specification?
– i.e., did we do requirements capture incorrectly?

87

Q
u

al
it

y

Quality in use

Effectiveness

Efficiency

Satisfaction

Freedom from risk

Context coverage

Product quality

Functional
suitability

Completeness

Appropriateness

Correctness
Performance

efficiency

Compatibility

Usability

Dependability

Reliability

Availability

Fault Tolerance

Recoverability

Security

Maintainability

Portability

Process Quality

Suitability

Usability

Manageability

Evolvability

Verification

Inspection

Fagan Walkthrough

Analysis

Model checking Static analysis

Testing

Black Box White box Random

Demonstration
Process

assessments

Applicability,
metrics, methods,
tools

Applicability,
metrics, methods,
tools

Applicability,
metrics, methods,
tools

Applicability,
metrics, methods,
tools

Applicability,
metrics, methods,
tools

…

… …

…
…

…

…

88

Error exists No error exists

Error Reported True positive
(correct analysis
result)

False positive

No Error
Reported

False negative True negative
(correct analysis
result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated89

Brief Case Discussion

90

What qualities are important and
how can you assure them?

Who’s to blame?

Algorithms.shortestDistance(graph,

“Tom”, “Anne”);

> ArrayOutOfBoundsException

Test Driven Development

• Tests first!
• Popular

agile technique
• Write tests as

specifications before code
• Never write code without

a failing test
• Claims:

• Design approach toward testable design
• Think about interfaces first
• Avoid writing unneeded code
• Higher product quality (e.g. better code, less defects)
• Higher test suite quality
• Higher overall productivity

(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

93

Testing with Stubs

CodeFacebook
Interface

Android client

class ConnectionError implements FacebookInterface {
List<Node> getPersons(String name) {

throw new HttpConnectionException();
}

}

@Test void testConnectionError() {
assert getFriends(new ConnectionError()) == null;

}

Test driver
(JUnit)

Facebook

Stub

Connection
Error

Performance testing tools: JMeter

http://jmeter.apache.org

http://jmeter.apache.org/

AB testing

•Act now! Sale ends soon!

96

Random testing

• Select inputs independently at random from the program’s
input domain:
– Identify the input domain of the program.
– Map random numbers to that input domain.
– Select inputs from the input domain according to some

probability distribution.
– Determine if the program achieves the appropriate outputs on

those inputs.

• Random testing can provide probabilistic guarantees about
the likely faultiness of the program.
– E.g., Random testing using ~23,000 inputs without failure (N =

23, 000) establishes that the program will not fail more than one
time in 10,000 (F = 104), with a confidence of 90% (C = 0.9).

97

98

We can measure coverage on
almost anything

A. Zeller, Testing and Debugging Advanced course, 2010

99

Limits of Testing

• Cannot find bugs in code not executed, cannot
assure absence of bugs

• Oracle problem
• Nondeterminism, flaky tests

– Certain kinds of bugs occur only under very unlikely
conditions

• Hard to observe/assert specifications
– Memory leaks, information flow, …

• Potentially expensive, long run times
• Potentially high manual effort
• Verification, not validation
• …

100

HW4: Testing Quality Attributes

17-313 Software Engineering101

Foundations of
Software Engineering

Part 15: Inspections and Reviews

Michael Hilton

17-313 Software Engineering102

Learning Goals

• Understand different forms of peer reviews
with different formality levels

• Select appropriate review forms for a project
• Conduct an inspection session, aware of

common pitfalls and social issues
• Perform code reviews with automated

software tools
• Understand the expectations and outcomes

of modern peer reviews

17-313 Software Engineering103

Find the Bug(s)!
BlockingQueue queue = …

while (!queue.isEmpty() && ...) {
CheaterFutureTask Task =

queue.remove();
incompleteTasks.add(Task);
taskValues.add(

Task.getRawCallable().
call());

}

BatchCommitLogExecutorService.java using BlockingQueue in Cassandra,
one bug injected

15-313 Software Engineering105

Checklists!

17-313 Software Engineering106

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://en.wikipedia.org/wiki/File:B17_-_Chino_Airshow_2014_(framed).jpg

Code Review at Microsoft

17-313 Software Engineering107

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes (Analyzing Reviews)

15-313 Software Engineering108

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Code Review at Google

• Introduced to “force developers to write code
that other developers could understand”

• 3 Found benefits:

– checking the consistency of style and design

– ensuring adequate tests

– improving security by making sure no single
developer can commit arbitrary code without
oversight

15-313 Software Engineering109

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko and Alberto Bacchelli. 2018. Modern Code
Review: A Case Study at Google. International Conference on Software Engineering

Inspection Process

17-313 Software Engineering110

Planning

Overview

Preparati
on

Meeting

Rework

Followup

Moderator

Author

Inspectors
(one scribe,
one reader,
one verifier)

Focus Fatigue

17-313 Software Engineering111

Recommendation:
Do not exceed
60 minute session

Types of Code Reviews by
Formality

17-313 Software Engineering112

More formal

• Ad hoc review
• Passaround (“modern code reviews”)
• Pair programming
• Walkthrough
• Inspection

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

15-313 Software Engineering113

Foundations of
Software Engineering

Dynamic Analysis

Christian Kästner

15-313 Software Engineering114

Learning goals

• Identify opportunities for dynamic analyses
• Define dynamic analysis, including the high-

level components of such analyses, and
understand how abstraction applies

• Collect targeted information for dynamic
analysis; select a suitable instrumentation
mechanism

• Understand limitations of dynamic analysis
• Chose whether, when, and how to use

dynamic analysis as part of quality assurance
efforts

115

What’s a memory leak?

116

1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5

a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

117

Dynamic Type Checking

Object a = getList();

List<Integer> b = (List<Integer>) a;

Long c = b.get(1);

if (random()>0.00000001)

System.out.println(“foo”);

else

Math.max(a, 100);

118

Time Travel Debugging

119
http://www.mattzeunert.com/2016/12/22/vs-code-time-travel-debugging.html

Parts of a dynamic
analysis
• Property of interest.

• Information related to
property of interest.

• Mechanism for collecting
that information from a
program execution.

• Test input data.

• Mechanism for learning
about the property of
interest from the
information you collected.

What are you trying to learn about? Why?

How are you learning about that property?

Instrumentation, etc.

What are you running the program on to collect
the information?

For example: how do you get from the logs to
branch coverage?

120

Code Transformation

15-313 Software Engineering121

Source
Code

Instrumented
Source

C
o

m
p

ile

Binary

JVM Specification

• https://docs.oracle.com/javase/specs/

• See byte code of Java
classes with javap
or ASM Eclipse plugin

• Several analysis/rewrite
frameworks as
ASM or BECL (internally
also used by AspectJ, …)

15-313 Software Engineering122

https://docs.oracle.com/javase/specs/

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

123

Very input dependent

• Good if you have lots of tests!
– (system tests are often best)

• Are those tests indicative of normal use
– And is that what you want?

• Can also use logs from live software runs
that include actual user interactions
(sometimes, see next slides).

• Or: specific inputs that replicate specific
defect scenarios (like memory leaks).

124

Foundations of Software
Engineering

Static analysis

Christian Kaestner

125

Learning goals

• Give a one sentence definition of static analysis. Explain what
types of bugs static analysis targets.

• Give an example of syntactic or structural static analysis.
• Construct basic control flow graphs for small examples by hand.
• Distinguish between control- and data-flow analyses; define and

then step through on code examples simple control and data-
flow analyses.

• Implement a dataflow analysis.
• Explain at a high level why static analyses cannot be sound,

complete, and terminating; assess tradeoffs in analysis design.
• Characterize and choose between tools that perform static

analyses.

126

1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8_t *signature,

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16.fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20.}

127

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
With thanks to Jonathan Aldrich; example from Engler et
al., Checking system rules Using System-Specific,
Programmer-Written Compiler Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

128

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

129

Syntactic Analysis

Find every occurrence of this pattern:

grep "if \(logger\.inDebug" . -r

public foo() {
…
logger.debug(“We have ” + conn + “connections.”);

}
public foo() {

…
if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}

Type Analysis

131

Type checking

132

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” +

conn + “connections.”);
}

}
}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

Logger

boolean

expects boolean

Logger

Logger ->boolean

String -> void

String

void

Structural Analysis

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” +

conn + “connections.”);
}

}
}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

133

Tools

• Checkstyle

• Many linters (C, JS, Python, …)

• Findbugs (some analyses)

134

1-3

5-6

0

end

135

1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. if (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0)

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit)136

y > -1

x = 10;

x = 10;

y = x;

z = 0;

while (y > -1) {

x = x/y;

y = y-1;

z = 5;

}

x = x/y

(exit)

y = y-1;

y = x;

x NZ

x NZ, yNZ

x NZ, yNZ, z  Z

z = 0;

x NZ, yNZ, z  Z

z = 5;

x NZ, yNZ, z  Z

x NZ, yNZ, z  Z

x NZ, yMZ, z  Z

x NZ, yMZ, z NZ

137

Join!

Reminder:
x: Join(NZ,NZ)  NZ
y: Join(MZ,NZ) MZ
Z: Join(NZ, Z) MZ

Abstraction at work

• Number of possible states gigantic
– n 32 bit variables results in 232*n states

• 2(32*3) = 296

– With loops, states can change indefinitely

• Zero Analysis narrows the state space
– Zero or not zero
– 2(2*3) = 26

– When this limited space is explored, then we
are done
• Extrapolate over all loop iterations

138

Kildall’s Worklist Algorithm

1. worklist = new Set();

2. for all node indexes i do

3. input[i] = ? A;

4. input[entry] = initialA;

5. worklist.add(all nodes);

6. while (!worklist.isEmpty()) do

7. i = worklist.pop();

8. output = flow(input[i], i);

9. for j succ(i) do

10. if ! (output v input[j])

11. input = input[j] join output

12. worklist.add(j)

139(c) 2016, Claire Le Goues

Note on line 5: it’s OK to just
add entry to worklist if the
flow functions cannot return
bottom, which is true for our
example but not generally.

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

140

15-313 Software Engineering

Foundations of
Software Engineering

Taint Analysis

Miguel Velez

1
4

Learning goals

• Define taint analysis.
• Compare the dynamic and static

approaches, as well as their
benefits and limitations.

• Apply the analysis to several
examples

• Understand how dynamic and
static analyses can be combined to
overcome the limitations of each
other.

1
4

Example

1
4

1.input = Source();
2.tmp = “select …”
+ input;

3.tmp = encode(tmp)
4.Sink(tmp);
5.log(tmp);

priv

tmp

OK

input

…

Example

1
4

1.x =
Source(0);

2.y = 1;
3.z = x;
4.w = y + z;
5.Sink(w);

Leak in the program!

1NT

0Tx

y

z

1Tw

1
4

1. x = Source(i);
2. y = x;
3. if(y == 0) {
4. z = 0
5. }
6. else {
7. z = 1
8. }
9. Sink(z);

MT

T

T NT

3: y == 0

1: x = Source(i);

4: z = 0

9: Sink(z);

2: y = x;

7: z = 1

(exit)

Kildall’s Worklist Algorithm

1
4

HW5: Static and Dynamic Analysis

17-313 Software Engineering147

Foundations of
Software Engineering

Process: Linear to Iterative

Michael Hilton

148

Learning goals

• Understand the need for process
considerations

• Select a process suitable for a given
project

• Address project and engineering risks
through iteration

• Ensure process quality.

149

Interview

• Sean McDonald

150

151

Requirements
Engineering

Architectural
design

Detailed
design

Coding

Unit testing

Integration
testing

Operation and
Maintenance

Win Royce and Barry Boehm, 1970

Why was this an important step?
What are limitations?

152

1:32pm

July 16th 1969

153

Drive from engineering risks:
Requirements
Design
Implementation

The Spiral Model (Barry Boehm)

Rational Unified Process (UP)

154
from Rational Software

Change Control Board

155 www.chambers.com.au

http://www.chambers.com.au/

156

157

Foundations of
Software Engineering

Process: Agile Practices

Michael Hilton

158

Learning goals

• Define agile as both a set of iterative process
practices and a business approach for aligning
customer needs with development.

• Explain the motivation behind and reason about the
tradeoffs presented by several common agile
practices.

• Summarize both scrum and extreme programming,
and provide motivation and tradeoffs behind their
practices.

• Identify and justify the process practices from the
agile tradition that are most appropriate in a given
modern development process.

159

Brief History of Agile

160

1930s

Inception of Iterative and
Incremental Development (IID):
Walter Shewhart (Bell Labs,
signal transmission) proposed a
series of “plan-do-study-act”
(PDSA) cycles

2001

Introduction of “Agile”:
The Agile Manifesto
written by 17 software
developers

XP reified: Kent Beck
released Extreme
Programming Explained:
Embrace Change

1999

Introduction of Scrum:
Jeff Sutherland and Ken
Schwaber presented a paper
describing the Scrum
methodology at a conference
workshop

19951970

Introduction of the waterfall:
Winston Royce’s article
Managing the Development of
Large Software Systems

The Manifesto for Agile Software
Development (2001)

161

Value

Individuals and
interactions

over Processes and tools

Working software over
Comprehensive
documentation

Customer
collaboration

over Contract negotiation

Responding to
change

over Following a plan

Planning Poker

162

Kanban Board

163

Pair Programming

164

Driver

Navigator

Open workspace

165

Scrum Process

166

Case STudy
Universal Credit

167

Foundations of
Software Engineering

Quality-Assurance Process

Christian Kästner

15-313 Software Engineering168

Foundations of
Software Engineering

How to get developers to
[write tests|use static analysis|appreciate testers]

Christian Kästner

15-313 Software Engineering169

Learning Goals

• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and

quality attribute
• Decide the when and how much of QA
• Overview of concepts how to enforce QA techniques in a

process
• Select when and how to integrate tools and policies into the

process: daily builds, continuous integration, test automation,
static analysis, issue tracking, …

• Understand human and social challenges of adopting QA
techniques

• Understand how process and tool improvement can solve the
dilemma between features and quality

15-313 Software Engineering170

Example: SQL Injection Attacks

15-313 Software Engineering171

http://xkcd.com/327/

Which QA strategy is suitable?

Example: Scalability

15-313 Software Engineering172

Which QA strategy is suitable?

1989 Retreat and “Zero defects”

• see memo

/

175

Static Analysis 18Analysis of Software Artifacts

© 2009 Jonathan Aldrich

15-313 Software Engineering176

Foundations of
Software Engineering

Security Development Lifecycles

Christian Kästner

(Based on slides by Michael Maass)

15-313 Software Engineering177

Learning goals

• Understand basic concepts of vulnerabilities
and secure software

• Implement security mechanisms across the
entire software development lifecycle

• Design and inspect architecture for security
with threat modeling

• Decide how do adopt security practices and
educate participants. Who, when, and how
much?

15-313 Software Engineering178

Sources of Software Insecurity

• Complexity, inadequacy,
and change

• Incorrect or changing
assumptions (capabilities,
inputs, outputs)

• Flawed specifications and
designs

• Poor implementation of
software interfaces (input
validation, error and
exception handling)

• Inadequate knowledge of
secure coding practices

179

180

Microsoft SDLs

15-313 Software Engineering182

STRIDE vs Security Properties

Threat Security Property

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

15-313 Software Engineering183

15-313 Software Engineering184

Use case: Sales entry

Sales001

SalesNNN

Collection
and Analysis

Analysis
Process

List of Sales
Systems

Manager

Report
Generation

Client Server

Static Analysis, Deprecation

• Microsoft runs static checkers at
checking (quality gates)

• Banned over 100 C functions for new
code

15-313 Software Engineering185

https://cwe.mitre.org/

Foundations of
Software Engineering

Motivation

Michael Hilton

17-313 Software Engineering187

Learning Goals

• Understand the differences among
developers and implications for hiring and
teamwork.

• Describe various models of motivation and
their relationship to productive work
environments.

• Design conditions that motivate developers.

• Understand team development and
progression.

188

10X Engineers

• Aka “rock-star”, “ninja”

189

190

Source: http://www.techrepublic.com/blog/career-management/tech-companies-have-
highest-turnover-rate/; payscale.com data

Maslow's hierarchy of needs (1943)

191

192

(Observation by Mantle and Lichty, not empirical data)

0

10

20

30

40

50

60

Cause of Satisfaction Cause of dissatisfaction

193

Autonomy
Mastery
Purpose

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity
Can crowd out good behavior

Can encourage cheating, shortcuts,
and unethical behavior
Can become addictive

Can foster short-term thinking

Rewards turn play
into work and drain

motivation

Foundations of
Software Engineering

Part 24: Teams

Michael Hilton

17-313 Software Engineering194

Learning Goals

• ?

17-313 Software Engineering195

How to structure teams?

• Microblogging platform; 3 friends

17-313 Software Engineering196

How to structure teams?

• Mobile game;
50ish developers;

• distributed teams?

15-313 Software Engineering197

How to structure teams?

• Ride sharing app and self-driving cars;
1200 developers; 4 sites

15-313 Software Engineering198

17-313 Software Engineering199

17-313 Software Engineering200

15-313 Software Engineering201

17-313 Software Engineering202

15-313 Software Engineering203

17-313 Software Engineering204

Process Costs

17-313 Software Engineering205

n(n − 1) / 2
communication links

Spotify Squads

15-313 Software Engineering206

Elitism Case Study: The Black Team

• Legendary team at IBM in the 1960s
• Group of talented ("slightly better") testers

– Goal: Final testing of critical software before delivery

• Improvement over first year
• Formed team personality and energy

– "adversary philosophy of testing"
– Cultivated image of destroyers
– Started to dress in black, crackled laughs, grew

mustaches

• Team survived loss of original members

17-313 Software Engineering207

DeMarco and Lister. Peopleware. Chapter 22

208

Foundations of Software
Engineering

Lecture 24: Open Source

Michael Hilton

209

Learning goals

• Understand the terminology “free software”
and explain open source culture and
principles.

• Express an educated opinion on the
philosophical/political debate between open
source and proprietary principles.

• Reason about the tradeoffs of the open
source model on issues like quality and risk,
both in general and in a proprietary context.

210

Perception:

• Anarchy

• Demagoguery

• Ideology

• Altruism

• Many eyes

211

“Free as in free speech.”

212

213

Open Source Business Models

• Open source as hobby; resume building

• Selling support/expertise instead of
software
–RedHat

• Selling complementary services
–Wordpress

• Developers hired as consultants, for
extensions

214

Coverity Report of Open Source

[Coverity, 2012, http://www.coverity.com/press-releases/annual-coverity-
scan-report-finds-open-source-and-proprietary-software-quality-better-
than-industry-average-for-second-consecutive-year/]

Only tested programs which use Coverity
Defect density: defects per 1,000 lines
Average defect density of 0.69 for open source and 0.68 for
proprietary software, surpassing the industry standard of 1
or less

Proprietary Open Source

500,000-1,000,000
(LOC)

0.98 0.44

1,000,000+ (LOC) 0.66 0.75

Defect Density Based on Size

215

Microsoft Embraces Open Source

216

217

Open SSL/Heartbleed.

• In 2013, OpenSSL made
$2,000 in donations (and
some from other sources)

• One full time programmer
• Heartbleed (2014):

Vulnerability was found
that effected about 17.5%
of web servers (half a
million)

• Used by Yahoo, Twitter,
Google

• Who is responsible?

218

Open Source Licenses
Software Percentage

MIT License 24%

GNU General Public License (GPL) 2.0 23%

Apache License 2.0 16%

GNU General Public License (GPL) 3.0 9%

BSD License 2.0 (3-clause, New or
Revised) License

6%

GNU Lessor General Public License (LGPL)
2.1

5%

Artistic License (Perl) 4%

GNU Lesser General Public License (LGPL)
3.0

2%

Microsoft Public License 2%

Eclipse Public License 2%

List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-
licenses

219

HW6: Open Source Contribution

17-313 Software Engineering220

Data Analytics in
Software Engineering

Christian Kaestner

221

Learning Goals

• Understand importance of data-driven
decision making also during software
engineering

• Collect and analyze measurements

• Design evaluation strategies to evaluate
the effectiveness of interventions

• Understand the potential of data
analytics at scale for QA data

222

223

224

Source of
Believes

225

226

Timer Overhead

• Measurement itself consumes time

227

Request time

Time reported

Even starts Event ends,
request time

Saved end time

Memory access and interaction
with operating system

Measured event should be 100-1000x
longer than measurement overhead

Normal distributions

228

Abundance of Data

• Code history
• Developer activities
• Bug trackers
• Sprint backlog, milestones
• Continuous integration

logs
• Static analysis and

technical debt dashboards
• Test traces; dynamic

analyses
• Runtime traces

• Crash reports from
customers

• Server load, stats
• Customer data,

interactions
• Support requests,

customer reviews
• Working hours
• Team interactions in

Slack/issue
tracker/email/…

• …

229

Example: Badges

230

A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu. Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the npm Ecosystem. In Proceedings of the 40th International Conference on Software Engineering (ICSE), New York, NY: ACM Press, May 2018.

Testing in Production

• Beta tests
• AB tests
• Tests across hardware/software diversity

(e.g., Android)
• “Most updates are unproblematic”
• “Testing under real conditions, with real

workloads”
• Avoid expensive redundant test

infrastructure

231

Release cycle of Facebook’s apps

232

Foundations of
Software Engineering

Part 26: Software Engineering Ethics

Michael Hilton

17-313 Software Engineering233

Learning goals

• Awareness of ethical issues in software
engineering

• Reflection on decision making

• Knowledge of professional codes

• Starting points to dig deeper

17-313 Software Engineering234

17-313 Software Engineering235

“Update Jun 17: Wow—in just 48 hours in the U.S., you recorded 5.1 years worth of
music—40 million songs—using our doodle guitar.
And those songs were played back 870,000 times!“

Open Source Maintainers

15-313 Software Engineering236

A/B Testing

15-313 Software Engineering237

17-313 Software Engineering238

Dual use

Professional Engineer

17-313 Software Engineering239

Malpractice vs. Negligence

Negligence is a failure to exercise the care that a
reasonably prudent person would exercise in like
circumstances.

Malpractice is a type of negligence; it is often called
"professional negligence". It occurs when a licensed
professional (like a doctor, lawyer or accountant) fails
to provide services as per the standards set by the
governing body ("standard of care"), subsequently
causing harm to the plaintiff.

15-313 Software Engineering240

IEEE CS/ACM Software Engineering
Code of Ethics (short version)
Software engineers shall commit themselves to making the analysis, specification, design,
development, testing and maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and welfare of the public,
software engineers shall adhere to the following Eight Principles:
• Public: Software engineers shall act consistently with the public interest.
• Client and Employer: Software engineers shall act in a manner that is in the best

interests of their client and employer, consistent with the public interest.
• Product: Software engineers shall ensure that their products and related modifications

meet the highest professional standards possible.
• Judgement: Software engineers shall maintain integrity and independence in their

professional judgment.
• Management: Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

• Profession: Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

• Colleagues: Software engineers shall be fair to and supportive of their colleagues.
• Self: Software engineers shall participate in lifelong learning regarding the practice of

their profession and shall promote an ethical approach to the practice of the profession.

15-313 Software Engineering241 https://www.computer.org/ 17-313 /education/code-of-ethics

Obligations to whom?

• Public welfare

• Some cases more obvious: QA for
pacemaker

• Analyze stakeholders, including fringes

17-313 Software Engineering242

17-313 Software Engineering243

HW6 Presentations

17-313 Software Engineering244

Thanks!

17-313 Software Engineering245

