
CMSC 451: Network Flows

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Sections 7.1&7.2 of Algorithm Design by Kleinberg & Tardos.



Network Flows

• Our 4th major algorithm design technique
(greedy, divide-and-conquer, and dynamic programming are
the others).

• A little different than the others: we’ll see an algorithm for
one problem (and minor variants) that is so useful that we
can apply to to many practical problems.

• Called network flow.



Network flow problem, e.g.

10 5

2

3

Suppose you want to ship natural gas 
from Alaska to Texas.

There are pipes, each with a capacity.

How can you send as much gas as 
possible?

3

7

8

7

1

3 4
8

1012

10



Flow Network

A flow network is a connected, directed graph G = (V , E ).

• Each edge e has a non-negative, integer capacity ce .

• A single source s ∈ V .

• A single sink t ∈ V .

• No edge enters the source and no edge leaves the sink.

s

u

v

t

x

w

20

10

30
10

10

30

10

20



Assumptions

To repeat, we make these assumptions about the network:

1 Capacities are integers.

2 Every node has one edge adjacent to it.

3 No edge enters the source and no edge leaves the sink.

These assumptions can all be removed.



Flow

Def. An s-t flow is a function f : E → R≥0 that assigns a real
number to each edge.

Intuitively, f (e) is the amount of material carried on the edge e.

s

u

v

t

x

w

20

10

30
20

5

30

10

20

10

10

5

15

15

5

10



Flow constraints

Constraints on f :

1 0 ≤ f (e) ≤ ce for each edge e. (capacity constraints)

2 For each node v except s and t, we have:∑
e into v

f (e) =
∑

e leaving v

f (e) .

(balance constraints: whatever flows in, must flow out).

v

10

3

2

7

4



Notation

The value of flow f is:

v(f ) =
∑

e out of s

f (e)

This is the amount of material that s is able to send out.

Notation:

• f in(v) =
∑

e into v f (e)

• f out(v) =
∑

e leaving v f (e)

Balance constraints becomes: f in(v) = f out(v) for all v 6∈ {s, t}



Maximum Flow Problem

Definition (Value)

The value v(f ) of a flow f is f out(s).

That is: it is the amount of material that leaves s.

Maximum Flow Problem

Given a flow network G , find a flow f of maximum possible value.



A Greedy Start

A Greedy Start:

1 Suppose we let f (e) = 0 for all edges (no flow anywhere).

2 Choose some s − t path and “push” flow along it up to the
capacities. Repeat.

3 When we get stuck, we can erase some flow along certain
edges.

How do we make this more precise?



Example

s

u

v

t

20 / 20

10

20 / 30

20 / 20

10

After 1 path, we've allocated 20 units

s

u

v

t

20 / 20

10

20 / 30

20 / 20

10

Want to send the blue path

10



Residual Graph

We define a residual graph Gf . Gf depends on some flow f :

1 Gf contains the same nodes as G .

2 Forward edges: For each edge e = (u, v) of G for which
f (e) < ce , include an edge e ′ = (u, v) in Gf with capacity
ce − f (e).

3 Backward edges: For each edge e = (u, v) in G with
f (e) > 0, we include an edge e ′ = (v , u) in Gf with capacity
f (e).



Residual Graph, e.g.

• If f (e) < ce , add edge e to Gf with capacity ce − f (e).
(remaining capacity left)

• If f (u, v) > 0, add reverse edge (v , u) with capacity f (e).
(can erase up to f (e) capacity)

s

u

v

t

20 / 20

10

20 / 30

20 / 20

10

With Flow f

s

u

v

t

20

10

20

20

10

Residual Graph Gf

10



Augmenting Paths

• Let P be an s − t path in the residual graph Gf .

• Let bottleneck(P, f ) be the smallest capacity in Gf on any
edge of P.

• If bottleneck(P, f ) > 0 then we can increase the flow by
sending bottleneck(P, f ) along the path P.



Augmenting Paths, 2

If bottleneck(P, f ) > 0 then we can increase the flow by sending
bottleneck(P, f ) along the path P:

augment(f, P):
b = bottleneck(P,f)
For each edge (u,v) ∈ P:

If e = (u,v) is a forward edge:
Increase f(e) in G by b //add some flow

Else:
e’ = (v,u)
Decrease f(e’) in G by b //erase some flow

EndIf
EndFor
Return f



Ford-Fulkerson Algorithm

MaxFlow(G):
// initialize:
Set f[e] = 0 for all e in G

// while there is an s-t path in Gf:
While P = FindPath(s,t, Residual(G,f)) != None:

f = augment(f, P)
UpdateResidual(G, f)

EndWhile
Return f



After augment, we still have a flow

After f ′ = augment(P, f ), we still have a flow:

Capacity constraints: Let e be an edge on P:

• if e is forward edge, it has capacity ce − f (e). Therefore,

f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + ce − f (e) ≤ ce

• if e is a backward edge, it has capacity f (e). Therefore,

f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0



Still have flow, 2

Balance constraints: An s-t path in Gf corresponds to some set
of edges in G :

s t
+b +b -b -b +b

In other pictures,

v

10

3 + bottle
neck(P,f)

7 + bottleneck(P,f)6

v

10 - bottleneck(P,f)

3 + bottle
neck(P,f)

6

7



Running Time

1 At every step, the flow values f (e) are integers.

Start with
ints and always add or subtract ints

2 At every step we increase the amount of flow v(f ) sent by at
least 1 unit.

3 We can never send more than C :=
∑

e leaving s ce .

Theorem

The Ford-Fulkerson algorithm terminates in C iterations of the
While loop.



Running Time

1 At every step, the flow values f (e) are integers. Start with
ints and always add or subtract ints

2 At every step we increase the amount of flow v(f ) sent by at
least 1 unit.

3 We can never send more than C :=
∑

e leaving s ce .

Theorem

The Ford-Fulkerson algorithm terminates in C iterations of the
While loop.



Time in the While loop

1 If G has m edges, Gf has ≤ 2m edges.

2 Can find an s − t path in Gf in time O(m + n) time with DFS
or BFS.

3 Since m ≥ n/2 (every node is adjacent to some edge),
O(m + n) = O(m).

Theorem

The Ford-Fulkerson algorithm runs in O(mC ) time.



Caveats, etc.

Note this is pseudo-polynomial because it depends on the size of
the integers in the input.

You can remove this with slightly different algorithms. E.g.:

• O(nm2): Edmonds-Karp algorithm (use BFS to find the
augmenting path)

• O(m2 log C ) (see section 7.3), or

• O(n2m) or O(n3) (see section 7.4).



Proof of correctness

How do we know the flow is
maximum?



Cuts and Cut Capacity

s

t

A
B = V \ A

s-t cut

10

2

3

12

9

capacity(A,B) = 25

Definition

The capacity(A, B) of an s-t cut (A, B) is the sum of the
capacities of edges leaving A.



A Cut Theorem

Theorem

Let f be an s-t flow and (A, B) be an s-t cut.
Then v(f ) = f out(A)− f in(A).

s

t

A B

s-t cut (A,B)

11

6

4

8

7



Another cut theorem

Theorem

Let f be any s-t flow and (A, B) be any s-t cut.
Then v(f ) ≤ capacity(A, B).

Proof.

v(f ) = f out(A)− f in(A) prev. thm

≤ f out(A) f in(A) is ≥ 0

=
∑

e leaving A

f (e) by definition

≤
∑

e leaving A

ce by capacity constraints

= capacity(A, B) by definition



Cuts Constrain Flows

This theorem:

Theorem

Let f be any s-t flow and (A, B) be any s-t cut.
Then v(f ) ≤ capacity(A, B).

Says that any cut is bigger than any flow.

Therefore, cuts constrain flows. The minimum capacity cut
constrains the maximum flow the most.

In fact, the capacity of the minimum cut always equals the
maximum flow value.



Max-Flow = Min-Cut

capacities of cuts

values of flows

minimum capacity of a cut = 
maximum value of a flow



Max-Flow = Min-Cut, 2

Let f ∗ be the flow returned by our algorithm.
Look at Gf ∗ but define a cut in G :

s

t

Cut = (A*, B*)

A* = nodes 
reachable from s in 
residual graph Gf*

Blue edges must be saturated.
Red edges must have 0 flow =⇒ v(f ∗) = capacity(A∗, B∗).



Max-Flow = Min-Cut, 3

s

t

Cut = (A*, B*)

A* = nodes 
reachable from s in 
residual graph Gf*

X

X

• (A∗, B∗) is an s-t cut because there is no path from s to t in
the residual graph Gf ∗ .

• Edges (u, v) from A∗ to B∗ must be saturated — otherwise
there would be a forward edge (u, v) in Gf ∗ and v would be
part of A∗.

• Edges (v , u) from B∗ to A∗ must be empty — otherwise there
would be a backedge (u, v) in Gf ∗ and v would be part of A∗.



Max-Flow = Min-Cut, 4

Therefore,

• v(f ∗) = capacity(A∗, B∗).

• No flow can have value bigger than capacity(A∗, B∗).

• So, f ∗ must be an maximum flow.

• And (A∗, B∗) has to be a minimum-capacity cut.

Theorem (Max-flow = Min-cut)

The value of the maximum flow in any flow graph is equal to the
capacity of the minimum cut.



Finding the Min-capacity Cut

Our proof that maximum flow = minimum cut can be used to
actually find the minimum capacity cut:

1 Find the maximum flow f ∗.

2 Construct the residual graph Gf ∗ for f ∗.

3 Do a BFS to find the nodes reachable from s in Gf ∗ . Let the
set of these nodes be called A∗.

4 Let B∗ be all other nodes.

5 Return (A∗, B∗) as the minimum capacity cut.



To Summarize

Summary:

• Ford-Fulkerson algorithm can find max flow in O(mC ) time.

• Algorithm idea: Send flow along some path with capacity
left, possibly “erasing” some flow we’ve already sent. Use
residual graph to keep track of remaining capacities and flow
we’ve already sent.

• We can eliminate C to get a true polynomial algorithm by
using BFS to find our augmenting paths.

• All cuts have capacity ≥ the value of all flows.

• Know the flow is maximum because its value equals the
capacity of some cut.


	Network Flows
	Network Flow Introduction
	Ford-Fulkerson Algorithm
	Running Time
	Proof of correctness


