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Introduction Framework Structure (Continued)

e Must generate high-fidelity trajectory and intention
predictions to ensure safe and efficient HRC.
e Previous works
e Separated intention and trajectory prediction
e Rarely used adaptation
e We propose a framework that enables:
(1) Fast HRC integration

We propose a multitask model, with a regression section for trajectory prediction and a classification section for
intention prediction. The training loss is a weighted sum of MSE for regression and cross-entropy for classification.
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Fig 1. The structure of our pipeline S

Fig 5. The neural network structure of our multi-task model.

Framework Structure
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Fig 6. The general framework of the online adaptation
system. At every time step, the ground truth is received
and the error calculated. The encoder is then updated
using the error.
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Fig 7. The detailed procedure for online adaptation.

7. Take Glue Stick

10 8. Put Glue on Baymax
9. Stick Baymax on the
Card

6 7 1 2 Write “Happy Birthday!”
10. Take the Black Sharpie

; 11. Write Words
12. Take Back

Fig 2. The and-or graph representation of our task. Each
arrow pointing from node A to B indicates that A must occur
before B.

Experiments

e Collected data for the 12 pre-defined actions, Actor A performed each action 50 times (80% offline training, 20% offline
validation), Actor B 10 times (100% online testing).

 Implemented 1-step, 2-step, and 5-step adaptation

e Compared performances of the single-task and the multi-task models
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