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Abstract

Strategic interactions can be represented more concisely, and
analyzed and solved more efficiently, if we are aware of the
symmetries within the multiagent system. Symmetries also
have conceptual implications, for example for equilibrium
selection. We study the computational complexity of identi-
fying and using symmetries. Using the classical framework
of normal-form games, we consider game symmetries that
can be across some or all players and/or actions. We find a
strong connection between game symmetries and graph auto-
morphisms, yielding graph automorphism and graph isomor-
phism completeness results for characterizing the symmetries
present in a game. On the other hand, we also show that the
problem becomes polynomial-time solvable when we restrict
the consideration of actions in one of two ways.
Next, we investigate when exactly game symmetries can be
successfully leveraged for Nash equilibrium computation. We
show that finding a Nash equilibrium that respects a given
set of symmetries is PPAD- and CLS-complete in general-
sum and team games respectively—that is, exactly as hard
as Brouwer fixed point and gradient descent problems. Fi-
nally, we present polynomial-time methods for the special
cases where we are aware of a vast number of symmetries, or
where the game is two-player zero-sum and we do not even
know the symmetries.

1 Introduction
In AI and decision making, we appreciate the presence of
symmetries, and they are of utmost importance in game the-
ory and multiagent systems. For one, central concepts such
as cooperation, conflict, and coordination are usually pre-
sented most simply on totally symmetric games1, such as
the Prisoner’s Dilemma, Chicken, and Stag Hunt. The clas-
sic and performant Lemke-Howson algorithm for finding
Nash equilibria is frequently (and without loss of gener-
ality) presented for totally symmetric games (Nisan et al.
2007)[Section 2.3] for the sake of clarity. Furthermore, we
may find that interactions with symmetries can be described
more concisely in comparison to enumerating the full out-
come payoff functions: “Matching Pennies is a two-player
game where each player has two actions {0, 1}. If both play-
ers play the same action, player 1 wins, otherwise, player 2

1To be defined later; informally, games in which players have
the same strategy options and take on the same “role” in the game.

Figure 1: A two-player coordination game. If both players
pick the same color, they each receive the associated utility
points. If they miscoordinate, both receive 0 points. Without
knowing who you are playing with, what color would you
choose?

wins.” This is oftentimes leveraged in games where we de-
sign the outcome and reward structures, such as in social
choice (Brandt et al. 2015) and mechanism design (Moulin
2004) via anonymity, neutrality, and fairness axioms.

Indeed, notions of fairness have been connected to the
premise that any participant of the game might be assigned
to any player identity in the game, which creates a symme-
try across participants (Gale, Kuhn, and Tucker 1952). For
the sake of fairness, one would then like the player iden-
tities to be equally strong (cf. the Matching Pennies game,
and the “veil of ignorance” philosophy (Rawls 1971)). Ham
(2021), and references therein, give a formal treatment of
this in terms of game symmetries.

This symmetry idea that any participant (AIs, humans,
etc.) might take on any player identity in the game (e.g.,
black versus white in chess) also reappears when reason-
ing about other agents of which we do not have a prior:
since the beginnings of machine learning, it has been pop-
ular to learn good strategies in self-play (Samuel 1959), that
is, to assume that other players would use the same strat-
egy as oneself. Self-play continues to be a core contributor
to AIs that can learn with no or limited access to human
data, and reach super-human performance in domains such
as Go (Silver et al. 2016, 2017), and two- and multi-player
poker (Brown and Sandholm 2018, 2019). Beyond leverag-



Game symmetries Game isomorphisms Computing a symmetric equilibrium
General games

GA-c;
(Th. 1)

XP
(

#actions
#players

)
(Th. 5)

GI-c;
(GGS11)

XP
(

#actions
#players

)
(Th. 5)

PPAD-c (Prop. 18); XP(#orbits) (Th. 9)
Team games CLS-c (Th. 8)

Zero-sum games FP (Th. 10)
1PL-actions symmetries P (Th. 8)

PPAD-c (Prop. 18)Player symmetries P (Th. 6)

Table 1: A high-level summary of some complexity results we obtain across various special cases of games and restrictions on
the symmetry sets; though we refer to the associated results for exact statements. ‘-c’ denotes completeness for the respective
class. We obtain the hardness results for very narrow settings already, such as, for example, two-player games. XP(k) stands
for runtimes in which the only exponent is k.

ing the player symmetry in chess and Go by always orienting
the board from the moving player’s perspective, Silver et al.
also exploits the rotation and reflection symmetries in Go.

Related to self-play, we may also utilize game symmetries
for the purposes of strategy pruning and equilibrium selec-
tion (Harsanyi and Selten 1988). Consider the coordination
game in Figure 1. In an ideal scenario, the two players man-
age to coordinate on the same color between the three that
yield the maximal reward of 12 points. However, if there
is no further basis for distinguishing the high-reward colors
(cf. focal points (Schelling 1960; Alós-Ferrer and Kuzmics
2013)), then the players run a significant risk of miscoor-
dinating if they attempt to get the reward of 12. In fact, a
natural strategy in this game is to instead go for red with
the lower reward of 10. We can explain this formally by
recognizing that there are symmetries permuting the colors
{Y,B,G} for both players while keeping the players’ prefer-
ences over colors unchanged. Hence, without access to some
prior coordination device between the players, the players
cannot properly differentiate between {Y, B, G}. Therefore,
the players should assign the same likelihood of play across
those colors, that is, select a strategy profile that respects
the aforementioned symmetries. Under this constraint, both
players picking red becomes the unique optimal (Nash equi-
librium) profile. The equilibrium that uniformly randomizes
over {Y,B,G} merely achieves an expected reward of 4.2 In
more recent work, Hu et al. (2020) and Treutlein et al. (2021)
apply this argument to zero-shot coordination problems in
order to tackle the shortcomings of standard self-play. We
remark that respecting the color and player symmetries does
not hurt the players if they play this game repeatedly in-
stead. In that case, they can achieve a long-term average of
12 points by both playing the following symmetric strategy:
In round 1, randomize uniformly over {Y, B, G}. In round
t ≥ 2, repeat last round’s action if both of you coordinated
successfully last round. Otherwise, repeat last round’s action
only with 50% chance, and the other player’s action from
last round with the other 50% chance.

Lastly, several methods for finding solutions to multia-
gent problems make great use of symmetries or awareness
thereof. On the applied side of solvers, Marris et al. (2022)
learn to compute Nash, correlated, and coarse correlated

2With a coordination device, the players are able to achieve a re-
ward of 12 while respecting the symmetries, namely, by uniformly
randomizing over profiles {(Y, Y), (B,B), (G,G)}. Correlated equi-
libria, however, will not be a focus in this paper.

equilibria, and achieve sample efficiency by imposing game
symmetry invariance onto their neural network architecture.
Liu et al. (2024) extends this to transformer-based represen-
tation learning of normal-form games, with which they show
state-of-the-art performance on various additional tasks such
as predicting deviation incentives. Earlier work (Gilpin and
Sandholm 2007) has developed an abstraction algorithm for
solving large-scale extensive-form games that is based on
detecting game symmetries (or a related notion thereof) and
merging subgames accordingly. On the theory side, Fab-
rikant, Papadimitriou, and Talwar (2004) give a polytime
algorithm for pure Nash equilibrium network congestion
game whenever all players are symmetric, and Daskalakis
and Papadimitriou (2007) develop a polytime approximation
scheme for two-action anonymous games—a popular game
class with particular kinds of symmetries.

A further discussion of related work can be found in the
full version of this paper.

1.1 Structure and a First Overview
In Section 2, we start with background on game symme-
tries in normal-form games. Our general notion of symme-
try encompasses any permutation of players and their action
sets while keeping the utility payoffs unchanged. This is im-
portant: the players in Matching Pennies take on different
roles in the game (matcher vs. mismatcher), and as such,
can only be considered symmetric if we allow swapping the
two actions of one player while simultaneously swapping
the player identities. In another example, the symmetries
discussed for the coordination game of Figure 1 keep player
identities the same and only permute the action sets. In Sec-
tion 3 we connect the presence of symmetries in a game to
the presence of symmetries in a graph, and vice versa. The
latter is a well-studied computational problem from which
we obtain some of the complexity results summarized in Ta-
ble 1. Not included in this table are Proposition 9 and Theo-
rems 3 and 4. They focus on characterizing the set of game
symmetries and relate it to the graph isomorphism prob-
lem. As a consequence, Theorem 4 resolves an open conjec-
ture by Cao and Yang (2018) on deciding whether a game
is name-irrelevant symmetric. Furthermore, our proof ideas
can also be applied to the related game isomorphism prob-
lem, and so we simultaneously discuss those implications.

Section 4 introduces Nash equilibria that respects a given
set of symmetries, then relates it to group-theoretic ideas
involving orbits of actions, and further discusses computa-



tional preliminaries. In Section 5, we present a series of re-
sults on the complexities of computing Nash equilibria that
respect a given set of symmetries or all symmetries. A sum-
mary can again be found in Table 1. We give a contextual-
ized discussion of these results in the upcoming Section 1.2,
and accompany it with additional insights.

Full proofs can be found in the full version of this paper.

1.2 Are Symmetries Actually Helpful for Solving
Games?

As discussed in the introduction, symmetries have been suc-
cessfully used for state-of-the-art equilibrium computation
methods. Nonetheless, we should not be too quick to con-
clude that symmetries, if present, ought to be used.

Potential Harm We have already seen that in the coordi-
nation game of Figure 1, the players might actually strongly
prefer to play Nash equilibria that fail to respect symme-
tries of the game. This effect is amplified in that game if
we take away the color red from the alternatives, leaving us
with a maximal symmetry-respecting payoff of 4. However,
we also note here that a similar argument can be given for
the opposite position. Take the totally symmetric two-player
game of chicken, that is, the bimatrix game (A,AT ) where

A =

(
0 −1
1 −10

)
. In a Nash equilibrium that respects the

symmetry that swaps the players, the players play their first
strategy with probability 0.9, yielding each of them a payoff
of 0.1. If they instead each search for an asymmetric Nash
equilibrium, they may find distinct equilibria—for example,
perhaps each player find the equilibrium that is best for that
player. This results in the two players miscoordinating, re-
sulting in the worst of all outcomes (each playing their sec-
ond strategy).

Potential Slow-down Players also might want to ignore
symmetries present in a game for the sake of faster compu-
tation. Take a totally symmetric bimatrix game Γ = (A,AT )
with payoffs in [0, 1]. It has long been known (Gale, Kuhn,
and Tucker 1952) that finding a symmetric Nash equilibrium
of such a game cannot be easier than finding any Nash equi-
librium of a general bimatrix game, which makes it PPAD-
hard. Now consider the symmetric bimatrix game (Ã, ÃT )

defined by Ã =

(
−10 2 · 1T

2 · 1 A

)
, where 1 denotes the vec-

tor of appropriate dimension with all entries = 1. This game
has its Pareto-optimal Nash equilibria located at strategy
profiles that are obvious to find3 for any participant: one
player must play their first strategy and the other player any
strategy but their first. Yet, if we restrict ourselves to re-
spect the player symmetry, then both players playing the first
strategy suddenly becomes unattractive. It leaving us with
no choice but to find a Nash equilibrium of the original Γ,
which is a PPAD-hard task. This phenomenon becomes even
more omnipresent in team games—also known as identical-
interest or common-payoff games—because such games are

3Concretely, it requires parsing the full payoff matrix while rec-
ognizing that payoffs are in [0, 1] in A. This takes linear time.

guaranteed to have Pareto-optimal Nash equilibria in a pure
strategy profile. However, these profiles might not respect
most or any nontrivial symmetries present in the game, as
illustrated in the coordination game of Figure 1. Instead, the
constraint of respecting symmetries leaves us with the harder
computational problem of non-linear continuous optimiza-
tion, as we will show in Theorem 8.

Results and General Conclusions This goes to show that
for computational efficiency as well as for achieving high
payoffs, one might want to be informed about the game be-
fore imposing the constraint of respecting symmetries. This
stands in contrast to some self-play approaches—such as
when using regret learning with full feedback—which im-
plicitly respect symmetries, and other solving techniques
mentioned in the introduction that have symmetry explicitly
imposed into their architecture.

In Proposition 18, on the other hand, we show that the re-
quirement of respecting a given set of symmetries does not
make the search for a Nash equilibrium harder in the worst-
case (PPAD-completeness), and in Theorem 8 we show that
gradient descent methods are the best we can generally do
in team games if we want a given set of symmetries to be re-
spected (CLS-completeness). An additional special case that
arises is with the class of two-player zero-sum games (The-
orem 10): without having to compute any symmetry of the
game (which we show to be graph automorphism hard), we
can find a Nash equilibrium that respects all of the game’s
symmetries in polytime via a convex optimization approach.

A Positive Result When There Are Many Symmetries
With many players in the game, the normal-form representa-
tion blows up exponentially, casting that representation im-
practical. That is why many-player games are usually repre-
sented more concisely, often making use of a vast number of
symmetries present in the game. So what can we say then?
If we are aware of enough symmetries between players and
actions such that we are left with a constant number of or-
bits of actions, we can compute a Nash equilibrium that re-
spects those symmetries in polytime (Theorem 9). This gen-
eralizes a result by Papadimitriou and Roughgarden (2008),
and we can illustrate it on an N -player m-action variant of
Rock-Paper-Scissors: each player i chooses an action j from
{0, . . . ,m − 1}, upon which they receive a payoff equal
to “# wins - # losses” where # wins is the total number of
players in the game choosing action j − 1 (mod m) and #
losses the number of players choosing j + 1 (mod m). Fig-
ure 2 illustrates this game for N = 2 and m = 5, to-
gether with another variant that is prominently referenced
in pop culture (RPS 2024). It is not hard to see that neither
of these games change if we rotate the player identities by
1 → · · · → i → · · · → N → 1, or, instead, if we rotate
the action labels by 1 → · · · → j → · · · → m → 1 for
all players simultaneously. With those symmetries there is
only a single orbit of actions. This renders the task of finding
a symmetry-respecting Nash equilibrium not only polytime
but trivial, because there is only one strategy profile left that
respects those symmetries: each player uniformly random-
izing over all of their action alternatives.



Figure 2: Two extensions to Rock-Paper-Scissors. In both,
there is only one symmetries-respecting strategy profile. The
right game is known as Rock-Paper-Scissors-Lizard-Spock.

A Remark On Approximate Symmetries The symme-
try notion we study in this paper requires payoff profiles to
match exactly. Earlier in this section, we argued that this
is common in real-world scenarios; in particular, when they
are human-designed. Furthermore, we believe that our re-
sults generalize meaningfully to settings in which it is un-
likely to find exact payoff matches, e.g., because utilities are
drawn from a random distribution. To illustrate, let us re-
visit the color coordination game in Figure 1, except now,
coordinating on {Y,B,G} yields 11.9, 12, and 12.1 points to
both. van Damme (1997) then argues that the slightest uncer-
tainties over payoffs—whether due to exogenous stochastic-
ity or private information—may be reason enough for both
players to pick red. We leave it to future work to give a gen-
eral treatment of approximate notions of symmetries.

2 Preliminaries on Game Symmetries
Definition 1. A (normal-form) game Γ consists of
1. A finite set of players N := {1, . . . , N}, where N ≥ 2

denotes the number of players,
2. A finite set of actions Ai := {1, . . . ,mi} for each player

i ∈ N , where mi denotes the number of actions, and
3. A utility payoff function ui : A1 × · · · × AN → R for

each player i ∈ N .
The players’ goal is to maximize their own utility. An ac-

tion profile a specifies what action each player takes and
the set A denotes the set of all action profiles, that is,
a = (a1, . . . , aN ) ∈ A1 × · · · × AN =: A. We also de-
note the set of actions as A := ⊔i∈NAi.
Remark 2. For computational considerations, ui is re-
stricted to evaluate as rational values only. We assume a
game Γ is given in explicit form, that is, it is stated as
(N , (Ai)i∈N , (T i)i∈N ), where T i is a look-up table of
length |A| with all of player i’s payoffs under each a ∈ A.
T i represents an N -dimensional payoff tensor; for exam-

ple, for N = 2, that is a matrix. By abuse of notation, we
also use cardinality | · | to denote the encoding size of an
object that is not a set, e.g., |Γ| for a game Γ.
Definition 3 (Nash 1951). A (game) symmetry of a game Γ
is a bijective map ϕ : A → A that additionally satisfies
1. actions of the same player are mapped to the same player,

i.e., for each i ∈ N , there is π(i) ∈ N satisfying
a, a′ ∈ Ai =⇒ ϕ(a), ϕ(a′) ∈ Aπ(i)

2. payoffs are symmetry-invariant, that is,
ui(a) = uπ(i)(ϕ(a)) for all i ∈ N and a ∈ A.

To explain the notation ϕ(a), we first remark that the map
ϕ induces a bijective player map π : N → N and bijec-
tive action set maps ϕi := ϕ|Ai : Ai → Aπ(i). Map π is
henceforth referred to as a player permutation. By abuse of
notation, ϕ can then be considered to map an action profile
a ∈ A to action profile ϕ(a) :=

(
ϕ(aπ−1(j))

)
j∈N ∈ A.4

Let us revisit the bimatrix game (A,B) Matching Pen-

nies, where A =

(
1 −1
−1 1

)
and B =

(
−1 1
1 −1

)
. If

PL1’s and PL2’s actions are {up,down} and {left,right} re-
spectively, then this game has a symmetry “up → left →
down → right → up”. For instance, PL1 receives under pro-
file (up,right) the same as PL2 under (up,left). Compare this
with the another popular but more restrictive definition:
Definition 4 (von Neumann and Morgenstern 1944). A
game Γ is called totally symmetric if each player has the
same action set A∗, and if for any player permutation π we
have ui(a) = uπ(i)

(
(aπ−1(j))j∈N

)
for any player i and ac-

tion profile a ∈ ×i∈NA∗.
In bimatrix games, this reduces to B = AT . In particu-

lar, Matching Pennies has symmetries, but it is not totally
symmetric.

Until Section 4, we assume that a game symmetry ϕ is
represented in explicit form, which, again, means as a look-
up table of evaluations of ϕ. Unlike with games, this explicit
representation does not blow up exponentially with the num-
ber of players since ϕ only has |A| evaluations.

Note that the identity map IdA is always a game symmetry
(henceforth the trivial symmetry), and that two symmetries
ϕ and ϕ′ compose to a third symmetry. Moreover, if ϕ is a
symmetry, then ϕ−1 is one as well. Therefore:
Remark 5. The set Sym(Γ) of symmetries of a game Γ
forms a group together with map composition.

Symmetry groups can be exponentially large; up to N ! ·∏N
i=1(m

i!) in our case. For purposes of algorithms, we will
thus consider a group G as specified by a subset Z of gener-
ators5; writing ⟨Z⟩ = G. Every finite group has a generator
set of logarithmic size, which is log2(|A|!) = Õ(|A|) for us.

Last but not least, we define the graph problems that be-
come relevant later on. A simple graph (hereafter just graph)
G = (V,E) consists of a set of vertices V and a set of edges
E ⊆

(
V
2

)
. The encoding size parameters are |V | and |E|.

Definition 6 (GA). In the graph automorphism problem GA,
we are given a graph G, and asked whether G admits a non-
trivial automorphism, that is, a bijective map ϕ : V → V
that is not the identity function, and that satisfies
(v, w) ∈ E =⇒ (ϕ(v), ϕ(w)) ∈ E.
Definition 7 (GI). In the graph isomorphism problem GI, we
are given two graphs G = (V,E) and G′ = (V ′, E′), and

4We cannot simply define ϕ(a) as (ϕ(ai))i∈N because the j-th
action in this vector is an action that belongs to player π(j).

5Set Z ⊂ G generates a finite group G if any g ∈ G can be
written as a composition of finitely many elements in Z.



asked whether there exists any isomorphism G → G′, that
is, a bijective map ϕ : V → V ′ that satisfies
(v, w) ∈ E ⇐⇒ (ϕ(v), ϕ(w)) ∈ E′.

We call a decision problem GA- or GI-complete if it poly-
time reduces to GA (resp. GI) and vice versa. No polynomial-
time algorithms for GA or GI are known, and GI is widely
conjectured to be neither in P nor NP-hard.6 GA many-one
reduces to GI (Lozano and Torán 1992), but the reverse re-
duction is unknown. The best algorithm for GI is due to
Babai (2016), and runs in time exp(logO(1)(|V |)).

3 Computation of Game Symmetries
In this section we study the complexity of characterizing
the symmetries in a game. As a warm-up, we start with a
simple-to-describe subgroup of symmetries that we have not
discussed yet. We call ϕ a 1PL-actions symmetry of Γ if it
merely permutes the actions of a single player, i.e., there is
i ∈ N such that ϕ|A\Ai = IdA\Ai . Those relate to sym-
metries ϕ′ that expose action duplicates, i.e., that swap two
actions a, a′ ∈ Ai for a player i and keep the rest fixed.

Proposition 8. The 1PL-actions symmetries of a game Γ are
generated by the symmetries that expose duplicate actions.
The latter set can be computed in polytime
O(N ·maxi(m

i)2 · |A|).
The factor N · maxi(m

i)2 is the number of action pairs
of a single player, and the factor |A| comes from checking if
swapping two actions keeps the utilities the same.

3.1 Complexity Results
We note that none of the symmetry examples from Section 1
are 1PL-actions symmetries. Instead, the {Y,B,G} symme-
tries described for the coordination game of Figure 1 is what
we call player-separable because they keep player identities
fixed, i.e., a symmetry ϕ whose π = IdN . We will show that
such symmetries are already hard to characterize, let alone
the whole set of symmetries Sym(Γ)—which, as we recall,
allows an arbitrary permutation of players and their action
sets simultaneously.

Theorem 1. It is GA-complete to decide whether a game
has a nontrivial symmetry. Hardness already holds for two-
player {zero-sum / team} games that only possess game
symmetries that are player-separable.

The brackets indicate that the hardness works for the zero-
sum restriction, but it also works for the team restriction.

Proof Idea. For membership, create an edge-labeled graph
with node set N ∪ A ∪ A and edges {(i, a) : i ∈ N , a ∈
Ai} ∪ {(a, a) : a ∈ a ∈ A} ∪ {(i, a) : i ∈ N ,a ∈ A}. The
first kind and second kind of edges shall receive two dis-
tinct labels, and edges (i, a) are labeled with ui(a). Finally,
we note that GA remains its complexity when the graph has
edge labels. For hardness, create a two-player game with one
action per vertex. Next, we give the players different pay-
offs depending on whether they play the same, neighboring,

6For example, GI being NP-complete would imply that the
polynomial hierarchy collapses (Schöning 1988).

or non-neighboring vertices. To remove symmetries across
players, we can give PL2 an additional dummy action.

Our proof method carries over to a known GI-
completeness result of the related game isomorphism prob-
lem. This problem is defined similarly to Definition 3, except
now we are given two games Γ and Γ′ and are asking for a
player- and utility-preserving map ϕ : A → A′. In particu-
lar, a game symmetry is simply a game isomorphism from a
game to itself.
Theorem 2 (Improved from Gabarró, Garcı́a, and Serna
2011, Thm. 6). It is GI-complete to decide whether two
games are isomorphic. Hardness already holds for two-
player {zero-sum / team} games that only possess game
symmetries that are player-separable.

We think this result is worth noting because Gabarró,
Garcı́a, and Serna only establish hardness for mixed-motive
4-player games, and because they do not describe why their
problem reduces to GI. Indeed, they partly accredit “personal
communication” with another researcher as a reference.

Furthermore, the proof constructions in Theorem 1 addi-
tionally imply that the symmetries Sym(Γ) and automor-
phisms Aut(G) of associated game-graph pair (Γ, G) are
isomorphic in a group-theoretic sense. Therefore, we can in-
herit further known results about graph automorphisms for
our setting (Mathon 1979).
Proposition 9. The following problems for a game Γ are
polynomial-time Turing-equivalent to GI: (a) determining a
generator set of Sym(Γ), and (b) determining the cardinality
of Sym(Γ) . Hardness already holds for two-player {zero-
sum / team} with only player-separable symmetries.

With an independent proof idea, we can additionally ob-
tain hardness of deciding whether different players are sym-
metric to each other.
Theorem 3. Deciding whether Γ has a symmetry ϕ that is
not player-separable, i.e., that maps at least one player to
another player, is GI-complete. Hardness already holds for
two-player zero-sum games.

With this result, we can also prove an open conjecture by
Cao and Yang (2018) in the affirmative.
Theorem 4. It is GI-complete to decide whether a game Γ is
name-irrelevant symmetric, that is, whether for all possible
player permutations π : N → N there is symmetry ϕ ∈
Sym(Γ) of Γ that induces it. Hardness already holds for two-
player zero-sum games.

3.2 Efficient Computation
Next, we study efficient ways to compute the set of symme-
tries in a game (resp. isomorphisms between two games).
For the results below, we require that each player i has
mi ≥ 2 actions, that is, there is no player with no impact on
the game. For the sake of space and presentation, we only
present the statements in terms of game symmetries in this
main body and defer to the full version of this paper for the
treatment of game isomorphisms.
Theorem 5. We can compute (a generator set of) the set
Sym(Γ) of symmetries of a game Γ in time 2O(|A|).



We prove Theorem 5 by reducing the problem to a hy-
pergraph automorphism problem over a hypergraph with
|V | = O(|A|) nodes, and then applying the 2O(|V |)-time al-
gorithm for hypergraph automorphism due to Luks (1999).
Corollary 10. For games in which the number of actions
per player is bounded, we can compute Sym(Γ) in polytime.

This is because then |A| = O(N), making the algorithm
of Theorem 5 run in time 2O(N), which is is polytime in
the size of the payoff tensors of the game. It gives a new
perspective on the GA- and GI-hardness results we proved
so far, since they hold even for a bounded (= 2) number of
players: the computational hardness arises from a growing
number of actions of multiple players simultaneously.

We further utilize the reduction idea to hypergraph auto-
morphism for games with player symmetries: A game sym-
metry ϕ is called a player symmetry if it keeps the action
labels “fixed”, that is, if it sends action k ∈ {1, . . . ,mi} of
player i to action k of player π(i).
Theorem 6. We can compute (a generator set of) the group
of player symmetries in polytime.

For this proof, we must be particularly careful that the
number of nodes in the constructed hypergraph does not in-
crease linearly with the size of an individual player’s ac-
tion set. This is accomplished by creating O(logmi) action
nodes for each player (instead of mi as in Theorem 1), and
associating to each action a subset of these nodes.
Corollary 11. We can determine whether a game is totally
symmetric (Def. 4), implicitly assuming A∗ = A1 = · · · =
AN with the current action numbering, in polytime.

The positive results of Corollary 10 and Theorem 6 rely
on the fact that the game is given in explicit form. In other,
more concise game representations, we might find that these
computational problems become hard again. In graphical
games (Kearns, Littman, and Singh 2001), for example, we
have easy-to-obtain hardness simply because such games are
already conveniently represented as graphs.
Proposition 12. The game automorphism (resp. isomor-
phism) problem for graphical games is GA- (resp. GI-)hard,
even in team games with 2 actions per player.

4 Preliminaries on Nash Equilibria That
Respect Game Symmetries

Beyond giving background definitions in this section, we
also study how “respecting” symmetries relate to action or-
bits, and what that implies for the the complexity considera-
tions of Nash equilibrium computation.

4.1 Strategies, Nash Equilibria, Respecting
Symmetries

As usual, we allow the players to randomize over their ac-
tions. That is, they can choose a probability distribution—
called strategy—over Ai. The strategy sets are denoted by
Si = ∆(Ai). A strategy profile s and the strategy pro-
file set S are defined similarly to their counterpart for ac-
tions: s = (s1, . . . , sN ) ∈ S1 × · · · × SN =: S. Utili-
ties naturally extend to S by taking the expectation ui(s) :=

∑
a∈A s1(a1) · . . . · sN (aN ) · ui(a). For notational conve-

nience, s−i ∈ ×j ̸=i S
j =: S−i abbreviates the strategies

that all players are playing but i.

Definition 13. A strategy profile s ∈ S is called a Nash
equilibrium of Γ if for all player i ∈ N and all alternative
strategies s ∈ Si we have ui(s) = ui(si, s−i) ≥ ui(s, s−i).

That is, every player plays their optimal strategy taken as
given what the other players have chosen. It is well-known
that any game admits a Nash equilibrium (Nash 1950). Next,
we will discuss Nash’s follow-up work that further shows
that symmetries-respecting Nash equilibria always exist.

Working towards that result, we first observe that a game
symmetry mapping ϕ naturally extends to probability dis-
tributions over actions, i.e., strategies. Thus, we can over-
load notation and write S ∋ s 7→ ϕ(s). Symmetry ϕ will
then also satisfy the invariance ui(s) = uπ(i)(ϕ(s)). Fur-
thermore, we have:

Remark 14. For any symmetry ϕ of Γ, we have that strategy
profile s ∈ S is a Nash equilibrium if and only if ϕ(s) is.

As we have argued in the introduction of this paper, game
symmetries may indicate what actions ought to be played
with the same likelihood; cf., e.g., the discussions of Fig-
ures 1 and 2. Let Σ ⊆ Sym(Γ) be a particular set of sym-
metries that we want to respect. This could be the trivial set
{Id}, in which case no symmetries need to be respected, or
the full set Sym(Γ). This could also be any subset of sym-
metries that are readily available to us for a particular game,
for example, because they are immediately exposed from a
verbal description of the game.

Definition 15. A strategy profile s ∈ S is said to respect the
symmetries Σ ⊆ Sym(Γ) if for all ϕ ∈ Σ we have ϕ(s) = s.

Theorem 7 (Nash 1951). Any game Γ admits a Nash equi-
librium that respects all symmetries Sym(Γ). Hence, it ad-
mits a Nash equilibrium that respects any particular set
Σ ⊆ Sym(Γ) of symmetries.

Nash obtains this result via a Brouwer fixed point argu-
ment, and the proof contains a nonconstructive analysis of
the set of symmetries-respecting strategy profiles. In order
to make this proof constructive and computational in Propo-
sition 18, we introduce action orbits next.

4.2 Orbits Are All You Need
If we are interested in respecting a set Σ of symmetries, it
suffices to know what actions are mapped to another action
under some symmetry in the subgroup ⟨Σ⟩ ≤ Sym(Γ) gen-
erated by Σ. This is called the orbit of an action a ∈ A un-
der group ⟨Σ⟩, denoted by ⟨Σ⟩ a := {ϕ(a) : ϕ ∈ ⟨Σ⟩} ⊆ A.
The orbits W (⟨Σ⟩) = {⟨Σ⟩ a : a ∈ A} partition the total set
of actions A. We obtain a characterization that has already
been noted in prior work that studied player symmetries.

Lemma 16 (cf. Emmons et al. 2022). Profile s respects a set
of symmetries Σ ⊆ Sym(Γ) if and only if it respects ⟨Σ⟩ if
and only if for all orbits ω ∈ W (⟨Σ⟩) and actions a, a′ ∈ ω
of respective players i, i′ we have si(a) = si′(a

′).



4.3 Computational Considerations
In games of three players or more, the only (symmetry-
respecting) Nash equilibrium might take on irrational values
(Nash 1951) even though the game payoffs are integers. In
order to represent solutions in finite bit length, we allow ap-
proximate solutions up to some precision error ϵ > 0. An
ϵ-Nash equilibrium must then satisfy ui(s) ≥ ui(s, s−i)− ϵ
in Definition 13. We want ϵ to be ‘small’ relative to the
range of utility payoffs, which—by shifting and rescaling
(Tewolde and Conitzer 2024)—we can w.l.o.g. assume to be
[0, 1]. Then, ϵ is given in binary, i.e., we seek algorithms that
depend polynomially on log(1/ϵ).

Since (1) symmetry-respecting Nash equilibria always ex-
ist, and (2) we can check whether a strategy profile is in-
deed a Nash equilibrium that respects a given set of symme-
tries, we enter the complexity theory landscape of total NP
search problems when it comes to finding such equilibria.
Its subclasses are characterized by the proof technique used
to show that each problem instance admits a solution. We
will be interested in the subclasses PPAD and CLS, which
both lie somewhere in between FP and FNP (the direct ana-
logues to P and NP when we deal with search problems).
PPAD (“Polynomial Parity Arguments on Directed graphs”,
Papadimitriou 1994) contains the problems where a solution
is guaranteed to exist via a fixed-point argument, and CLS
(“Continuous Local Search”, Daskalakis and Papadimitriou
2011) is based on gradient dynamics on a compact polyhe-
dral domain always admitting a solution.

Last but not least, we will consider three representation
schemes for the symmetries we require to be respected, in
decreasing order of explicitness: (1) Explicit form: A set
Σ ⊆ Sym(Γ) is given as a list of symmetries, each given
in explicit form. (2) Orbit form: A partition W of actions A
into orbits, with the promise that W is induced by an un-
known set of symmetries Σ ⊆ Sym(Γ). (3) No symmetries
are specified and we require that the full set Sym(Γ) of sym-
metries of Γ is respected. We think the explicit form is the
natural first inclination for a computational analysis. We in-
troduce the orbit form for games that have a concise descrip-
tion in verbal form, for example, using phrases such as “if
either player 1 plays A or player 2 plays B, then X happens”.
Clearly, computing an equilibrium with the last “representa-
tion scheme” is hardest: A Nash equilibrium that respects all
symmetries in particular respects any subset of symmetries
(even if given in orbit form). Moreover, computation with
the orbit form cannot be easier than with the explicit form
because we can obtain the former efficiently from the latter:

Lemma 17. Given symmetries Σ in explicit form we can
compute the orbits W (⟨Σ⟩) it induces in time O(|Σ| · |A|).

5 Finding Symmetries-Respecting Equilibria
In this section, we analyze how hard it is to find a Nash equi-
librium that respects symmetries.

5.1 Complexity Results
To start with the general case, let SYM-NASH denote the
search problem that takes a game Γ in explicit form, a pre-

cision parameter ϵ > 0 in binary, and symmetries of Γ in
orbit form. Given that, it asks for a strategy profile µ of Γ
that respects the said symmetries and that is an ϵ-Nash equi-
librium.

Proposition 18. SYM-NASH is PPAD-complete. PPAD-
hardness already holds for two-player games, where the
symmetries are given in explicit form Σ ⊆ Sym(Γ), and Σ
contains {just / more than} the identity symmetry.

Proof Idea. Section 1.2 discussed the well-known idea for
proving hardness. We obtain membership by fitting Nash’s
function to Etessami and Yannakakis (2010) framework for
showing that a Brouwer fixed point problem is in PPAD.

The membership—which, to the best of our knowl-
edge, forms the novel contribution—shows that we can
find symmetries-respecting Nash equilibria with fixed-point
solvers and path-following methods, just as it is the case
with finding any Nash equilibrium in a normal-form game.
Hence, this is a positive algorithmic result. Garg et al. (2018)
proved a related FIXPa-completeness result for exact com-
putation of a player-symmetric Nash equilibrium in a totally
symmetric game of constant number of players.

Next, we narrow down our interest to SYM-NASH-TEAM,
which we define as the restriction of SYM-NASH to the spe-
cial case of team games, i.e., games with u1 = . . . = uN .

Theorem 8. SYM-NASH-TEAM is CLS-complete. CLS-
hardness already holds for totally symmetric team games
of five players where the player symmetries that show total
symmetry are given in explicit form.

Proof Idea. We leverage a strong connection between
single-player decision making under imperfect recall and
decision making in a team under symmetry constraints
(Lambert, Marple, and Shoham 2019), inheriting known
CLS-hardness results for problems in the former setting
(Tewolde et al. 2023, 2024). For membership, we show
that symmetries-respecting Nash equilibria correspond to
first-order stationary points (formally, Karush-Kuhn-Tucker
(KKT) points) of the following polynomial optimization
problem: Maximize the team’s utility function over the poly-
hedral domain of symmetries-respecting strategy profiles.
Fearnley et al. (2023) have shown that finding an approxi-
mate KKT point of such a problem is in CLS.

The CLS-membership shows that first-order methods are
suited to find a symmetries-respecting Nash equilibria in
team games. This has already been observed for player sym-
metries (1) by Emmons et al. (2022) for the exact gradient
descent dynamics and (2) by Ghosh and Hollender (2024)
for the two-player case. Our CLS-hardness result, on the
other hand, shows that gradient descent is the most efficient
algorithm—modulo polynomial time speedups and barring
major complexity theory breakthroughs—that is available
for this problem. The main result of Ghosh and Hollender’s
concurrent work shows that CLS-hardness already holds for
totally symmetric two-player games. We remark that this
time the trivial symmetry set Σ = {IdA} does not suffice



for hardness, because we can find an arbitrary Nash equi-
librium of a team game in linear time by going through
the payoff tensor and selecting the payoff-maximizing ac-
tion profile. This is different in game representations that are
not normal-form: Babichenko and Rubinstein (2021)—and
to a lesser extent Daskalakis and Papadimitriou (2011)—
study the concisely represented polymatrix games and c-
polytensor games for c ∈ N. They also obtain a CLS-
completeness result for the team game case, but this time
it is for finding any Nash equilibrium.

5.2 Efficient Computation
In view of the hardness results in Proposition 18 and The-
orem 8, we may ask why it is so popular to leverage
game symmetries in game solvers, as discussed in the in-
troduction. Indeed, restricting our attention to symmetries-
respecting strategy profiles does allow for a significant di-
mensionality reduction in the to-be-studied profile space.
Unfortunately, one (or a few) game symmetries do not al-
low for enough of a reduction to affect the asymptotic com-
putational complexity. However, if the number of symme-
tries is vast, or equivalently, the number of distinct orbits
is low, then we can show that equilibrium computation be-
comes easier. This generalizes a similarly derived result by
Papadimitriou and Roughgarden (2008) for games with to-
tal symmetry, and we have illustrated that in the discussion
of the Rock-Paper-Scissors extensions in Figure 2. Further-
more, the color coordination game in Figure 1 reduces to
the simple, yet nontrivial polynomial optimization problem
maxr,r̄≥0,r+r̄=1 10r2+4r̄2, where variables r and r̄ denote
the probabilities assigned to the “red” and “the other” orbit.

Theorem 9. SYM-NASH can be solved in time
poly

(
|Γ|, log(1/ϵ), (|W |N)|W |). In two-player games,

this can be improved to exact equilibrium computation in
time poly

(
|Γ|, 2|W |).

This runtime is polynomial in the input size whenever the
symmetries-induced number of orbits |W | is bounded.

Proof Idea. We show that symmetries-respecting strategy
profiles correspond one-to-one to “orbit profiles” in R|W |,
which indicate with what probability a player plays any ac-
tion in a particular orbit. This lower-dimensional space can
be described efficiently, and the Nash equilibrium conditions
now make a system of O(|W |) additional polynomial (in-
)equalities, where each polynomial has degree at most N .
Therefore, we can invoke known algorithms for solving such
a system from the the existential theory of the reals (Renegar
1992), which will achieve the desired runtime. If it is a two-
player game, we can use support enumeration (Dickhaut and
Kaplan 1993) on orbit profiles instead.

Lastly, we move our attention to two-player zero-sum
games, which can be solved for a Nash equilibrium in poly-
time (von Neumann 1928; Dantzig 1951; Adler 2013). We
establish that we can even ensure that all symmetries present
in the game are respected without having to compute all / any
symmetries of the game (which we know is as hard as GI and
GA due to Proposition 9 and Theorem 1).

Theorem 10. Given a two-player zero-sum game, we can
compute a Nash equilibrium that respects all symmetries
present in the game in polytime.

Proof Idea. The set of Nash equilibria of a two-player zero-
sum game is a convex polytope that can be described ef-
ficiently via a system of linear (in-)equalities (cf. minimax
theorem, von Neumann 1928). Hence, we can solve any con-
vex quadratic objective over this domain to exact precision
in polytime (Kozlov, Tarasov, and Khachiyan 1980). Intu-
itively, we recognize that changing a strategy profile towards
respecting symmetries equates to increasing its probability
entropy. Formally, we analyze the “symmetric” regularizer
objective S1×S2 → R, s 7→

∑
a∈A f(s(a)) for an arbitrary

strictly convex function f : [0, 1] → R, e.g., x 7→ x2. We
prove that a Nash equilibrium that minimizes this objective
also respects all symmetries present in the game.

We believe this result can generalize to other representa-
tions or solution concepts, as long as the solution space is an
efficiently describable convex compact polytope.

6 Conclusion
The concept of symmetry is rich, with many applications
across the sciences, and in AI in particular. For game theory,
the situation is no different. Indeed, a typical course in game
theory conveys the most basic concept of a symmetric (two-
player) game; to check whether it applies, no more needs to
be done than taking the transpose of a matrix. But there are
other, significantly richer symmetry concepts as well, ones
that require relabeling players’ actions or which do not al-
low arbitrary players to be swapped. We have studied these
richer concepts. First, we studied the problem of identify-
ing symmetries in games, and exhibited close connections
to graph iso- and automorphism problems. We also devised
performant algorithms for this task, and discussed special
cases that have polytime guarantees. Second, we studied the
problem of computing solutions to games that respect their
symmetries. We have shown that requiring to respect them
does not worsen the algorithmic complexity (significantly),
and that it improves the complexity when the number of
symmetries is vast. We also gave a strongly positive result
for two-player zero-sum games.

There are many directions for future research, includ-
ing the following. (1) We have focused on normal-form
games. What about other ways to represent games, such
as extensive-form games, stochastic games, and compact
representations such as action-graph games (Jiang, Leyton-
Brown, and Bhat 2011) and MAIDs (Koller and Milch
2003)? (2) We have focused on exact symmetries; what
about approximate symmetries and other informative rela-
tions between players and strategies? (3) There are many
conceptual questions regarding symmetries. For example,
in many games, the players would benefit from being able
to break the symmetries, such as in the color coordination
game in the introduction, or from adopting distinct roles
(say, on a soccer team). What are effective and robust ways
to break symmetries to achieve better outcomes?
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