
Assignment 1: Induction

Model Solution

15-312 Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

February 3, 2005

Please refer to the assignment itself for the full description and statement of each
problem.

§ 1. Higher-order abstract syntax (5 points). There wasn’t much of a trick
to the first part of this problem. The main mistakes were not including a production
for variables x, or including x.e by itself as a production. Remember that x.e doesn’t
mean anything by itself; we use it in combination with the op(arg , . . .) notation to
denote places where variables are bound.

A1.1. The grammar is

e ::= plus(e1, e2) | times(e1, e2) | integ(e1, e2, x.e) | sum(e1, e2, x.e) | x,
and

∑b
i=a e is represented by sum(a, b, i.e).

The second (extra credit) part was tricky. The catch is that

¿
d

dx
(x · x) =

d

dy
(y · y) ?

is not a valid α-conversion. (To see this: the left-hand side is mathematically equal
to 2 · x, while the right-hand side is 2 · y, which are certainly not α-equivalent.) The
underlying reason is that the derivative (d/dx) really turns a function into a function.
The way to get good higher-order abstract syntax is to add a second argument to the
derivative operator specifying at which point the derivative is to be evaluated. This
is analogous to the explicit limits we have on the integral and sum signs.

A1.2. The grammar is

e ::= . . . | deriv(e1, x.e2),

and (d/dx)(e2)|x=e1 is represented by deriv(e1, x.e2).

Now we have
d

dx
(x · x) =

d

dx
(x · x)|x=x =

d

dy
(y · y)|y=x 6=

d

dy
(y · y)|y=y =

d

dy
(y · y)

so the problem with α-conversion is fixed.

1

§ 2. Substitution theorem (25 points). This problem was rather difficult for
a number of reasons. First, why were the notions of free variable and substitution
given as inference rules rather than as functions, like we saw in lecture? Because
the best way to prove the theorem turns out to be by induction over the derivation
{e1/x}e2 = e3 of substitution. It’s possible to induct over the derivation x : int,Γ `
e2 : int, but the proof turns out to be less direct.

If you’re trying to prove a theorem, and there are several possible derivations you
could induct on, how can you decide which one to use? One rule of thumb is to see
which derivation gives you the most useful information. In this problem, inducting
on {e1/x}e2 = e3 gives us information about both e2 and e3, which turns out to be
extremely useful in writing the cases. If we induct on x : int,Γ ` e2 : int, we only
get information about e2.

Another issue that seemed to cause trouble was understanding the difference
between using an inference rule in the forward direction, from knowing the premises
to knowing the conclusion, and using inversion to move backwards from the conclusion
to the premises. If you’ve already written the premises of a rule as lines in your proof,
you can write the conclusion as the next line of the proof. That’s just ordinary forward
reasoning.

But if you have the conclusion of a rule as a line (say it’s line n) in your proof, you
can’t just write a premise as line n + 1 and call it an application of the rule. If you
want to move backwards this way, you need to call it inversion and you need to make
sure that the rule you’re inverting on is the only rule that has a conclusion matching
line n. If more than one rule has a conclusion matching line n, then you need to do
case analysis, with one case for each rule that could possibly be the bottom-most rule
in the derivation represented by line n.

A2.1. Proof. By rule induction on the derivation of {e1/x}e2 = e3.

Case [{e1/x}x = e1
SVar=]:

where e2 = x and e3 = e1

wts Γ ` e1 : int
1. Γ ` e1 : int (given)

Case [
x 6= y

{e1/x}y = y
SVar6=

]:
where e2 = y and e3 = y

wts Γ ` y : int
1. x : int,Γ ` y : int (given)
2. Γ(y) = int (x 6= y, inversion on 1)
3. Γ ` y : int (Var on 2)

Case [
{e1/x}e′2 = e′3 {e1/x}e′′2 = e′′3
{e1/x}(e′2 + e′′2) = (e′3 + e′′3) SPlus]:

where e2 = e′2 + e′′2 and e3 = e′3 + e′′3
wts Γ ` e′3 + e′′3 : int

2

1. x : int,Γ ` e′2 + e′′2 : int (given)
2a. x : int,Γ ` e′2 : int (inversion on 1)
2b. x : int,Γ ` e′′2 : int (inversion on 1)
3. Γ ` e1 : int (given)
4. Γ ` e′3 : int (i.h. on {e1/x}e′2 = e′3, 3, and 2a)
5. Γ ` e′′3 : int (i.h. on {e1/x}e′′2 = e′′3 , 3, and 2b)
6. Γ ` e′3 + e′′3 : int (Plus on 4 and 5)

Case [{e1/x}k = k
SNum]:

where e2 = k and e3 = k

wts Γ ` k : int
1. Γ ` k : int (Num)

Case [
FV(e1) = S y /∈ S ∪ {x} {e1/x}e′2 = e′3 {e1/x}e′′2 = e′′3
{e1/x}(let y = e′2 in e′′2 end) = (let y = e′3 in e′′3 end) SLet]:

where e2 = (let y = e′2 in e′′2 end) and e3 = (let y = e′3 in e′′3 end)
wts Γ ` (let y = e′3 in e′′3 end) : int

1. x : int,Γ ` (let y = e′2 in e′′2 end) : int (given)
2a. x : int,Γ ` e′2 : int (inversion on 1)
2b. x : int,Γ, y : int ` e′′2 : int (inversion on 1)
3. Γ ` e1 : int (given)
4. y /∈ S (y /∈ S ∪ {x})
5. Γ, y : int ` e1 : int (Weakening Lemma on 3, FV(e1) = S, and 4)
6. Γ ` e′3 : int (i.h. on 3 and 2a)
7. Γ, y : int ` e′′3 : int (i.h. on 5 and 2b)
8. Γ ` (let y = e′3 in e′′3 end) : int (Let on 6 and 7)

And that’s the whole proof.

One thing to note about this proof is that each rule in the rule induction is
copied at the start of its case, with variables renamed in order to make sure they
don’t collide with the variable names in the statement of the theorem. This is really
important. Several people got themselves tangled up doing this proof because of a
collision between a name like Γ in the rule for the case they were working on and a
different Γ in the statement of the theorem.

How many steps do I have to show? There aren’t really any hard and fast rules,
but there are certainly some steps you can never omit:

• Stating which derivation you are inducting on, or case analyzing.

• Applying an inference rule in the forward direction.

• Using inversion to analyze an inference rule in the backward direction.

• Appealing to the induction hypothesis.

3

• Using the definition of some operator. (Example: using the definition of collaps-
ing for C-machine stacks to get (k � 2 + e2) @ e1 = k @ (e1 + e2).)

Any time you do any of these things it needs to be a separate step in your proof.

§ 3. Propositional logic (20 points). The first question was straightforward.
A3.1.

Pi prop

A prop B prop

A⇒ B prop

The proof for the second question was somewhat easier because there was only one
possible derivation to induct on.

A3.2. Proof. By rule induction on the derivation of A thm.

Case [A′ ⇒ B′ ⇒ A′ thm
K]:

where A = (A′ ⇒ B′ ⇒ A′)
wts A′ ⇒ B′ ⇒ A′ is a tautology
Hypothetical. Suppose we have a truth assignment for P0, P1,

This determines the truth assignment for A′ and B′, and by the recursive
definition of truth value, the truth assignment for A.

A′ B′ A′ ⇒ B′ A

true true true true

true false false true

false true true true

false false true true

Examining the table, we see that the truth assignment for A must be true.

So, for any truth assignment for P0, P1, . . ., the truth assignment for A is true. Then
by definition A is a tautology.

Case [(A′ ⇒ B′ ⇒ C ′)⇒ (A′ ⇒ B′)⇒ (A′ ⇒ C ′) thm S]:
where A = ((A′ ⇒ B′ ⇒ C ′)⇒ (A′ ⇒ B′)⇒ (A′ ⇒ C ′))
wts (A′ ⇒ B′ ⇒ C ′)⇒ (A′ ⇒ B′)⇒ (A′ ⇒ C ′) is a tautology
Hypothetical. Suppose we have a truth assignment for P0, P1,

This determines the truth assignment for A′, B′, and C ′, and by the

4

recursive definition of truth value, the truth assignment for A.

A′ B′ C ′ A′ ⇒ B′ A′ ⇒ C ′ B′ ⇒ C ′ A′ ⇒ B′ ⇒ C ′ A

true true true true true true true true

true true false true false false false true

true false true false true true true true

true false false false false true true true

false true true true true true true true

false true false true true false true true

false false true true true true true true

false false false true true true true true

Examining the table, we see that the truth assignment for A must be true.

So, for any truth assignment for P0, P1, . . ., the truth assignment for A is true. Then
by definition A is a tautology.

Case [
B ⇒ A thm B thm

A thm
App

]:
wts A is a tautology

1. B ⇒ A is a tautology (i.h. on B ⇒ A thm)
2. B is a tautology (i.h. on B thm)

Hypothetical. Suppose we have a truth assignment for P0, P1,

This determines the truth assignment for A, B, and B ⇒ A.

A B B ⇒ A

true true true

true false true

false true false

false false true

By step 1, and the definition of tautology, we know that the truth assign-
ment for B ⇒ A is true. By step 2, and the definition of tautology, we
know that the truth assignment for B is true. Then only the first line of
the table can possibly apply, so the truth assignment for A is true.

So, for any truth assignment for P0, P1, . . ., the truth assignment for A is true. Then
by definition A is a tautology.

The third (extra credit) question was tricky. Both A ⇒ A and A ⇒ B ⇒ C ⇒ A

were suggested as tautologies (correct) that are not theorems (wrong). It seems hard
to believe, when you first look at the rules App, K, and S, that these could be
theorems. But they both are.

Claim 1. A⇒ A thm is derivable.
Proof. By forward reasoning. Pick any B you like (say B = P0).

1. (A⇒ (B ⇒ A)⇒ A)⇒ (A⇒ B ⇒ A)⇒ (A⇒ A) thm (S)
2. A⇒ (B ⇒ A)⇒ A thm (K)

5

3. A⇒ B ⇒ A thm (K)
4. (A⇒ B ⇒ A)⇒ (A⇒ A) thm (App on 1 and 2)
5. A⇒ A thm (App on 4 and 3)

We need another little lemma to work our way up to A⇒ B ⇒ C ⇒ A thm.

Claim 2. If A⇒ C thm is derivable then A⇒ B ⇒ C thm is derivable.
Proof. By forward reasoning.

1. (A⇒ C ⇒ B ⇒ C)⇒ (A⇒ C)⇒ (A⇒ B ⇒ C) thm (S)
2. (C ⇒ B ⇒ C)⇒ A⇒ (C ⇒ B ⇒ C) thm (K)
3. C ⇒ B ⇒ C thm (K)
4. A⇒ C ⇒ B ⇒ C thm (App on 2 and 3)
5. (A⇒ C)⇒ (A⇒ B ⇒ C) thm (App on 1 and 4)
6. A⇒ C thm (given)
7. A⇒ B ⇒ C thm (App on 5 and 6)

Now we can finish.

Claim 3. A⇒ B ⇒ C ⇒ A thm is derivable.
Proof. By forward reasoning.

1. A⇒ A thm (Claim 1)
2. A⇒ C ⇒ A thm (Claim 2 on 1)
3. A⇒ B ⇒ C ⇒ A thm (Claim 2 on 2)

So these answers don’t work. A couple of students came up with a correct answer:

A3.3. ((A⇒ B)⇒ A)⇒ A is a tautology for any A and B, but ((P0 ⇒ P1)⇒
P0)⇒ P0 thm is not derivable.

The law ((A ⇒ B) ⇒ A) ⇒ A is called Pierce’s law (no relation to Benjamin
Pierce). A proof that ((P0 ⇒ P1)⇒ P0)⇒ P0 thm is not derivable is rather difficult,
requiring advanced techniques from logic.

One interesting connection with programming languages is that the rules K, S,
and App have counterparts in type systems. Compare App with the typing rule for
application:

A⇒ B thm A thm
B thm

App
Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′

If we erase the Γ and e parts of Γ ` e : τ , they’re really the same. Similarly, there are
typings

Γ ` lam(x.lam(y.lam(z.x z (y z)))) : (τ1 → τ2 → τ3)→ (τ1 → τ2)→ (τ1 → τ3)

and

Γ ` lam(x.lam(y.x)) : τ1 → τ2 → τ1

corresponding to S and K, respectively. (Here lam(x.e) abbreviates fun f(x : τ1) : τ2.e

for some unused f and some types τ1 and τ2 we don’t care about.)
Then the proof of A ⇒ A thm from above, for example, has a programming-

language interpretation as a combination of these lambda terms having type τ1 →

6

τ1 for any τ1. (A good exercise is to work out the combination, and see that its
operational semantics is the same as the identity function.)

This analogy between logic and programming languages goes very deep, and is
important enough to have a special name: the Curry-Howard correspondence. One of
the key ideas of programming languages, polymorphic types, was first discovered by
bringing a similar idea over from logic via the C.-H. correspondence.

One interesting aspect of all this is that the correspondence doesn’t work between
our MinML programs and classical logic (logic based on truth tables). There is no
MinML program having type ((τ1 → τ2) → τ1) → τ1 for all τ1 and τ2 (assuming we
don’t use recursion). The notion of logic defined by App, K, and S, which corresponds
to MinML without recursion, is called constructive logic. Pierce’s law ((A ⇒ B) ⇒
A)⇒ A does not hold in constructive logic.

So is there a programming language, some extension of MinML perhaps, corre-
sponding to classical logic? In fact there is: if we add the right notion of continuations
to MinML, then there will be a (non-recursive) program having type ((τ1 → τ2) →
τ1) → τ1 for all τ1 and τ2. This would be a great exercise to work out, once we see
what continuations look like in MinML.

Finally, it turns out that if we work in an untyped setting, the programs correspond-
ing to K and S, together with application, all by themselves form a Turing-complete
programming language. This is the basis for the amusing language Unlambda, which
you can google at your leisure. Challenge problem: find a single axiom that, along with
App, lets you prove exactly the same theorems you can prove with App, S, and K.
The corresponding program is a single operator that, together with application, forms
a Turing-complete programming language. So there’s an untyped Turing-complete
language even simpler than Unlambda.

7

