
An Empirical Study on Reproducible Packaging in
Open-Source Ecosystems

Giacomo Benedetti∗, Oreofe Solarin†, Courtney Miller‡, Greg Tystahl§, William Enck§, Christian Kästner‡,
Alexandros Kapravelos§, Alessio Merlo¶ and Luca Verderame∗

∗University of Genoa, †Case Western Reserve University, ‡Carnegie Mellon University, §North Carolina State University,
¶CASD - School of Advanced Defense Studies

Abstract—The integrity of software builds is fundamental to
the security of the software supply chain. While Thompson first
raised the potential for attacks on build infrastructure in 1984,
limited attention has been given to build integrity in the past
40 years, enabling recent attacks on SolarWinds, event-stream,
and xz. The best-known defense against build system attacks
is creating reproducible builds; however, achieving them can
be complex for both technical and social reasons and thus is
often viewed as impractical to obtain. In this paper, we analyze
reproducibility of builds in a novel context: reusable components
distributed as packages in six popular software ecosystems (npm,
Maven, PyPI, Go, RubyGems, and Cargo). Our quantitative
study on a representative sample of 4000 packages in each
ecosystem raises concerns: Rates of reproducible builds vary
widely between ecosystems, with some ecosystems having all
packages reproducible whereas others have reproducibility issues
in nearly every package. However, upon deeper investigation,
we identified that with relatively straightforward infrastructure
configuration and patching of build tools, we can achieve very
high rates of reproducible builds in all studied ecosystems. We
conclude that if the ecosystems adopt our suggestions, the build
process of published packages can be independently confirmed
for nearly all packages without individual developer actions, and
doing so will prevent significant future software supply chain
attacks.

I. INTRODUCTION

Reproducible builds to secure build integrity. While the world
runs on open-source software, software is rarely consumed as
source. The software build process that transforms source code
to its consumed artifact is a long-standing security risk. In his
1984 Turing Award Lecture, Thompson [1] described a process
to create an undetectable backdoor in software by modifying
the compiler that compiles a compiler, leaving no trace of
the backdoor in source code. Nearly 40 years later, the 2020
attack on SolarWinds subverted the build system to produce
binary artifacts signed with SolarWinds’s official code signing
keys [2], and the 2018 event-stream and 2024 xz supply chain
attacks try to inject malicious code into deployed components
that are not visible in the source code [3].

The best known defense against build system attacks is
creating reproducible builds [4]: A build is reproducible if
executing the build on two or more different machines (e.g.,
by different organizations) produces a bitwise-identical arti-
fact when given the same source code, build environment,
and build instructions. A reproducible build provides strong
evidence that the build process was not tampered with and
that the resulting artifact corresponds to the source code,

which is particularly important for high-profile projects (e.g.,
Tor [5] and Bitcoin [6]) and essential digital infrastructure. Ap-
proaches such as CHAINIAC [7] build on top of reproducible
builds to create collectively verified builds. For example, it is
unlikely that Google, Microsoft, and Amazon’s build processes
will be simultaneously compromised, especially when the
compromise of any subset of the parties is easy to identify.

Achieving reproducible builds is widely viewed as very
hard [8], and currently, only a few developers invest effort
into reproducible builds. There are many intricate reasons why
a build may not be reproducible in practice [4] – for exam-
ple, time, environment variables, and build location may be
embedded in binary executables and archive files that package
artifacts. In addition, there are many more potential sources of
system differences and non-determinism in builds, such as dif-
ferent system locales, pseudorandom number generators used
during compilation or code generation, and process schedul-
ing. While the Debian project has spent a decade removing
sources of unreproducibility and has achieved over 95% re-
producible builds on AMD64 [9], reproducible builds remain
a hard challenge – a recent interview study of practitioners
invested in reproducible builds highlighted many technical and
social challenges of resolving build unreproducibility [10].
Reproducible component builds to secure package ecosys-
tems. In this paper, we consider reproducible builds in a novel
context: the reusable components distributed as packages with
package managers in popular software ecosystems, including
npm (JavaScript), Maven (Java), PyPI (Python), Go, Ruby-
Gems (Ruby), and Cargo (Rust).1 Today, most applications
are built with reusable open-source components, and build
processes usually rely on the archives distributed with package
managers rather retrieving the original source code from
repositories.

Attackers are actively exploiting the gap between the source
code in a repository and the release of a package. In 2018 the
account controlling the popular PyPI package ssh-decorate

was hijacked to upload a version that collected users’ SSH
credentials to send them to a remote server [11] – an indepen-
dent build of the package would have identified that the hash

1We use the terminology of components and applications common in the
discourse of software supply chains. A component here can be any reusable
software artifact, including libraries, frameworks, infrastructure tools, and non-
code artifacts. Components are typically, but not necessarily distributed as
packages with a package manager.

of the version in PyPI differed from the one built from the
source. The xz attack [12] also exploited this gap: While the
malicious code was obfuscated in the source code repository
as a malformed compressed archive used as a negative test
case, it was only enabled by an Autoconf file that was not
in the repository. The released dist tarball of xz included
build instructions generated by the malicious Autoconf file.
Interestingly, the Debian Reproducible-Builds project did not
detect the xz attack, because they used the released dist tarball
as their source. Even though we do not study reproducibility
of C/C++ dist tarballs, this is exactly the kind of scenario
of manipulated distributed packages (source or binary) we
address in this paper.

Although the primary focus of the discourse on reproducible
builds is on applications rather than components, the limited
prior research on component reproducibility paints a gloomy
picture, reporting severe reproducibility issues for most com-
ponents studied in npm and PyPI. Specifically, Vu et al. [8]
attempted to match the code in over 2,000 popular PyPI pack-
ages with their original source code (without actually building
the packages) and found a wide range of differences, most
benign. Furthermore, Goswami et al. [13] studied the build
reproducibility of over 3000 versions popular npm packages
and found significant challenges resulting from version drift
of build tools.

In our work, we explicitly adopt a much broader scope,
comparing practices in multiple ecosystems and analyzing the
role of package managers’ tooling: Open-source infrastructure
has formed distinct communities, interdependent ecosystems,
often around languages, frameworks, and platforms, often with
distinct practices and tools [14], [15], [16]. Among others,
practices and tools for packaging and indexing artifacts differ
widely between (a) compiled languages that share binaries and
(b) interpreted languages that share archives of source code,
sometimes transpiled, sometimes including some binary code
extensions, sometimes including code in multiple languages
– for instance, the package managers npm and PyPI have
adopted entirely distinct toolchains. Different practices and
tools may lead to widely different outcomes for reproducibil-
ity. Hence, we specifically study the difference of component
reproducibility across ecosystems and the influence of tooling
choices in package managers.

Research overview. For the purposes of this study, we consider
reproducible packaging as producing a bitwise-identical arti-
fact from the same source code, build environment, and build
instructions. This analysis of reproducible packaging is distinct
from, but a necessary foundation for, comparing a locally
created artifact to a published artifact (see Section III-C).
We perform a quantitative study applying reprotest [17]
to a representative large random sample of 4000 packages
in each of six packaging ecosystems (npm, Maven, PyPI,
Go, RubyGems, and Cargo) and investigate the reasons for
reproducibility issues . Specifically, we answer the following
research questions:

RQ1 (Reproducible Package Builds): How many pack-

ages are reproducible as is in each ecosystem? We find that
almost all packages in Cargo and npm are reproducible,2

but only very few to none are in RubyGems, PyPI, and
Maven. Go packages simply include a reference to a source
code repository and do not include any artifacts – therefore
component builds are not relevant for Go. This highlights the
substantial differences between ecosystems and also seems to
initially confirm the gloomy reports of vast reproducibility
problems from previous research.

RQ2 (Causes of Unreproducibility): To what extent
are unreproducible package builds caused by the toolchain
and fixable through toolchain changes? Analyzing the causes
of unreproducibility, we find that nearly all unreproducible
package builds were caused by nondeterminism in the build
process (e.g., paths, time, file permissions, locale) that can be
controlled by the package manager’s tooling, either through
configuration or through small changes to the tools. With con-
figuration or tooling changes in RubyGems, PyPI, and Maven,3

almost all packages become reproducible in these ecosystems.
This result paints a much more optimistic picture than prior
reports and our initial findings: Our results highlight that small
changes to ecosystem-wide tooling have a substantial lever to
improve package reproducibility to the point that almost all
packages are reproducible in each studied ecosystem, without
having to convince every single package maintainer to take
actions to ensure reproducibility.

RQ3 (Native Code Extensions): To what extent does the
presence of native code inside of packages influence build
reproducibility? Ruby, Python, and even JavaScript packages
can include native code extensions. Analyzing specifically
packages that contain native code extensions, even though the
package managers in these ecosystems incorporate native code
differently (e.g., compiling it into the package vs. including
source code), our study shows that native code extensions
rarely negatively influence reproducibility, with reproducibility
rates in each ecosystem almost identical to that of pack-
ages without native code extensions. This is another positive
finding, highlighting that native code extensions do not pose
additional barriers in practice.

RQ4 (Reproducible Builds and Compilation): To what
extent does compilation of package dependencies into dis-
tributable artifacts of application affect the build reproducibil-
ity? As components in ecosystems are usually used to build
applications, we explore the downstream effects of component
reproducibility (or a lack thereof) for applications relying on
components in the ecosystem. We find that application builds
using the studied packages are reproducible for 100% of the
Go packages and greater than 90% of the Maven packages.
The results for Cargo were more nuanced: due to timestamps
used as part of cryptographic signatures, potentially all pack-
ages can cause downstream build reproducibility problems;

2For simplicity we use the term reproducible when the package manager
tooling does not insert any reproducibility issue.

3As noted in Section IV-B1, Maven independently added timestamp-related
build reproducibility fixes too their tooling during the preparation of the
camera-ready version of this paper.

however, in practice, these cryptographic signatures will not
change, and greater than 80% of the studied packages had
reproducible builds. This is a final supporting piece that also
points toward the message that package reproducibility may
be a smaller obstacle than originally expected.
Recommendations. Overall, our results largely paint a positive
picture for the studied software ecosystems. Our results indi-
cate that package managers can take advantage of reproducible
builds to protect against build system or account compromise
by doing the following: First, the identified toolchain issues
must be addressed by providing more options to control
nondeterminism during the build process. Second, package
manager tooling should adopt default configurations that create
reproducible builds without having each maintainer configure
their build. Finally, package managers must make buildinfo

files available. While our study did not consider build tool
version drift, prior work [13] identified this as a significant
challenge for npm; without buildinfo files, it is very chal-
lenging to compare our independent build with the packages
distributed by package managers.
Contributions. In summary, we contribute a large-scale quan-
titative analysis of the state of reproducible builds across
six software ecosystems, contrasting the prevalence of repro-
ducible package builds and infrastructure changes that can
support increased reproducibility for each of the ecosystems
respectively. Our results have implications for understanding
how to improve the state of reproducibility on a macro-
ecosystem level as well as concrete changes to support in-
dividual package users and developers.

Source code, data, and additional material for this paper are
available in our replication package [18].

II. BACKGROUND

A. Packaging Ecosystems

Software applications are routinely developed by reusing
existing (often open-source) components. The application and
its dependencies on components, which again may depend on
other components, form a software supply chain. Components
are usually distributed as packages with a package manager
and corresponding package repository, such as npm and PyPI.

Groups of packages, their developers, and their users often
form an interdependent ecosystem. Software ecosystems are
frequently underpinned by a common technological platform
or market [19]. A software ecosystem can be defined as a pack-
aging ecosystem when it revolves around package managers
for a specific programming language [16].

A package within an ecosystem contains the files necessary
for other software to use its functionality. These may
include source code and binary files, as well as tests
and documentation. Among those files, there is usually a
specification file containing information on how the package
manager must build the package and other metadata. There
are two kinds of specification files: static and dynamic. A
static specification file contains metadata that the package
manager uses during the build process. A dynamic file may

contain arbitrary code or elements that are executed by the
package manager during the build process.

In the npm, PyPI, and RubyGems package ecosystems,
packages include primarily source code, but may also include
native code extensions. Native code extensions provide an
API for compiled code, usually written in C, typically to
optimize for resource-intensive activities.

A packaging ecosystem typically comes with tooling to
create and publish components as packages, such as pip for
PyPI and mvn for Maven. Most ecosystems have widely used
standard tools, but there may be competing tools such as
npm and yarn in the npm ecosystem, which provide different
command-line tools to interact with the same package
repository. In addition, most tools are highly configurable –
for example pip uses a frontend–backend approach, where pip

delegates the actual packaging to a configurable build backend;
in addition pip works on two interfaces using two different
specification files, an interface (legacy) based on the setup.py

file and another interface based on the pyproject.toml

file. Similarly, mvn is plugin-based, ingesting a pom.xml

specification file to control the actions of various plugins.

B. Distribution Model

Figure 1 shows a typical distribution model for packaging
ecosystems. It consists of two processes: (1) package and
upload components as packages to repositories, and (2) in-
stallation and build of packages for applications.

Components are usually developed and tested locally on a
developer’s machine or with some public build and continuous
integration infrastructure. The source code of open-source
components is publicly available, and anybody can suggest
modifications. The package manager’s toolchain can then be
used to release the package as a distributable artifact. At this
stage, the package manager takes the source code and the
specification files, collects dependencies, collects and possibly
compiles code, and generates a package. This process is
controlled by the various configuration files in the repository
and potentially additional command-line arguments. During
the packaging stage, information about the build environment
can be captured as metadata (e.g., timestamps and release
version). The resulting package file is then uploaded in the
ecosystem’s package repository.

Consumers of a component, such as other components and
applications, usually use the packaged version in the package
repository, downloading and installing it through the package
manager, assuming that the distributed package corresponds
to the component’s source code in its public repository [20].
The dependencies of an application can be integrated during
the build phase and included in the final artifact, or they might
be gathered and installed on the end user’s system separately.
The resulting application can then be distributed to end users
internally or publicly through various channels, including di-
rect downloads, application stores, and as packages in package
ecosystems (e.g., common for developer applications like static
analysis tools or test runners).

Start
Releasing

Build
Package

Source code
Specification files

Upload package to
registry (e.g., PyPI)

tarball
zip file

Packaging happens on the developer system

Get package as a
dependency for an

application

Release the
application

May include code
 compilation

Build and publish
the application

Install the
application

Published on
public/private stores

Packaging and Upload Application build and installation

A AB

A: Compromise Build Process

B: Upload Modified Package

C

C: Compromise Package Registry

E

E: Use Compromised Package

D

D: Use Compromised Dependency

Build ThreatsDependency Threats

Fig. 1. Workflow from source code to distribution.

Various threats can affect the distribution model (see Fig-
ure 1). According to Ladisa et al. [3], these threats can be
implemented through multiple attacks. The build process can
be compromised (A) due to weak configurations, vulnera-
bilities, or malicious components. A modified package may
be uploaded to the registry (B) by compromising the host
or maintainer systems or by hijacking a legitimate account.
Similarly, a package registry can be compromised (C). Once
distributed, compromised packages affect other packages or
applications that use them (D). Both package and application
build processes may use compromised packages (E). Repro-
ducible builds are one countermeasure to ensure build integrity,
ensuring packages are built from current, unmodified sources
and dependencies.

C. Challenges of Reproducible Builds in OSS Supply Chains

The idea of reproducible builds has been broadly promoted
to ensure an independently verifiable path from source to pub-
lished artifacts where verifiably no additional4 vulnerabilities
or malicious code has been introduced. Identical results for
every build of a given source allow multiple parties to come
to a consensus and highlight any deviations from the expected
build result.

Reproducible builds have two requirements that can be
difficult to ensure: (1) The build process must be determin-
istic. (2) The build environment must be either recorded or
pre-defined. Build tools and programming languages were
not originally designed for reproducibility and contain many
causes of nondeterminism that affect build reproducibility.
Lamb and Zacchiroli [4] provide an overview of common
sources of nondeterminism during the build process:

• Build timestamps are the main source of unreproducible
builds. Many tools embed timestamps inside build ar-
tifacts, even though they may have limited practical
value. The Reproducible Builds project proposed the
SOURCE_DATE_EPOCH environment variable as a way to
communicate a fixed timestamp to build systems [21].

4Malicious code already hidden in the original source or tools used in the
build may be built reproducibly.

• File ordering for the readdir(3) system call is not
specified in the POSIX Unix standard, and differently
ordered file lists may affect build artifacts. To avoid these
issues, build systems should impose a deterministic order
on any directory iteration encoded in its artifacts, e.g. via
an explicit sort().

• Archive metadata of zip archives and tarballs (i.e., tar
archives) may contain timestamps and permissions for
each file.

• Randomness, intentional or accidental, of any compila-
tion or code generation step in the build may influence
resulting binaries.

The reproducible-builds.org project provides educational
materials, resources, and tools to support developers and
software projects in making their build processes reproducible,
including reprotest [17] to automate the process of build-
ing a package multiple times in diverse environments and
diffoscope [22] to help find the differences between binary
packages and directories.

Beyond technical challenges, recent research has studied the
perceptions of reproducible builds and the social challenges
to their adoption. Fourné et al. [10] analyzed enablers and
blockers for adopting reproducible builds in the open-source
community. They report that most industry practitioners con-
siders reproducible builds to be out of reach – reproducible
builds are seen as valuable but not essential. Other studies
confirm that many developers are not aware of reproducible
builds when developing their software [23], [24]. Butler et
al. [25] identified the need for reproducible builds from a
security point of view and the reasons for their limited
adoption, minimal business impact, and limited awareness and
perceived challenges.

Overall, adoption of reproducible builds is uneven, with
dedicated efforts in Debian achieving substantial success [9],
but minimal attention to reproducible builds in other areas.

With regards to reproducibility at the package level,
Goswami et al. [13] examined the reproducibility of npm
packages by comparing the build output of upstream repos-
itory code against artifacts stored on the npm registry. Vu
et al. [8] did not directly focus on reproducible builds, but

they argued for reproducible builds as a security solution to
phantom artifacts, highlighting how difficult it is to achieve
reproducible builds. In parallel with our study, Kenshani et
al. [26] investigated the feasibility of automatically generating
.buildspec files from metadata available in Maven packages.
The build obtained by the automatically generated .buildspec

file is then compared to the build hosted in Reproducible
Central, which keeps trace of reproducibility for part of the
packages in the Maven ecosystem. As additional result of their
study, they conducted an explorative analysis trying to find
common causes of reproducibility issues. They conclude that
reproducibility of Maven packages can be achieved by trivial
adjustments to the POM.xml file. We confirm this speculation
in Section IV-B1.

In another line of work, Randrianaina et al. [27] studied
the impact of configuration options on reproducible builds
in highly-configurable systems, i.e., Linux, Toybox, and
Busybox. By fixing the build environment they were able to
understand how such options affect the build reproducibility.
We use a similar technical approach in this study to focus on
reproducibility issues related to the package manager.

Automatic approaches to support reproducible builds were
proposed by Ren et al. with three tools: RepLoc [28], Rep-
Trace [29], and RepFix [30], which localize and fix sources
of nonreproducibility for Debian applications. Here, we focus
more broadly on builds challenges across package ecosystems,
including different practices and policies adopted by commu-
nities [14], and different evolution of dependency networks in
different ecosystems [31], [32], [33], [34], [16].

III. RESEARCH DESIGN

In this paper, we conduct an in-depth empirical study of
reproducible builds in six packaging ecosystems to answer the
four research questions we outline in the introduction:

RQ1 How many packages are reproducible as is in each
ecosystem?

RQ2 To what extent are unreproducible package builds
caused by the toolchain and fixable through toolchain
changes?

RQ3 To what extent does the presence of native code inside
of packages influence build reproducibility?

RQ4 To what extent does compilation of package dependen-
cies into distributable artifacts of application affect the
build reproducibility?

We use the following high-level research design: For each
packaging ecosystem, we randomly generate a large, rep-
resentative sample of packages and attempt to build them
under varying environmental conditions from source code in
their open-source repositories. This allows us to quantitatively
study reproducibility rates across ecosystems. Based on our
findings, we then explore sources of unreproducibility and
corresponding interventions in package manager toolchains to
quantify how tooling changes affect reproducibility rates.

npm pypi rubygems

cargo go maven

10 1,000
100,000 10 1,000

100,000 10 1,000
100,000

0

20

40

60

0

100

200

0

50

100

150

200

0
50

100
150
200

0

100

200

300

0

200

400

Stars (Log Scale)

P

ac
ka

ge
s

Fig. 2. The samples used in our analysis allow us to obtain the practices of the
average developer dealing with reproducible builds. Thus, most of packages
in the samples have a very low popularity, however, our samples also contain
some very popular packages.

A. Analyzed Packaging Ecosystems

We focus on ecosystems that revolve around package man-
agers for specific programming languages.

To select the package ecosystems used in our analysis, we
searched for ecosystems representing a large community with
over 100,000 packages each; we then used an information-
oriented selection strategy (maximum-variation cases, follow-
ing case study research logic [35]), to identify a set of
ecosystems with different characteristics – e.g., native code
extensions, dynamic specification files – and with different
strategies in their distribution model – e.g., compilation output:
binary/bytecode, plugin-based build, package indexing. This
process yielded the following six ecosystems: Cargo, Go,
Maven, npm, PyPI, and RubyGems. We argue that this set of
ecosystems represents the current software landscape. Their
position regarding reproducible builds is critical for global
software supply chain security posturing.

B. Sample of Packages

Given the size of the ecosystems and the prohibitively high
cost of repeatedly building packages, it is infeasible to analyze
all 100,000 to 5 million packages in each ecosystem. Instead,
we analyze a large, representative, random sample from each
and make statistical generalizations.

a) Packages (RQ1, RQ2): To generate our sample of
packages for each ecosystem, we begin with a list of all
packages in the packaging ecosystem indexed by ecosyste.ms.
In order to minimize the chance of build issues during the
analysis, we filter packages by checking for the presence
of ecosystems’ specification files — e.g., package.json for
npm and setup.py / pyproject.toml for PyPI—, discarding
packages without them. We then generate a random sample of
4000 packages from this pool. We intentionally did not select
only the most popular projects, so that we can generalize our
findings to the entire population of packages in the ecosystem,
rather than merely reporting numbers about the most popular
packages. As a representative sample, it is expected that many
of the analyzed packages have few stars5, but some are very

5Stars are collected from ecosyste.ms API

popular in terms of stars, as shown in Figure 2. Having such
a distribution of popularity allows us to obtain practices of
average developer. With the relatively large sample size, results
derived from this sample afford high generalizability with
less than 1.54% margin of error at 95% confidence levels
by standard sample size calculations. The precise margin of
error varies slightly between ecosystems due to their different
population sizes and population proportion of reproducibility,
but the differences are negligible.

b) Packages with native code extensions (RQ3): To
concentrate on the effect of native code on reproducible
builds, we generated a sample of packages with native code
extensions and a second sample of packages without native
code extensions. To generate these samples, we first started
by dividing the packages from our RQ1 sample according to
whether native code extensions were present and designated
them to the appropriate sample. This resulted in a sample
of 398 (PyPI), 394 (RubyGems), and 129 (npm) packages
with native code extensions and a sample of complementary
cardinality without native code extensions. However, because
we wanted these samples to contain 4000 packages so they
were comparable to the RQ1 sample, we continued to draw
fresh random samples from the whole package population
until we found 4000 packages for each of the samples. The
detection of native code extensions in packages is ecosystem-
dependent: It is based on the presence of specific files (e.g.,
the extconf.rb file for RubyGems) or configurations (e.g., the
ext modules in the setup.py file for PyPI). The margin of error
is again less than 1.54% with 95% confidence. The complete
list of criteria can be found in the replication package [18].

c) Compilation Process Impact (RQ4): Similarly to RQ3,
to explore the impact of the complication process on re-
producible builds, we generate a sample of packages with
packages that can be compiled. For Cargo, Go, and Maven,
we collected large random samples of 4000 packages each by
applying the following filters:6 For Cargo, the Cargo.toml file
must contain a binary target to allow the package manager
to compile the project. For Go, an entry point function, i.e.,
the main function, must be present among the project files.
For Maven, the maven-compiler-plugin must be listed in the
pom.xml specification file.

C. Reproducibility analysis for packages (RQ1–3)

For each package in our samples, we identify the corre-
sponding GitHub repository and clone the most recent version
of the code. We then use the ecosystem’s default command to
build the package (e.g., pip wheel .). The list of package
managers and commands that we used is available in our
replication package [18]. When the open-source repository
is missing or the build fails the package is reported as
missing and discarded from the analysis since it does not offer
information on its build reproducibility. In those cases, a new
package matching the same criteria is randomly selected from

6The other ecosystems, i.e., npm, PyPI, and RubyGems, do not have a
standard process to generate a compiled artifact.

the whole package population to replace the discarded one.
We discarded about 800 packages for each ecosystems before
reaching the required number of 4000. The build failures
were caused by missing system libraries and mistakes in
specification files.

The package build reproducibility of all packages is tested
using reprotest on the same machine. Fixing the build infras-
tructure specifications — e.g., toolchain versions, dependen-
cies, operating system — makes it possible to focus on the im-
pact of reproducibility issues related to the package manager.
The tool is set up with a build command and a build output for
each ecosystem. For example, reprotest -variations=+time

’pip wheel -w dist <package_path>’ ’dist/*.whl’: the
time variation is applied to the build of packages for PyPI and
the resulting wheel files are tested for differences. reprotest
runs one time for each variation. Our replication package
contains the full catalog of the used variations. We consider
a build as reproducible when reprotest does not report
reproducibility issues for any of the tested variations. Failing
variations are recorded to subsequently investigate the causes.

We explicitly do not compare the compiled artifact with
the artifact uploaded to the package manager for two rea-
sons. First, identifying which specific revision of the source
code repository was used to produce the released package
is nontrivial and the subject of extensive research [8], [36],
[37], but entirely orthogonal to our exploration of whether a
package can be reproduced from the same source code. Sec-
ond, environmental dependencies such as compiler versions,
system libraries, and operating system configurations can vary
significantly across different build environments, leading to
potential discrepancies in the compiled artifacts, which is again
orthogonal to our research on whether the package manager
build process influences a package build reproducibility. For
example, a recent comparison of an independent build of
packages on ftp.debian.org found that only around 30% of
the published packages could be reproduced [38], despite the
fact that over 95% of packages can be built reproducibly using
reprotest [9]. Hence, we only compare build outcomes under
different environments from the latest revision of the source
code in the package’s repository.

The results of the tests show which reproducibility issues
have the biggest impact on build reproducibility. We look
for the reasons for unreproducibility behind the package
manager implementations. The majority of the analysis is
done manually, by looking at particular portions of code that
appeared to be the cause of an unreproducibility problem.
We created several automated scripts to search for possible
unreproducibility causes when reproducibility issues were not
triggered by the package manager directly. For example, one
such script looked for dynamic dates in specification files.

D. Reproducibility analysis for compilation (RQ4)

We examined Cargo, Go, and Maven since they offer a
proper compilation method. The first two ecosystems yield
binary files, while the last one generates an archive with
compiled Java bytecode. We employed the same methodology

as for the other research questions to examine the influence of
compilation. The configuration of the reprotest tool uses the
same variations used for RQ1–3, but it receives different build
commands and builds outputs (such as cargo build). We use
the assumption that the compiler requirements are known and
that reproducibility problems are not the result of the compiler
since we are interested in examining how package manager
operations affect reproducible builds.

E. Limitations and threats to validity

Evaluating build reproducibility includes technical details
varying by the level of abstraction taken into consideration.
For the purpose of this study (package manager impact on
reproducible builds), we designed our methods to identify
reproducibility issues at the build infrastructure level. By
excluding reproducibility issues originated by the system level,
e.g., architecture specifications, we may miss unreproducible
builds caused by the package manager because of platform-
specific causes.

While build reproducibility has a binary result (reproducible
or not), identifying causes of reproducibility issues is not as
straightforward. We used a specific tool, reprotest, in an
attempt to identify the causes of reproducibility issues; how-
ever, reprotest may be subject to unexpected bugs and design
issues that have the potential to impact our results. To mitigate
this risk, we carefully reviewed the reprotest implementation
and currently open issues on the code repository, identifying a
minor potential source of false positive unreproducible builds.
The tool may cause failure in the handshake with the package
registry because of widely varying system time. We reduced
the range of this variation. After patching this (potential)
implementation issue, we assume that the tool’s results can
be considered scientifically accurate.

We can statistically generalize our results to report trends for
reproducible builds for the entire ecosystems with tight error
margins. This method analyzes the general, representative
behavior of package builds, but we may miss the behaviors
of individual developers; for example, the behaviors of a few
developers of high-impact packages may differ from those of
the general population.

IV. RESULTS

We present results of our experiments by research question.

A. RQ1: Reproducible Package Builds As Is

Attempts to reproduce packages as is, without any changes
to package manager toolchains, yields wildly different results
across ecosystems as shown in Figure 3: A first group of
ecosystems achieves reproducible builds for nearly all the
sampled packages. Specifically, Cargo and npm have 100%
reproducible package builds. A second group of ecosystems
achieves very low percentages of reproducible package builds.
Specifically, Maven, PyPI, and RubyGems have 2.1%, 12.2%,
and 0% of reproducible package builds, respectively.

Cargo

Maven

npm

PyPI

RubyGems

0% 25% 50% 75% 100%
% Builds

E
co

sy
st

em

Reproducible As Is Reproducible w/ Infr. Conf.

Reproducible w/ Patched Pkg. Man. Non Reproducible Ext. Causes

Fig. 3. This figure shows the reproducibility of package builds across
different ecosystems, categorized as: i) reproducible as is, ii) reproducible
with infrastructure configuration as requested by the package manager, iii)
reproducible with a patched package manager, and iv) unreproducible due to
external issues not related to the package manager.

Locales

Timezone

Time

Umask

Exec Path

Kernel

Fileordering

Environment

0% 25% 50% 75% 100%
% Builds

V
ar

ia
tio

ns

RubyGems PyPI Maven

Fig. 4. Percentage of builds per ecosystem that were unreproducible because
of different variations.

Takeaway: Rates of reproducible builds vary widely be-
tween ecosystems, with some ecosystems having all repro-
ducible packages whereas others have reproducibility issues
in nearly every package.

B. RQ2: Tooling Sources of Reproducibility Issues and Fixes

Fortunately, the situation is not as bleak as it might
seem when analyzing the sources of reproducibility issues.
In Figure 3, we report that even in package ecosystems
with low package reproducibility as as is, most packages
are reproducible if considering package manager toolchain
configurations or small patches to package manager tooling.
For example, just by changing the configuration options of the
package manager toolchain, Maven and RubyGems increase
from 2.1% to 92.6% and from 0% to 97.1% reproducible
package builds, respectively. As we discuss in Section IV-B2,
our analysis led us to discover small changes that can be
made to PyPI’s package manager that increase reproducible
package builds from 12.2% to 98%. Thus, what might be
perceived as very low package build reproducibility is, in
fact, quite promising. In Section IV-B1, Section IV-B2, and
Section IV-B3 we detail how changing the build configuration
and tooling drastically increases the reproducibility of package
builds, and how some causes of unreproducibility cannot be
easily solved, contributing to answer RQ2.

1) Reproducible with Infrastructure Configuration: We ap-
plied solutions proposed by the selected ecosystems to study

how infrastructure configuration affects the build reproducibil-
ity. By reviewing the reprotest logs, we found that times-
tamps and permission masks are the largest contributing fac-
tors (see Figure 4). In particular, timestamp metadata leads to
unreproducible builds for 92.4% of Maven, 87.77% of PyPI,
and 97.1% of RubyGems packages.

All five studied ecosystems use archives to distribute pack-
age artifacts. However, Cargo and npm drastically reduces (ac-
tually removes in our sample) the presence of reproducibility
issues caused by hard-coding fixed values in their package
managers’ code. The other three ecosystems use a different
approach: Because they use the current time or file timestamps
unless developers set a specific build time by configuring the
package manager, using the package manager as-is makes
builds unreproducible.

The packaging infrastructure can be configured to help
remove sensitivity to timestamp metadata. For example, the
PyPI and RubyGems packaging infrastructure can set the
build time using the SOURCE_DATE_EPOCH environment vari-
able. However, the variable value must be communicated along
with the package, e.g., via a .buildinfo file [39]. In contrast,
Maven allows the developer to use the outputTimestamp POM
specification file property to set a fixed timestamp in the
package metadata. Unfortunately, this solution suffers from
two major limitations: (1) the developer has to set it in the
pom.xml file – it is not by default;7 and (2) Maven plugins
have to implement this feature to make it effective.

In general, the studied package managers do not require
or suggest that configuration of the build infrastructure is
necessary. Among the three ecosystems, only Maven’s docu-
mentation clearly explains how to achieve build reproducibil-
ity. This lack of information for other ecosystems, combined
with the challenges of communicating build parameters (e.g.,
SOURCE_DATE_EPOCH), is likely a large factor for unrepro-
ducible package builds.

Finally, PyPI package build reproducibility is largely im-
pacted by both timestamp and umask values. Umask values
cannot be addressed via packaging infrastructure configuration
and are discussed in Section IV-B2. That said, different
package manager tools operate differently. Recall Section II,
pip is a frontend to deal with multiple building backends. It
refers to the specification file to invoke the right backends.
We found that the flit and hatch building backends fix the
archive metadata similar to Cargo and npm. Since 12% of
PyPI builds use either flit or hatch, they are reproducible
as is. However, most of the remainder of the PyPI ecosystem
suffers from archive metadata reproducibility issues.

7During the preparation of the camera-ready version of this paper, an
automation was proposed and implemented in Maven 4.0.0-beta (issues.a
pache.org/jira/browse/MNG-8258) that sets a default timestamp. Packages
that only have this timestamp reproducibility issue should build reproducibly
in the future.

Takeaway: Configuring packaging infrastructure to control
timestamp metadata makes over 90% of Maven and 97% of
RubyGems package builds reproducible.

2) Reproducible with Patched Tooling: While controlling
timestamp metadata via infrastructure configuration has a
significant impact on package build reproducibility, it does
not address all issues. In this subsection, we investigate how
patching the packaging tools can address umask and other
contributing factors. As shown in Figure 4, umask is also a
large contributing factor for PyPI. As for timestamp repro-
ducibility issues, most of the issues caused by umask affect
the archive metadata. The source of much of the remaining
unreproducibility are dynamic metadata.

Recall from Section II that dynamic metadata allows Ruby-
Gems and PyPI developers to define a metadata value in the
specification file programmatically. Developers define dynamic
metadata using the ecosystem’s language or specific properties
offered by package managers. The value is then interpolated
within the build environment. We identify five root causes
in the PyPI and RubyGems package managers: file ordering,
locales, umask, time, and timezone. Examples of these causes
can be found in our replication package.

The code creating dynamic metadata is defined in pack-
ages. Contacting package maintainers to modify their code
to produce reproducible package builds would be very time-
consuming and may not result in changes to the build specifi-
cations. For example, a recent interview study of practitioners
working on reproducible builds found that project maintainers
are not always receptive to making changes simply to make a
build reproducible [10]. We propose patching packaging tools
to enable reproducible package builds. The patched tools can
be found in the replication package. Our key insight is that
packaging tools can set default environments and post-process
dynamic metadata to ensure build determinism.

As shown in Figure 3, these patches have a drastic impact on
the package build reproducibility of PyPI, increasing the per-
centage of reproducible builds from 12% to 98%. As suggested
by the reprotest variation data shown in Figure 4, most of
this increase was the result of addressing umask determinism.
RubyGems also received a meaningful impact, increasing the
percentage of reproducible builds from 97% to 99.9%. While
this increase is small, the ability to achieve almost 100%
reproducible package builds is extremely valuable for the
ecosystem.

Takeaway: Package managers can set default environments
and post-process dynamic metadata to provide reproducible
package builds without changing code in individual pack-
ages.

3) Unreproducible Packages: As shown in Figure 3, not
all package builds could be made reproducible by configuring
package infrastructure or patching the package managers.
We randomly sampled some of these packages to investigate

causes of reproducibility issues.
Recall that PyPI has multiple backends to produce a

package, and these backends use either a setup.py or a
pyproject.toml specification file to interface with the build
process. Developers using setup.py can run arbitrary code
during the build. Reproducibility issues caused by this code
are not easily addressable. For example, statements using the
os.path.expanduser function make the build unreproducible
because of the home variable. This kind of actions can hardly
be managed by the build infrastructure because: (i) the infras-
tructure cannot alter external libraries, such as the os library
in our case, and (ii) the package’s developer set up an ad-hoc
approach, interfering with it can easily break the build process.
In contrast, using pyproject.toml should address many of
the problems caused by dynamic metadata. However, some
build backends, e.g., poetry, allow developers to call pre-build
scripts, declaring them inside of the specification file. These
scripts may cause unreproducible builds and cannot be easily
patched at the tooling level. We found that 1.6% of the builds
for PyPI in our results are affected by these kinds of issues.

RubyGems is subject to similar issues. The cause of
unreproducible builds is the run of arbitrary commands
launched through the specification file. For example, the
package version tag can be programmatically set in the spec-
ification file by using Ruby Time functions — e.g., VERSION
= "0.0.#{Time.now.to_i}". The Ruby Time library does not
use the SOURCE_DATE_EPOCH variable, making time a repro-
ducibility issue. This event shows how this kind of behavior
can be dangerous for reproducibility and how it can hardly be
addressed through the build infrastructure.

Maven’s challenges are different. Section IV-B1 discussed
that plugins need to support the outputTimestamp property
declared in the POM.xml specification file. Older plugin
versions and custom plugins may not use it. This requires a
developer to carefully inspect the plugin used in the package
build pipeline since, depending on the pipeline design, a single
plugin can impact the build reproducibility [40]. We found
that 7% of the builds for Maven are affected by these kinds
of issues.

C. RQ3: Native Code Extensions

As discussed in Section II, PyPI, npm, and RubyGems
allow packages to include native code. This subsection studies
how the inclusion of native code impacts the reproducibility
of package builds (RQ2). Considering the original dataset
where packages are not distinguished based on native code
extensions, the incidence of native code extensions is 9.96%
for PyPI, 9.85% for RubyGems, and just 3.24% for npm. Due
to the low relative infrequency of native code in these package
ecosystems, as discussed in Section III-B, we created an
additional dataset that exclusively contain packages with native
code. Our comparison uses infrastructure configuration (Sec-
tion IV-B1) and our packaging tool patches (Section IV-B2)
to isolate the impact of native code extensions.

PyPI npm RubyGems

w/ NCEs w/o NCEs w/ NCEs w/o NCEs w/ NCEs w/o NCEs
0%

25%

50%

75%

100%

%
 B

ui
ld

s

Reproducible Non Reproducible

Fig. 5. Reproducible package builds that take into account extensions for
native code extensions (NCEs). In order to concentrate on reproducibility
issues caused by native code extensions, these findings are obtained using
patched package managers.

Overall we find that, although native code extensions are
a more or less common feature in interpreted languages,
reproducible builds appear to be unaffected by them.

1) Quantitative Results: Comparing the reproducibility of
package builds of the dataset without native code extensions
to the dataset with native code extensions, in Figure 5, we
find that the difference between the two datasets negligible:
PyPI has 98.43% reproducible builds with native code and
99.28% without, npm has 100% with native code and 100%
without, and RubyGems has 99.94% with native code and
98.87% without.

Unreproducible builds are caused by the same repro-
ducibility issues discussed in Section IV-B3. In the end, npm,
PyPI, and RubyGems show the same reproducibility issues
independent of the presence of native code extensions. Using
patched package managers solves those issues as we saw in
the previous section. We hence conclude that native code
extensions do not impact the build’s reproducibility.

2) Causes of Unreproducibility: Since C code has multi-
ple reproducibility issues that can affect the build process,
we originally expected native code extensions to affect the
reproducibility of the package build. Since we do not have any
specific pointer to the causes of reproducibility in the analyzed
ecosystems, we systematically searched for common repro-
ducibility issues in the C code in 1000 packages randomly
picked in the sample, e.g., time-dependent macros. We did not
find any occurrence of such issues from this search. Note that
our analysis used the same build configuration and tools. If no
assumptions are made regarding system configurations, such as
compiler specs, there will be fewer reproducible builds. Build
specification files (e.g., .buildinfo files) are not incorporated
into the build processes of any of these three ecosystems.

In PyPI, the Meson backend is largely adopted to compile
native code extensions. Meson states to achieve reproducible
builds8 by addressing multiple issues, e.g., rpaths. In npm, the
gyp module is similarly utilized for managing native code.
This additional layer in compilation can be the reason behind
the high number of reproducible builds. However, it does

8https://github.com/mesonbuild/meson

Cargo

Go

Maven

0% 25% 50% 75% 100%
% Builds

E
co

sy
st

em

Reproducible As Is Reproducible w/ Infr. Conf. Non Reproducible Ext. Causes

Fig. 6. Reproducible Builds obtained by compilation. We used unpatched
package managers since the compilation process requires different configura-
tions w.r.t. packaging.

not justify the almost complete reproducibility of builds. In
RubyGems the system default compiler is directly invoked to
compile extensions. Even without additional layer, there is a
high number of reproducible builds.

It is difficult to completely understand the reasons why
native code extensions in builds rarely affect reproducibility.
However, it is possible to connect it to two main factors.
First, native code extensions usually deal with specific tasks
with a limited amount of code [41], reducing the chances
of an reproducibility issue. Second, native code extensions
require more expertise to be set up and properly work than
regular code. Developers with higher skills in programming
are possibly more aware of and invested in reproducible
builds [25], [10].

Takeaway: Reproducible builds are not affected by the
presence of native code extensions in the package. This
means that reproducible builds could be easily achieved by
solving issues related to the system configurations, such as
the compiler specs.

D. RQ4: Reproducible Builds and Compilation

Some packaging ecosystems allow for packaging dependen-
cies together with the developed code in a binary: The depen-
dencies are inserted into the build artifact during the build
process. We limited this analysis to Cargo, Go, and Maven,
as they are the only ecosystems implementing compilation in
their official package managers.

1) Quantitative Results: We find, as shown in Figure 6,
that Cargo, Go, and Maven builds are still reproducible after
the dependencies have been inserted into a reproducible appli-
cation. That is, compiling dependencies into the binary in the
build process does not introduce reproducibility issues. Cargo,
Go, and Maven builds are almost completely reproducible,
with 100%, 100%, and 92.5%, respectively. For Maven, the
results were obtained using the package manager with the
outputTimestamp property configured.

2) Causes of Unreproducibility: For Cargo and Go we
randomly sampled 1000 packages to understand which are
the causes of unreproducible builds, and searched for common
reproducibility issues in those packages’ code. For Maven, we
checked whether packages with unreproducible builds were

also unreproducible against packaging to understand if any
specific reproducibility issue is caused by the compilation
process. All three ecosystems have initiatives working towards
reproducible builds that can explain the high rates of repro-
ducibility we find.

Cargo developers explicitly label reproducibility issues in
their GitHub repository9 and have addressed several issues in
the past, such as stripping absolute paths – a well-known issue
for compilation. This deliberate effort towards reproducibility
made rustc (the Rust compiler used by Cargo) almost deter-
ministic, apart from system specifications such as the linker
and compiler versions.

Also Go takes care to remove potential causes of repro-
ducibility issues during compilation, for example, by trimming
absolute paths and by removing build identifiers. The many
issues and community discussions on reproducible builds
within Go highlight the interest of this community.10 More-
over, in order to facilitate reproducible builds across different
systems, Go strives to establish reproducible builds for the
toolchain [42].

Javac (the Java compiler) used in Maven is known to be de-
terministic [43]. Our results confirm this. The reproducibility
issues in Maven packages are caused by archive metadata
since the compiled Java classes are inserted into a Jar archive,
as happens for packaging. Maven builds are affected by the
same reproducibility issues discussed in Section IV-B1, affect-
ing archive metadata and not the compiled artifacts. As for
packaging, configuring the build infrastructure addresses most
of the unreproducible builds. The remaining unreproducible
builds are caused by the same reproducibility issues discussed
in Section IV-B3.

Takeaway: Build reproducibility is unaffected by compila-
tion. Build infrastructures do not introduce reproducibility
issues thanks to the community efforts working on them.

V. DISCUSSION AND RECOMMENDATIONS

Reproducible builds are a notoriously hard problem. Few
developers pay active attention to reproducible builds and
those that do usually face a laborious, tedious, and incremental
process [10]. With software being usually constructed using
many reusable components, ensuring reproducible builds for
components is an important building block for the commu-
nity to move toward reproducible builds for applications and
infrastructure.

Our results can be interpreted in two ways:

• On the negative side, given that components in many
ecosystems are distributed as archives of source code,
often with little build-time processing, it is shocking/frus-
trating how few components are packaged in a repro-

9https://github.com/rust-lang/rust/labels/A-reproducibility
10https://github.com/golang/go/issues?q=is:issue+is:open+"reproducible+

builds"

ducible way. Almost no RubyGems, PyPI and Maven
packages are reproducible.

• On the positive side, most reproducibility issues are
rooted in the packaging tools of the ecosystem and
can be addressed with small changes to the default
settings of those tools. In contrast to usual discussions
of reproducible builds for applications, only very few
components in our study had reproducibility issues that
cannot easily be addressed, even for components with
native code extensions. This signals that reproducible
builds for components are within easy reach.

Recommendations to practitioners. After patching packaging
tools, the remaining unreproducible builds in our study were
caused by ad-hoc solutions applied by developers. We recom-
mend that developers avoid extending specification files with
custom scripts, even if the ecosystem permits such behavior.
Relying on custom configurations can easily compromise
reproducibility, as we have seen (Section IV-B3).
Recommendations to maintainers of packaging tools. We
make three recommendations: (1) secure defaults, (2) build
information, and (3) warning when unreproducible. First, in
line with past work on usable security [44], [45], [46], we
emphasize the importance of secure defaults – in this case,
defaults that eliminate common reproducibility issues. Reach-
ing every single developer is inefficient and hopeless, but with
simple changes to the packaging infrastructures most com-
ponents will be packaged reproducibly without any manual
effort from developers. Second, packaging tools should auto-
matically record information that enables build reproducibility.
This includes the used compiler and version, the exact versions
of build dependencies, and build options. Third, packaging
tools should issue warnings if packaging steps rely on unde-
clared infrastructure (e.g., JavaScript transpilers installed on
the local computer but not declared as a dependency) and
nondeterminism in builds (e.g., by explicitly running reprotest-
like experiments during the build).
Recommendations to researchers. Most of the findings of
this paper enable further research. Our aim was to provide
a comprehensive study of reproducible builds in different
ecosystems. While easily achievable, reproducible builds can
be compromised by additional issues that require more ex-
amination. Further research may also consider developing
methods that recreate build information for published packages
as a stop-gap solution until package maintainers include this
information by default. Recently, AROMA [26] proposed such
an approach for Java packages in Maven.

VI. CONCLUSION

Overall, our study results make us optimistic about the future
of reproducible builds. For software components, reproducible
builds are much closer than we expected, and a few small
changes to infrastructure tools have a large lever to get the
community to a future where most packages are fully repro-
ducible. Barriers to ensuring that nearly all published com-
ponents are exactly reproducible from the public source code

are minimal. We can focus our attention more on other last-
mile issues, such as linking published components on package
managers to specific commits of their publicly available source
code, ensuring the provenance of code changes to the public
source code [47], and ensuring that packages are consumed
in a reproducible manner when building applications (e.g.,
locking floating dependencies) [48].

ACKNOWLEDGMENTS

Solarin’s work was supported through an NSF REU site
(#2150217). Miller’s and Kästner’s work was supported in part
by the National Science Foundation (#2206859). Tystahl’s,
Enck’s, and Kapravelos’s work was supported in part by the
National Science Foundation (#2207008).

REFERENCES

[1] K. Thompson, “Reflections on trusting trust,” Commun. ACM, pp. 761—
-763, 1984.

[2] T. Herr, W. Loomis, E. Schroeder, S. Scott, S. Handler, and T. Zuo,
Broken trust: lessons from Sunburst. Washington, DC: Atlantic Council,
2021.

[3] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 2023 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 1509–1526. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010

[4] C. Lamb and S. Zacchiroli, “Reproducible builds: Increasing the in-
tegrity of software supply chains,” IEEE Software, vol. 39, no. 2, pp.
62–70, Mar. 2022.

[5] M. Perry, “Deterministic builds part two: Technical details,” https://bl
og.torproject.org/deterministic-builds-part-two-technical-details/, Oct.
2013.

[6] devrandom, “Gitian: a secure software distribution method,” https://gith
ub.com/devrandom/gitian-builder, 2011.

[7] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive Software-
Update transparency via collectively signed skipchains and verified
builds,” in Proceedings of the 26th USENIX Security Symposium
(Sec’17), Aug. 2017, pp. 1271–1287.

[8] D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta,
“Lastpymile: identifying the discrepancy between sources and
packages,” ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 780–792. [Online]. Available:
https://doi.org/10.1145/3468264.3468592

[9] H. Levsen et al., “Reproducible Debian overview,” https://tests.reprod
ucible-builds.org/debian/reproducible.html, 2023.

[10] M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like
flossing your teeth: On the Importance and Challenges of Reproducible
Builds for Software Supply Chain Security,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), May 2023, pp. 1527–1544.

[11] C. Cimpanu, “Backdoored python library caught stealing ssh creden-
tials,” https://www.bleepingcomputer.com/news/security/backdoored-p
ython-library-caught-stealing-ssh-credentials/, May 2018.

[12] D. Goodin, “What we know about the xz utils backdoor that almost
infected the world,” ars Technica, Apr. 2024, https://arstechnica.com/se
curity/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almos
t-infected-the-world/.

[13] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, “Investigating the
reproducibility of npm packages.” Institute of Electrical and Electronics
Engineers Inc., 9 2020, pp. 677–681.

[14] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how
to make breaking changes: Policies and practices in 18 open source
software ecosystems,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3447245

[15] K. Manikas, “Revisiting software ecosystems research: A longitudinal
literature study,” Journal of Systems and Software, vol. 117, pp.
84–103, 2016. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S0164121216000406

[16] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, pp. 381–416, 2 2019.

[17] H. Levsen, C. Lamb, and M. Rizzolo, “reprotest,” https://salsa.
debian.org/reproducible-builds/reprotest, 2016. [Online]. Available:
https://salsa.debian.org/reproducible-builds/reprotest

[18] G. Benedetti, O. Solarin, C. Miller, G. Tystahl, W. Enck, C. Kästner,
A. Kapravelos, A. Merlo, and L. Verderame, “Replication package: An
empirical study on reproducible packaging in open-source ecosystems.”
[Online]. Available: https://osf.io/vmnsh/?view_only=c8e26e10cbf145
839bfa6820de76792d

[19] I. van den Berk, S. Jansen, and L. Luinenburg, “Software ecosystems:
a software ecosystem strategy assessment model,” in Proceedings
of the Fourth European Conference on Software Architecture:
Companion Volume, ser. ECSA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 127–134. [Online]. Available:
https://doi.org/10.1145/1842752.1842781

[20] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study
of dependency management and its security implications,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1513–1531. [Online].
Available: https://doi.org/10.1145/3372297.3417232

[21] reproducible-builds.org, “SOURCE_DATE_EPOCH standard,” https://re
producible-builds.org/specs/source-date-epoch/, 2020.

[22] ——, “diffoscope in-depth comparison of files, archives, and
directories.” https://diffoscope.org/, 2014. [Online]. Available: https:
//diffoscope.org/

[23] Y. Shi, M. Wen, F. R. Cogo, B. Chen, and Z. M. Jiang, “An
Experience Report on Producing Verifiable Builds for Large-Scale
Commercial Systems,” IEEE Transactions on Software Engineering,
vol. 48, no. 9, pp. 3361–3377, Sep. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9465650/

[24] X. De Carné De Carnavalet and M. Mannan, “Challenges and
implications of verifiable builds for security-critical open-source
software,” in Proceedings of the 30th Annual Computer Security
Applications Conference. New Orleans Louisiana USA: ACM, Dec.
2014, pp. 16–25. [Online]. Available: https://dl.acm.org/doi/10.1145/2
664243.2664288

[25] S. Butler, J. Gamalielsson, B. Lundell, C. Brax, A. Mattsson,
T. Gustavsson, J. Feist, B. Kvarnström, and E. Lönroth, “On business
adoption and use of reproducible builds for open and closed source
software,” Software Quality Journal, vol. 31, no. 3, pp. 687–719, Sep.
2023. [Online]. Available: https://link.springer.com/10.1007/s11219-0
22-09607-z

[26] M. Keshani, T.-G. Velican, G. Bot, and S. Proksch, “Aroma: Automatic
reproduction of maven artifacts,” Proc. ACM Softw. Eng., vol. 1, no.
FSE, jul 2024. [Online]. Available: https://doi.org/10.1145/3643764

[27] G. A. Randrianaina, D. E. Khelladi, O. Zendra, and M. Acher,
“Options matter: Documenting and fixing non-reproducible builds in
highly-configurable systems,” in Proceedings of the 21st International
Conference on Mining Software Repositories, ser. MSR ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
654–664. [Online]. Available: https://doi.org/10.1145/3643991.3644913

[28] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, “Automated localization
for unreproducible builds,” in Proceedings of the 40th International
Conference on Software Engineering. Gothenburg Sweden: ACM,
May 2018, pp. 71–81. [Online]. Available: https://dl.acm.org/doi/10.11
45/3180155.3180224

[29] Z. Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, “Root Cause
Localization for Unreproducible Builds via Causality Analysis Over
System Call Tracing,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). San Diego,
CA, USA: IEEE, Nov. 2019, pp. 527–538. [Online]. Available:
https://ieeexplore.ieee.org/document/8952375/

[30] Z. Ren, S. Sun, J. Xuan, X. Li, Z. Zhou, and H. Jiang,
“Automated patching for unreproducible builds,” in Proceedings of the
44th International Conference on Software Engineering. Pittsburgh
Pennsylvania: ACM, May 2022, pp. 200–211. [Online]. Available:
https://dl.acm.org/doi/10.1145/3510003.3510102

[31] A. Decan, T. Mens, M. Claes, and P. Grosjean, “On the Development
and Distribution of R Packages: An Empirical Analysis of the R
Ecosystem,” in Proceedings of the 2015 European Conference on
Software Architecture Workshops. Dubrovnik Cavtat Croatia: ACM,

Sep. 2015, pp. 1–6. [Online]. Available: https://dl.acm.org/doi/10.1145
/2797433.2797476

[32] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in OSS packaging ecosystems,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). Klagenfurt, Austria: IEEE, Feb. 2017, pp.
2–12. [Online]. Available: http://ieeexplore.ieee.org/document/7884604/

[33] ——, “On the topology of package dependency networks: a comparison
of three programming language ecosystems,” in Proccedings of the
10th European Conference on Software Architecture Workshops.
Copenhagen Denmark: ACM, Nov. 2016, pp. 1–4. [Online]. Available:
https://dl.acm.org/doi/10.1145/2993412.3003382

[34] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When GitHub
Meets CRAN: An Analysis of Inter-Repository Package Dependency
Problems,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). Suita: IEEE, Mar.
2016, pp. 493–504. [Online]. Available: http://ieeexplore.ieee.org/docu
ment/7476669/

[35] B. Flyvbjerg, “Five misunderstandings about case-study research,”
Qualitative Inquiry, vol. 12, no. 2, pp. 219–245, 2006. [Online].
Available: https://doi.org/10.1177/1077800405284363

[36] J. F. Shobe, M. Y. Karim, M. B. Zanjani, and H. Kagdi, “On mapping
releases to commits in open source systems,” in Proceedings of the 22nd
International Conference on Program Comprehension, ser. ICPC 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
68–71. [Online]. Available: https://doi.org/10.1145/2597008.2597792

[37] G. Canfora, L. Cerulo, and M. Di Penta, “Identifying changed source
code lines from version repositories,” in Fourth International Workshop
on Mining Software Repositories (MSR’07:ICSE Workshops 2007),
2007, pp. 14–14.

[38] H. Levsen, “Reproducible builds - rebuilding what is distributed
from ftp.debian.org,” MiniDebConf Toulouse, Nov. 2024. [Online].
Available: https://toulouse2024.mini.debconf.org/talks/4-reproducible-b
uilds-rebuilding-what-is-distributed-from-ftpdebianorg/

[39] Debian, “Buildinfofiles,” https://wiki.debian.org/ReproducibleBuilds/B
uildinfoFiles, 2018. [Online]. Available: https://wiki.debian.org/Reprod
ucibleBuilds/BuildinfoFiles

[40] A. Maven, “Configuring for reproducible builds,” https://maven.apache
.org/guides/mini/guide-reproducible-builds.html, 2024.

[41] R. Monat, A. Ouadjaout, and A. Miné, “A Multilanguage Static
Analysis of Python Programs with Native C Extensions,” in Static
Analysis, C. Drăgoi, S. Mukherjee, and K. Namjoshi, Eds. Cham:
Springer International Publishing, 2021, vol. 12913, pp. 323–345,
series Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-88806-0_16

[42] R. Cox, “Perfectly reproducible, verified go toolchains,” https://go.dev
/blog/rebuild, 2023.

[43] Compiler-dev, “Javac determinism,” https://mail.openjdk.org/pipermail
/compiler-dev/2023-December/025215.html, 2023.

[44] B. Gates, “Memo from bill gates,” https://news.microsoft.com/2012/01
/11/memo-from-bill-gates/, 2012.

[45] M. Stanek, “Secure by default - the case of tls,” 2017.
[46] P. Gorski, L. Lo Iacono, S. Wiefling, and S. Möller, “Warn if secure

or how to deal with security by default in software development?” 08
2018.

[47] G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” Empirical Software
Engineering, vol. 25, no. 4, pp. 2930–2959, Jul. 2020. [Online].
Available: https://link.springer.com/10.1007/s10664-020-09828-5

[48] A. Gaurav, “Enable repeatable package restores using a lock file,” https:
//devblogs.microsoft.com/nuget/enable-repeatable-package-restores-usi
ng-a-lock-file/, 2018.

