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Abstract

Imperfect-recall games—in which players may forget previ-
ously acquired information—have found many practical ap-
plications, ranging from game abstractions to team games and
testing AI agents. In this paper, we quantify the utility gain by
endowing a player with perfect recall, which we call the value
of recall (VoR). While VoR can be unbounded in general, we
parameterize it in terms of various game properties, namely
the structure of chance nodes and the degree of absentmind-
edness (the number of successive times a player enters the
same information set). Further, we identify several patholo-
gies that arise with VoR, and show how to circumvent them.
We also study the complexity of computing VoR, and how to
optimally apportion partial recall. Finally, we connect VoR
to other previously studied concepts in game theory, includ-
ing the price of anarchy. We use that connection in conjunc-
tion with the celebrated smoothness framework to character-
ize VoR in a broad class of games.

Introduction
Game theory offers a principled framework for reason-
ing about complex interactions involving multiple strate-
gic players. It continues to propel landmark results in long-
standing challenges in artificial intelligence (AI), ranging
from poker (Bowling et al. 2015; Moravčı́k et al. 2017;
Brown and Sandholm 2018) to diplomacy (Bakhtin et al.
2022). A common premise in game-theoretic modeling is
perfect recall—players never forget information once ac-
quired. The perfect-recall assumption is often called into
question for games involving human players; however, it
is difficult to come up with a faithful model in such cases
due to the unpredictability of when and what human play-
ers will forget. In contrast, AI agents can be specifically
designed to relinquish certain information, thereby making
the imperfect-recall framework directly applicable. But why
should one consider AI agents with imperfect recall?

An early, influential application of imperfect-recall games
revolves around abstraction: games encountered in practice
are typically too large to represent exactly, and so one resorts
to abstraction to compress its description. In particular, one
way of doing so consists of allowing players to carefully
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forget less important aspects of previously held informa-
tion. Indeed, imperfect-recall abstractions have been a cru-
cial component of state-of-the-art algorithms in poker solv-
ing (Brown, Ganzfried, and Sandholm 2015; Johanson et al.
2013; Waugh et al. 2009; Ganzfried and Sandholm 2014;
Čermák, Bosanský, and Lisý 2017). Imperfect recall also
naturally arises in so-called adversarial team games (Celli
and Gatti 2018; Zhang, Farina, and Sandholm 2023; Zhang,
An, and Subrahmanian 2022; Emmons et al. 2022; von Sten-
gel and Koller 1997), wherein a team of players—which
can be construed as a single player with imperfect recall—
faces an adversary. The benefit of reinforcing the communi-
cation capacity of the team in such settings—corresponding
to boosting recall—is an active area of research, promi-
nently featured in a recent NeurIPS competition (Meisheri
and Khadilkar 2020; Resnick et al. 2020). Relatedly, natu-
ral notions of correlated equilibria can be modeled via an
imperfect-recall mediator, endowed with the ability to pro-
vide recommendations (Zhang and Sandholm 2022); in that
context, imperfect recall can serve to safeguard players’ pri-
vate information, a consideration that also arises in other
settings (Conitzer 2019). Finally, another possible applica-
tion revolves around simulating and testing AI agents be-
fore their deployment in the real world (Kovarı́k, Oesterheld,
and Conitzer 2023, 2024; Chen, Ghersengorin, and Petersen
2024). As a result, it is becoming increasingly pressing to
expand our scope beyond the assumption of perfect recall.

In this paper, we examine a question at the heart of this
research agenda: how does perfect recall affect players’ util-
ities under various natural solution concepts? More specifi-
cally, we contrast the utilities obtained by a player in an ini-
tial imperfect-recall game (in extensive form) to those in a
perfect recall refinement thereof; we refer to the correspond-
ing ratio as the value of recall (VoR). Here, our main contri-
bution is to provide a broad characterization of VoR for dif-
ferent solution concepts in terms of natural game properties.

Many strategic interactions demonstrate that perfect re-
call offers a significant advantage. In the popular card game
blackjack, the house is expected to prevail in the long run
against a player with poor recall, but certain memorization
strategies tip—at least under the earlier rules followed by
casinos—the balance in the player’s favor (Thorp 2016), as
pop-culture has hyperbolically portrayed. The role of mem-
ory is even more pronounced in other card games such as



A

B

B

2, 1 3, 0

0, 2ε

0, ε

t

c

c d

d

w

Figure 1: A game with imperfect recall. Giving Bobble (■)
perfect recall hurts both players. Terminals show utilities for
Bobble and Alice ( ). Infosets are joined by dotted lines.

solitaire (Kirkpatrick 1954; Foerster and Wattenhofer 2013),
where remembering the previously dealt cards drastically in-
creases the odds of winning. We are interested in quantifying
how much players benefit from perfect recall.

A plot twist: perfect recall can hurt
The previous examples notwithstanding, surprisingly, en-
dowing a player with perfect recall can end up diminishing
every player’s utility! Consider Figure 1: Alice has a small
amount of money (ε > 0) and interacts with an investment
bot Bobble, starting from a free trial to see if the bot is defec-
tive (i.e., Bobble plays d, in which case the game is over and
Alice receives a small compensation of ε). If Bobble coop-
erates (c), the game continues and it gains access to Alice’s
money, which it multiplies through investments. If Bobble
defects (d) now, it gets to run away with all the money. How-
ever, if it has imperfect recall (cannot remember if the free
trial is over), then it has the incentive to cooperate (c) with
Alice on both counts, as attempting d has a greater chance
of causing it to get caught during the free trial. Knowing
this, Alice is incentivized to trust (t) Bobble, leading to the
cooperative outcome. On the other hand, if Bobble is given
perfect recall, it has every incentive to cooperate in the free
trial and then defect after getting the money; anticipating
this, Alice walks out (w) without interacting with Bobble
(Proposition 13 formalizes this example).

Intuitively, this demonstrates that a player gaining perfect
recall can result in the other players trusting it less, eliminat-
ing a cooperative outcome that is arbitrarily better for every-
one. This is in line with prior work showing that the ability
of a player to be simulated by others can benefit everyone in
trust-based games (Kovarı́k, Oesterheld, and Conitzer 2023).

In spirit, this phenomenon is similar to the famous Braess
paradox (Braess 1968), which predicts that augmenting a
network with more links can result in worse equilibria. We
formalize this type of hurtful recall in later sections, and also
provide necessary conditions under which it does not arise.

Overview of our results
We formally introduce the value of recall (Definition 12) in
(imperfect-recall) extensive-form games for a broad set of
solution concepts. In particular, building on prior work, our
definition is based on the coarsest information refinement

of a game that attains perfect recall (Definition 9). In the
remainder of the paper, we investigate a number of questions
relating to the value of recall.

We first formalize the observation made earlier regarding
hurtful recall (Figure 1) by showing the existence of games
in which a single player getting perfect recall can arbitrar-
ily hurt all players, including themselves, for all the solu-
tion concepts considered in this paper (Proposition 13). Even
more surprisingly, this type of behavior can also arise in
single-player games under certain solution concepts (Exam-
ple 15); we argue that this is a pathology as the single player
can always choose to ignore information. We show that this
issue can be circumvented by replacing each of these solu-
tion concepts with an appropriate refinement thereof, one of
which is a novel definition (Definition 17).

Next, we turn our attention to the computational aspects
of the value of recall. We show that VoR is NP-hard to com-
pute, and to approximate, for all solution concepts consid-
ered in this paper, even in single-player games (Theorem 1).
While this mostly follows from existing hardness results
for solving imperfect-recall games (Tewolde et al. 2023),
we prove new hardness results for some solution concepts,
which even rule out any multiplicative approximation factor.

Those hardness results notwithstanding, we characterize
VoR under optimal play in single-player games based on
certain natural properties of the game tree. In particular, we
show in Proposition 21 that value degradation due to imper-
fect recall can be fully explained by two sources: absent-
mindedness (an infoset being entered multiple times in a
path of play) and external stochasticity. In Propositions 23
and 26, we provide tight upper bounds for VoR for each
of these sources separately. Finally, as our main charac-
terization result, we show that those two bounds compose
for games that exhibit both absentmindedness and external
stochasticity (Theorem 2).

The aforedescribed characterization applies only to opti-
mal play. To extend it to more permissive solution concepts,
we make a connection with the price of anarchy literature.
Namely, inspired by the homonymous class of games in-
troduced by Roughgarden (2015), we introduce the notion
of a smooth (imperfect-recall) single-player game (Defini-
tion 29), and show VoR can be bounded in terms of the
smoothness parameters of the game, in conjunction with our
previous bound concerning optimal strategies. Besides this
connection with the price of anarchy, we further observe
that VoR captures some previously studied concepts, such as
the price of uncorrelation in adversarial team games (Celli
and Gatti 2018) and the price of miscoordination in security
games (Jiang et al. 2013), which enables interpreting their
results as bounds on VoR in those games.

Finally, we examine the value of recall with respect to
partial recall—instead of perfect recall—refinements. In
particular, we focus on the natural problem of refining an
imperfect-recall game so as to maximize the utility gain,
subject to constraining the amount of new recall. We show
that, even with oracle access to optimal strategies, that prob-
lem is NP-hard even in single-player games (Theorem 3).
We conclude with a number of interesting future directions
stemming from our work.



Preliminaries
Before we proceed, we provide some necessary background
on imperfect-recall games and solution concepts for them.

Games with imperfect recall
We start by introducing extensive-form games, following the
formalism introduced by Fudenberg and Tirole (1991).

Definition 1. An extensive-form game Γ specifies

1. A rooted tree with node set H and edges that represent
actions. The game starts at the root, and actions are taken
to traverse down the tree, until the game finishes at a leaf
node, called terminal node. The set of terminal nodes is
denoted by Z ⊂ H, and the set of actions available at
any nonterminal node h ∈ H \ Z is denoted by Ah.

2. A finite set N∪{c} of N+1 players where N ≥ 1. Set N
contains the strategic players, and c stands for a chance
“player” that models exogenous stochasticity. Each non-
terminal node h is assigned to a particular player i ∈
N ∪{c}, who chooses an action to take from Ah. Set Hi

denotes all nodes assigned to Player i.
3. For each chance node h ∈ Hc, a probability distribution

Pc(· | h) on Ah with which chance elects an action at h.
4. For each strategic player i ∈ N , a (without loss of gener-

ality) nonnegative utility (payoff) function ui : Z → R≥0

which returns what i receives when the game finishes at
a terminal node. Player i aims to maximize that utility.1

5. For each strategic player i ∈ N , a partition Hi = ⊔I∈Ii
I

of the nodes of i into information sets (infosets). Nodes of
the same infoset are considered indistinguishable to the
player at that infoset. For that, we also require Ah = Ah′

for h, h′ ∈ I . This also makes action set AI well-defined.

The game tree of Γ refers to H, {Ah}h∈H\Z , and {Pc(· |
h)}h∈Hc (but not its infoset partitioning or utilities). We now
formalize games where players may forget previously avail-
able information.

Definition 2 ((Im)perfect recall). For a decision node h of
a game Γ, let hist(h) = (hk)

depth(h)−1
k=0 be the ordered se-

quence of nodes from the root node h0 to h (excluding h)
and let seq(h) = (ik, Ik, ak)

depth(h)−1
k=0 be the corresponding

sequence of tuples showing which player ik acts at hk, the
infoset Ik of node hk, and what action ak was taken at hk .
For a player i ∈ N , let seqi(h) be the ordered subsequence
of tuples from seq(h) for which ik = i. We say player i has
perfect recall in Γ if for all of i’s infosets I ∈ Ii, and all
pairs of nodes h, h′ ∈ I , we have seqi(h) = seqi(h

′). Oth-
erwise, we say Player i has imperfect recall. We say that Γ is
a perfect-recall game if all players i ∈ N have perfect recall
in Γ. Otherwise, we say Γ is an imperfect-recall game.

Strategies and utilities Players can select a probability
distribution—a randomized action—over the actions at an
infoset. A (behavioral) strategy πi of a player i ∈ N speci-
fies a randomized action πi(· | I) ∈ ∆(AI) at each infoset

1Whenever relevant for computational results, we assume all
numbers to be rationals represented in binary.

I ∈ Ii. We say πi is pure if it assigns probability 1 to a sin-
gle action for each infoset. A (strategy) profile π = (πi)i∈N
specifies a strategy for each player. We use the common no-
tation π−i = (π1, . . . , πi−1, πi+1, . . . , πn). We denote the
strategy set of Player i with Si, and S =×i∈N Si.

We denote the reach probability of a node h′ from another
node h under a profile π as P(h′ | π, h). It evaluates to 0 if
h /∈ hist(h′), and otherwise to the product of probabilities
with which the actions on the path from h to h′ are taken un-
der π and chance. We denote with ui(π | h) :=

∑
z∈Z P(z |

π, h) · ui(z) the expected utility of Player i given that the
game is at node h and the players are following profile π.
We overload notation for the special case the game starts at
root node h0 by defining P(h | π) := P(h | π, h0) and
ui(π) := ui(π | h0). Finally, let I1st refer to the nodes h ∈ I
for which I does not appear in seq(h). Then the reach prob-
ability of I (from h0) is P(I | π) :=

∑
h∈I1st P(h | π).

Solution concepts
The value of recall, which we introduce in the next section,
does not only depend on the underlying game, but also on
our assumptions on what reasoning capabilities each player
has. These are formally captured by solution concepts.

Nash equilibrium This is the most classic solution con-
cept in game theory (Nash 1950).
Definition 3. A profile π ∈ S is a Nash equilibrium of a
game Γ if for each player i ∈ N ,

πi ∈ argmax
π′
i∈Si

ui(π
′
i, π−i). (1)

In the special case that Γ is a single-player game, we use
the term optimal strategy instead of Nash equilibrium.

Unfortunately, a Nash equilibrium is hard to compute,
even in a single-player game with imperfect recall (Koller
and Megiddo 1992; Gimbert, Paul, and Srivathsan 2020;
Tewolde et al. 2024). To make matters worse, it may not
even exist (Wichardt 2008). This motivates considering two
relaxations based on the multiselves approach (Kuhn 1953).

Multiselves equilibria The multiselves approach inter-
prets a player with imperfect recall as a team of multiple in-
stantiations of the player (referred to as agents to distinguish
from the original player) who independently act at distinct
infosets on behalf of the original imperfect-recall player.

For strategy πi ∈ Si of Player i, infoset I ∈ Ii, and ran-
domized action σ ∈ ∆(AI), we denote by πI 7→σ

i the strategy
that plays according to πi except at I , where it plays σ.
Definition 4. A profile π ∈ S is an EDT equilibrium of a
game Γ if for each player i ∈ N and each of its infosets
I ∈ Ii, the randomized action πi(· | I) satisfies πi(· | I) ∈
argmaxσ∈∆(AI) ui(π

I 7→σ
i , π−i).

EDT abbreviates evidential decision theory; we refer
to Piccione and Rubinstein (1997); Briggs (2010); Oester-
held and Conitzer (2024) for a detailed treatment and mo-
tivation. A third equilibrium concept that arose from the
aforementioned literature is based on causal decision the-
ory (CDT). It differentiates from EDT only in games with
absentmindedness, which is when a single infoset I appears



multiple times in seq(h) for some h ∈ H (Figure 2, left). Its
original definition is not central to this work and deferred to
the appendix of the full version of the paper. Instead, below
we give an equivalent characterization of it (Tewolde et al.
2024) using Karush-Kuhn-Tucker (KKT) points (Boyd and
Vandenberghe 2004), which generalize the concept of a sta-
tionary point of a function over an unconstrained domain.

Definition 5. A profile π ∈ S is a CDT equilibrium of a
game Γ if for each player i ∈ N , strategy πi is a KKT point
of the utility maximization problem (1).

These solution concepts form a strict inclusion hierarchy.

Lemma 6 (Oesterheld and Conitzer 2024). Nash equilibria
are EDT equilibria, which in turn are CDT equilibria.

In particular, Nash equilibria are the hardest to compute,
but they coincide in the following special cases.

Remark 7. EDT and CDT equilibria coincide in games
without absentmindedness. Nash and EDT equilibria coin-
cide in games with only one infoset per player.

Value of Recall
To introduce the novel concept of the value of recall, we first
formalize an ordering among infoset partitionings:

Definition 8 (Game refinements/coarsenings). Given two
extensive-form games Γ and Γ′ with the same game tree
and utilities but potentially different infosets {Ii}i∈N and
{I ′

i}i∈N , and a player i ∈ N , we denote Γ ⪰i Γ′ if for
each I ′ ∈ I ′

i, there exists Ji ⊆ Ii such that I ′ =
⊔

I∈Ji
I .

That is, the infosets in I ′ are (disjointly) partitioned by the
infosets in I. In this case, we say Γ (resp. Γ′) is a refinement
(coarsening) of Γ′ (Γ) with respect to player i. We denote
Γ ⪰ Γ′ if Γ ⪰i Γ

′ for all i ∈ N and say Γ (resp. Γ′) is an
all-player refinement (coarsening) of Γ′ (Γ).

We are now ready to define the perfect recall refinement
of an imperfect-recall game.

Definition 9 (Perfect recall refinements). Given imperfect-
recall game Γ, for all nodes h ∈ H and players i ∈ N ,
define seqi(h) as in Definition 2. For infoset I ∈ Ii and
nodes h, h′ ∈ I , define the equivalence relation h ∼ h′ if
seqi(h) = seqi(h

′). We say that the (coarsest) perfect recall
refinement of Γ with respect to player i ∈ N is an extensive-
form game Ri(Γ) with the same game tree and utilities as
Γ, but an infoset partition where each I ∈ Ii is partitioned
into infosets defined by the equivalence relation ∼, and the
infosets of all other players are unchanged. The all-player
(coarsest) perfect recall refinement of Γ is an extensive-form
game R(Γ) with the same game tree as Γ, where the infosets
of all players are partitioned as above.

An equivalent definition to R(Γ) was introduced by
Čermák et al. (2018). Both Ri(Γ) and R(Γ) are well-
defined, easy to compute, with Ri(Γ) ⪰i Γ and R(Γ) ⪰ Γ.
As claimed, Ri(Γ) is the coarsest refinement of Γ with re-
spect to i that gives i perfect recall. We formalize this below:

Proposition 10. Given imperfect-recall game Γ and another
game Γ′ that has the same game tree as Γ but potentially
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Figure 2: (Left) An imperfect-recall game Γ. Boxes indicate
chance nodes. (Middle) R1(Γ), the perfect recall refinement
of Γ with respect to ▲. (Right) Γ with perfect information.

different infosets, if Γ′ ⪰i Γ and i has perfect recall in Γ′,
then Γ′ ⪰i Ri(Γ). Moreover, i has perfect recall in Ri(Γ).2

(Most proofs are in the appendix due to space constraints.)

Corollary 11. If Γ′ ⪰ Γ and Γ′ is a perfect-recall game,
then Γ′ ⪰ R(Γ). Moreover, R(Γ) is a perfect-recall game.

By using the coarsest refinement, we seek to isolate the
impact of recall on the utility, while filtering out other fac-
tors. For instance, the optimal strategy for P1 (▲) in game Γ
in Figure 2(left) is to play L with probability 1/3, bringing
an expected utility of 2/3. If we give the player perfect in-
formation, and hence perfect recall in the process, the player
can achieve a utility of 2 (Figure 2, right). However, we ar-
gue this refinement misrepresents the “value of recall” of
this game, since P1 now learns the outcome of the chance
node, unlike in Γ. Instead, using the coarsest perfect recall
refinement, R(Γ) per Def. 9, leads to utility 3/2 (Figure 2,
middle) and properly captures what P1 can gain if its only
advantage is to remember everything it once knew.

The previous example notwithstanding, we should cau-
tion that distinguishing perfect recall and perfect informa-
tion can become blurry: any imperfect information game can
be turned into a strategically-equivalent one with only im-
perfect recall by adding dummy nodes, as we demonstrate
in the appendix.

Now, given an imperfect-recall game Γ, a player of inter-
est (always labelled Player 1), and a solution concept SC,
let u1(SC(Γ)) be the utility that Player 1 receives under that
solution concept in game Γ, assuming it exists. In order to
ensure that the utility under SC is uniquely defined (since,
for example, there might be multiple Nash equilibria of Γ
with different utilities for Player 1), we also require SC to
specify whether it is the best or worst possible outcome of
that solution concept from Player 1’s perspective; this is sim-
ilar to the definition of solution concepts in the value of com-
mitment (Letchford, Korzhyk, and Conitzer 2014). In partic-
ular, Nash,EDT,CDT (resp. Nash,EDT,CDT) refer to the
best (worst) possible outcome for Player 1 under the corre-
sponding solution concept.

2While intuitive, this last statement is not just definitional: even
though nodes h, h′ are placed in the same infoset of Ri(Γ) only if
seqi(h) = seqi(h

′), the infosets in these sequences are also poten-
tially partitioned, causing the sequences to change too.



Definition 12. Given solution concept SC and Γ, the value
of recall (VoR) in Γ under SC is

VORSC(Γ) =
u1(SC(R1(Γ)))

u1(SC(Γ))
.

If we are instead given a game class C , we say that the value
of recall (VoR) in C under SC is

VORSC(C ) = sup
Γ∈C

u1(SC(R1(Γ)))

u1(SC(Γ))
.

We can now formalize the situation that arises in Figure 1
and was discussed earlier in the introduction. To do so, we
note that strategies π and π′ are realization-equivalent if
they induce the same reach probability P(h | π) = P(h | π′)
for all h ∈ H (thus achieving the same utility).
Proposition 13. For any ε > 0, there exists a two-player
game Γ such that ui(SC(R1(Γ)))

ui(SC(Γ)) ≤ ε for all i ∈ N ,
where SC is the only CDT equilibrium of Γ, up to re-
alization equivalence. In particular, VORSC(Γ) = 0 for
SC ∈ {CDT,CDT,EDT,EDT,Nash,Nash}.

Computational complexity of value of recall
We now show that computing the value of recall is hard. For
this theorem alone, we assume (WLOG) for all z ∈ Z that
u1(z) ≥ η for some η > 0, to ensure VoR is bounded.

Theorem 1. Given a game Γ, computing VORSC(Γ) is NP-
hard for {CDT,CDT,EDT,EDT,Nash,Nash}. Moreover,
1. Unless NP = ZPP, none of them admits an FPTAS. In

particular, if SC ∈ {CDT,EDT}, then approximation to
any multiplicative factor is NP-hard.

2. NP-hardness and conditional inapproximabiltiy holds
even if Γ is a single-player game.

A fully polynomial-time approximation scheme (FPTAS)
takes as input a game Γ, a solution concept SC, and an ε > 0

and outputs a number in the interval (1±ε)VORSC(Γ). Fur-
ther, ZPP contains the class of problems solvable by ran-
domized algorithms that always return the correct answer,
and whose expected running time is polynomial (Gill 1977).

Most of the proof of Theorem 1 relies on existing hard-
ness results for equilibrium computation in (single-player)
imperfect-recall games (Koller and Megiddo 1992; Tewolde
et al. 2023; Gimbert, Paul, and Srivathsan 2020). The re-
sults for CDT and EDT are new, further establishing stronger
inapproximability; both proofs proceed by reducing from
3SAT, as we elaborate in the appendix.

VoR pathologies and how to fix them
While Proposition 13 shows that getting recall can hurt in
general, one would expect this to not be the case in single-
player games. Indeed, without any opponents, we would ex-
pect giving recall to only benefit the player, since it can al-
ways ignore the information it can now recall. This is the
case if SC represents the optimal strategy (Opt), as getting
perfect recall expands the strategy set of a player. Further,
since the optimal strategy of a game is also its best CDT and
EDT equilibrium (Lemma 6), we have the following:
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Figure 3: Perfect recall can lead to worse CDT/EDT eq.

Proposition 14. For any single-player game Γ,

VOROpt(Γ) = VOREDT(Γ) = VORCDT(Γ) ≥ 1.

Surprisingly, it turns out that this result in fact does not
hold for worst EDT and CDT equilibria of the game:
Example 15. Consider the game Γ in Figure 3a. The only
CDT/EDT equilibrium of Γ is the optimal strategy: always
play L, bringing a utility of 1. In R1(Γ), however, while the
same is still the optimal strategy (and hence a CDT and
EDT equilibrium), there is now a second CDT and EDT
equilibrium: always play R on I1 and I21, and always play
L on I22, bringing a utility of ε. Hence, VOREDT(Γ) =
VORCDT(Γ) = ε, which can be arbitrarily close to 0.

The issue in Example 15 is that of the chicken or the egg:
the unreasonable strategy of playing R at I21 cannot violate
CDT/EDT conditions if the player never visits I21, while if
the strategy in I21 is unreasonable enough then the decision
to not visit I21 also does not violate them. This shows that
CDT/EDT conditions (which, again, are relaxations of Nash
equilibrium) are perhaps too permissive, accepting strate-
gies that are not reasonable under perfect recall. To rule out
such equilibria, we now introduce equilibrium refinements
for both solution concepts. (It is important to differentiate
between equilibrium refinements—which narrows the def-
inition of a solution concept—and information refinements,
per Definition 8—which introduces a new game where play-
ers have finer infosets.) The refinements of CDT/EDT that
we introduce will force the player to consider its behavior in
all infosets it could have reached, hence preventing patholo-
gies such as Example 15.

The appropriate equilibrium refinement for CDT has been
introduced by Lambert, Marple, and Shoham (2019), which
we will refer to as CDT-Nash. Due to space constraints, we
defer its definition to the appendix. Below, we introduce an
analogous, novel refinement called EDT-Nash. The relevant
properties of both refinements are in Propositions 18 and 19.
Definition 16. A strategy π in a single-player game Γ is
EDT-limit-rational if there is a sequence (π(k), ε(k))k∈N s.t.

1. each π(k) is a strategy in Γ such that π(k)(a | I) > 0 for
all I and a, and (π(k))k∈N converges to π;

2. each ε(k) > 0 and (ε(k))k∈N converge to 0; and
3. for each k, for all I with P(I | π(k)) > 0 and σ ∈ ∆(AI),

1

P(I | π(k))
·
(
u1(π

(k),I 7→σ)− u1(π
(k))

)
≤ ε(k).



Intuitively, the sequence of fully mixed strategies prevents
the player from ignoring any infosets it could have reached.

Definition 17. A profile π is an EDT-Nash equilibrium of
Γ if it is an EDT equilibrium and if for all i ∈ N , and in
the single-player perspective of Γ (where every other player
plays fixed π−i), the strategy πi is realization-equivalent to
an EDT-limit-rational strategy π.

The key property of our refinement is that it agrees with
the optimal strategy under perfect recall.

Proposition 18. EDT-Nash equilibria are EDT equilibria.
Without absentmindedness, a strategy profile is an EDT-
Nash equilibrium iff it is a CDT-Nash equilibrium. Under
perfect recall, a strategy profile is an EDT-Nash equilibrium
iff it is a Nash equilibrium.

An analogous result was shown by Lambert, Marple, and
Shoham (2019) for CDT-Nash equilibria:

Proposition 19 (Lambert, Marple, and Shoham 2019).
CDT-Nash equilibria are CDT equilibria, and they always
exist. Under perfect recall, a strategy profile is a CDT-Nash
equilibrium iff it is a Nash equilibrium of Γ.

The above propositions imply that in a single-player game
with perfect recall, the only CDT-Nash and EDT-Nash equi-
librium is the optimal strategy. Combined with Proposi-
tion 14, this shows that the refinements successfully resolve
the pathologies that arose with CDT/EDT.

Corollary 20. Given single-player game Γ, VORSC(Γ) ≥ 1
for SC ∈ {CDT-Nash,CDT-Nash,EDT-Nash,EDT-Nash}.

Bounding the Value of Recall
In this section, we first focus on bounding VOROpt for
single-player games, and show that while it can be arbitrarily
large in general, we can still parameterize it using properties
of the game tree and the utility functions. Later on, we show
how VORSC for other solution concepts can be bounded in
conjunction with these parametrizations.

A key observation is that in single-player games, there are
exactly two factors that can lead to a change in the optimal
utility when perfect recall is introduced: (1) absentminded-
ness, and (2) chance nodes. Indeed, if neither is present, the
optimal utility remains unchanged.

Proposition 21. For a single-player game Γ with no chance
nodes and with no absentmindedness, VOROpt(Γ) = 1. Fur-
ther, for both Γ and R1(Γ), there is a pure optimal strategy.

As we will show, either absentmindedness or chance
nodes is sufficient to have a game with VOROpt(Γ) > 1. We
first deal with each of these cases separately, before moving
on to games that exhibit both.

VoR due to absentmindedness To bound the impact of
absentmindedness, we first parameterize the number of
times an infoset is visited and an action is taken on the way
to a leaf node. Given a single-player game Γ, for any z ∈ Z
with seq(z) = (ik, Ik, ak)

depth(z)−1
k=0 , for each I ∈ I1 and

a ∈ AI let nz(I) = |{k : Ik = I}|, nz(a) = |{k : ak =

0
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Figure 4: (Left) Example 24, n = 4. (Right) Ex. 28, n = 2

a}|, and pz(a) =
nz(a)
nz(I)

. Then, we define

α(z) =
∏

I∈I1:nz(I)>1
a∈AI :nz(a)>0

pz(a)
nz(a) ∈ (0, 1]

to be the absentmindedness coefficient of z. Intuitively, it
describes how easy it is to reach z under absentmindedness:
Lemma 22. Given single-player game Γ with no chance
nodes, for all z ∈ Z , there exists a strategy πz that reaches
z with probability α(z), achieving u1(πz) ≥ α(z)u1(z).

We are now ready to introduce our upper bounds for VOR
in terms of the absentmindedness coefficients:
Proposition 23. In a single-player game Γ without chance
nodes, we have

VOROpt(Γ) ≤ maxz∈Z u1(z)

maxz∈Z α(z)u1(z)
≤ 1

α(z∗)

where z∗ = argmaxz∈Z u1(z).

As we see next, the inequalities in Proposition 23 are tight.
Example 24. Consider a single-player game Γ where Lenny
needs to pick between the action L and the action R for n
consecutive rounds for some even n. He gets utility 1 if he
first plays L exactly n/2 times followed by R the remaining
n/2 times. If he does anything else, the game is over and he
gets 0 utility. Moreover, his memory is reset each time.

The game tree of Γ has n nodes, n+1 leaves, and a single
infoset I . Figure 4(Left) depicts this for n = 4. Let z∗ be the
single leaf node with u1(z

∗) = 1. The optimal strategy in
R1(Γ) (where each node is its own infoset) is to arrive at z∗,
guaranteeing a utility of 1. In Γ, however, Lenny cannot do
anything better than playing uniformly at random, achieving
an expected utility of 2−n. Moreover, α(z∗) = 2−n. Hence,
for Γ, all of the inequalities in Proposition 23 are tight.

Example 24 is the worst-case scenario with regard to ab-
sentmindedness: only one leaf node brings positive utility,
and reaching it requires playing each action equally often.

Importantly, α(z) is independent of the utilities of Γ. This
allows us to interpret Proposition 23 in two parts: a tighter
bound on Γ using its utilities, and another bound that applies
to all games that differ from Γ only by their utility functions.



Corollary 25. Given a single-player game Γ without chance
nodes, say C is the class of games that share the same game
tree and infoset partition as Γ. Then

VOROpt(C ) = max
z∈Z

1

α(z)
.

VoR due to chance nodes We now do a similar analysis
for chance nodes. Given a single-player game Γ, for any z ∈
Z with seq(z) = (ik, Ik, ak)

depth(z)−1
k=0 , say k1, k2, . . . kℓ are

steps that correspond to chance nodes, i.e., ikj = c for all
j ∈ [ℓ]. Then, the chance coefficient of leaf node z is

χ(z) =

ℓ∏
j=1

Pc(akj
|hkj

)

if ℓ > 0 and χ(z) = 1 otherwise. χ(z) is the probability of
reaching z in R1(Γ) (i.e., under perfect recall), given that the
player is trying to reach it. For each chance node h ∈ Hc,
and each a ∈ Ah, say Hha ⊂ Hc are the chance nodes
in the subtree rooted at ha (the node reached when chance
plays a at h). Then the branching factor of h is β(h) =∑

a∈Ah
bh(a), where

bh(a) =

{
1 if |Hha| = 0

maxh∈Hha
β(h) otherwise

.

One can compute β(h) for each h ∈ Hc recursively, starting
from the bottom of the tree (that is, the leaf nodes). We now
have all the tools we need for characterizing the impact of
chance nodes on VoR.
Proposition 26. In a single-player game Γ without absent-
mindedness, we have3

VOROpt(Γ) ≤ u1(Opt(R1(Γ)))

maxz∈Z χ(z)u1(z)
≤ max

h∈Hc

β(h).

Corollary 27. Given a single-player game Γ without ab-
sentmindedness, say C is the class of games that share the
same game tree and infoset partition as Γ. Then

VOROpt(C ) ≤ max
h∈Hc

β(h).

The reason we have an inequality for the game class, un-
like in Corollary 25, is that while absentmindedness does
imply imperfect recall, chance nodes alone do not tell us
anything about the information structure of the game. We
now show that the bounds in Proposition 26 are also tight.
Example 28. Consider a game Γ that starts with a single
chance node hc with |Ahc | = n, each played with equal
probability. Under each outcome, Dory needs to act twice,
using the same action set as chance Ahc

, and gets utility
1 only if she replicates the action of the chance node both
times, and 0 otherwise. Each of Dory’s nodes immediately
following the chance node is in its own information set of
size 1, and every other node is in a single information set.
Figure 4(Right) shows the game tree for n = 2.

In R1(Γ), Dory has perfect information and can guar-
antee utility 1. However, with imperfect recall, the best she

3By convention, we assume maxh∈Hc β(h) = 1 if Hc = ∅.

can do is select the correct action the first time she acts, and
then any strategy she will follow on the large information
set will bring her expected utility 1/n. Moreover, β(hc) = n
and maxz∈Z χ(z)u1(z) = 1/n, showing that for Γ all the
inequalities in Proposition 26 are tight.

We end this section by showing that our results from
Propositions 23 and 26 do in fact compose, hence giving
a parameterization of VOROpt for any single-player game.
Theorem 2. For a single-player game Γ, say C is the class
of games that share the same game tree and infosets. Then

VOROpt(C ) ≤ max
z∈Z,h∈Hc

β(h)

α(z)
.

Smooth imperfect-recall games
Remaining on single-player games, here we bound the
value of recall for a broader set of equilibria. Our ap-
proach is driven by a connection with the price of anarchy
(PoA). In particular, we introduce the notion of a smooth
(single-player) imperfect-recall game, which is based on the
homonymous class of (multi-player) games by Roughgar-
den (2015). Below, we denote by (πI)I∈I1

∈ S the player’s
strategy, and use the notation π−I := (πI′)I′∈I1\{I}.
Definition 29. A single-player game Γ is (λ, µ)-smooth if
there exists π∗ ∈ S such that for any π ∈ S,

1

|I1|
∑
I∈I1

u1(π
∗
I , π−I) ≥ λu1(Opt(Γ))− µu1(π). (2)

The rationale behind this definition is that it enables dis-
entangling the left-hand side of (2) via a suitable strategy π∗,
with the property that if followed by each infoset separately,
a non-trivial fraction of the optimal utility can be secured
no matter the strategy in the rest of the infosets. While this
may appear like an overly restrictive property, it manifests it-
self in many important applications (Roughgarden, Syrgka-
nis, and Tardos 2017). In Definition 29, infosets play the role
of strategic players in Roughgarden’s formalism; we provide
a concrete example of a smooth imperfect-recall game in the
appendix.

Now, by definition, an EDT equilibrium π satisfies
u1(π) ≥ 1

|I1|
∑

I∈I1
u1(π

∗
I , π−I) (by applying Definition 4

successively for each infoset). Combining with (2), we im-
mediately arrive at the following conclusion.
Proposition 30. Let Γ be a (λ, µ)-smooth, single-player
game. For any EDT equilibrium π ∈ S,

u1(π) ≥
λ

1 + µ
u1(Opt(Γ)).

In words, ρ := λ/(1 + µ) measures the degradation in-
curred in an EDT equilibrium, which is referred to as the ro-
bust price of anarchy in the parlance of Roughgarden (2015).
In light of Proposition 30, bounding VOREDT(Γ) reduces to
relating u1(Opt(Γ)) in terms of u1(Opt(R(Γ))), which was
accomplished earlier in Theorem 2.
Corollary 31. Let Γ be a (λ, µ)-smooth, single-player
game. Then

VOREDT(Γ) ≤ 1 + µ

λ
max

z∈Z,h∈Hc

β(h)

α(z)
.
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Figure 5: Partial recall gives a worse EDT-Nash equilibrium:
In (a), the only EDT-Nash equilibrium is playing L; in (b),
playing R in both infosets is also an EDT-Nash equilibrium.

This also applies to EDT-Nash always and (by Remark 7)
to CDT and CDT-Nash when Γ has no absentmindedness.

Further connections
In addition, we note that the value of recall (Definition 12)
encompasses several notions from prior literature. First, the
price of uncorrelation in adversarial team games (Celli and
Gatti 2018), which measures how much of a team of play-
ers facing a single adversary can gain from communicating,
corresponds to VORNash(C 2p0s), where C 2p0s is the class
of two-player zero-sum games (based on their construction,
one of the players—corresponding to the adversary—has
perfect recall).

Second, the price of miscoordination in security games
(Jiang et al. 2013), which measures the utility loss due to
having multiple defenders rather than a single one, corre-
sponds to the VoR in this game class; here, SC corresponds
to Stackelberg equilibria, which involves Player 1 commit-
ting to a strategy and its opponent best responding. We ex-
pand on the above connections in the appendix.

Partial Recall Refinements
So far, we have defined the value of recall based on the
(coarsest) perfect-recall refinement. It is also natural to con-
sider the change in utility due to obtaining partial recall.
Definition 32 (Partial recall refinements). Given games Γ
and Γ′ with the same game tree but possibly different info
sets, Γ′ is a partial recall refinement of Γ with respect to a
player i ∈ N if Ri(Γ) ⪰i Γ′ ⪰i Γ. Further, Γ′ is an all-
player partial recall refinement of Γ if R(Γ) ⪰ Γ′ ⪰ Γ.

Partial recall refinements introduces further interesting
properties. For example, Figure 5 shows that partial recall
can lead to a worse EDT-Nash equilibrium in a single-player
game; this stands in contrast to perfect recall refinements
(Corollary 20).

In what follows, we study the complexity of perhaps the
most natural problem arising from Definition 32: how should
one refine an imperfect-recall game so as to maximize the
utility gain, subject to constraining the amount of new recall.
This problem is well-motivated from the literature on ab-
straction (e.g., Kroer and Sandholm 2016), but to our knowl-
edge, it has not been studied in this form. To formalize con-
straints on recall, we first introduce the following notation:
consider games Γ,Γ′ that differ solely on infosets for i ∈ N
(Ii and I ′

i, respectively). We write Γ′ ⊢i Γ if there is I ∈ Ii

such that I ′
i = Ii \ {I} ∪ {I1, I2}, where I = I1 ⊔ I2; i.e.,

Γ′ results from splitting a single infoset of i in Γ.
Definition 33. Fix a player i ∈ N . We say Γ is its own 0-
partial recall refinement. Γ′ is a k-partial recall refinement
of Γ if it is a partial recall refinement of Γ and Γ′ ⊢i Γ′′,
where Γ′′ is some (k − 1)-partial recall refinement of Γ.

This restriction is motivated by the fact that many prac-
tical algorithms scale with the number of infosets, and so
one naturally strives to minimize that when abstracting a
game (Kroer and Sandholm 2014, 2016).

Then, the computational problem k-BESTPARTIAL(Γ)
asks: given a parameter k ∈ N and a single-player game
Γ, compute its k-partial recall refinement Γ′ that maximizes
u1(Opt(Γ′)). For this task, we assume to be given access to
an oracle O that outputs the optimal utility of any single-
player game; even though such an oracle can only make the
problem easier, we show the following hardness result.
Theorem 3. k-BESTPARTIAL(Γ) is NP-hard.

Our proof relies on a reduction from exact cover by 3-sets
(Garey and Johnson 1979), which asks to exactly cover a set
of items using a given family of subsets of size three. Our
construction consists of a chance node with an action per
item, followed by player nodes with an action per subset.

Conclusions and Future Research
We introduced the value of recall, which measures the util-
ity gain by granting a player perfect recall. Our work opens
many interesting avenues for future research. First, the value
of recall could be used to guide abstraction techniques. We
also observed the interesting phenomenon that perfect recall
can be hurtful to all players. It would be interesting to pro-
vide a broader characterization of games where this is so—a
natural candidate being simulation games (Kovarı́k, Oester-
held, and Conitzer 2024), and quantify the price of recall
therein. Furthermore, we have focused on the value of recall
from the perspective of a single player, but understanding
the impact on social welfare is a natural next step.
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Pěchouček, M. 2018. Approximating maxmin strategies in
imperfect recall games using A-loss recall property. Inter-
national Journal of Approximate Reasoning, 93: 290–326.
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