
Assignment 1: Induction

15-312: Foundations of Programming Languages
Kevin Watkins (kw@cmu.edu)

Out: Thursday, 20 Jan 2005
Due: Thursday, 27 Jan 2005 (10:30 am)

50 points total

Welcome to 15-312! This assignment is intended to give you exercise with the kind of thinking
that we’ll do in this course. You are encouraged, but not required, to typeset your answers; if
you write by hand, write legibly. The assignment is due at the beginning of lecture on Thursday,
January 27.

Credit in this assignment will reflect the clarity and mathematical rigor with which you present
your arguments. A proof should be self-evident. Although some things may seem obvious, please
take care to be precise and complete.

Be sure that what you say in your proof is correct. Less credit will be given for incorrect steps
than for missing steps. You will receive more points turning in an explanation of your strategy
and leaving blank parts where you couldn’t finish the proof, than turning in a complete proof with
incorrect steps.

Of course, if you have any questions, feel free to e-mail Kevin Watkins (kw@cmu.edu) or come
to office hours!

All work must be your own. Please read the collaboration policy at

http://www.cs.cmu.edu/~crary/312/assignments.html

1

1 Higher-order abstract syntax (5 points)

In recitation we saw higher-order abstract syntax for the integral operator
∫ b
a e dx of calculus.

Question 1.1 (5 points).

Using our standard notations for higher-order abstract syntax with names:

op(e1, . . . , en), x, x.e,

fill in the rest of a grammar for a language of calculus expressions including operators
for e1 + e2, e1 · e2,

∫ b
a e dx, and

∑b
i=a e. The first part is done for you:

e ::= plus(e1, e2) | . . .

Question 1.2 (EXTRA CREDIT).

Extend the grammar with higher-order abstract syntax for a derivative operator. (This
is tricky!)

2 Substitution theorem (25 points)

An important theorem of a programming language is the substitution theorem. Informally, it states
that the result of substitution of a well-typed term for a free variable of another well-typed term is
itself well-typed. In order to be able to state the substitution theorem, we need a definition of well-
typedness and a definition of substitution. In class we wrote substitution as a partial function. Here
we want to prove a property of substitution by rule induction, so we will define it by a judgment
with inference rules instead.

Here are the judgments that we define:

Γ ` e : int In the context Γ, e has type int (the only type of our lan-
guage).

FV(e) = S S is the set of free variables in e.
{e1/x}e2 = e3 Substituting e1 for free occurrences of x in e2 results in ex-

pression e3.

Here is the grammar for our language:

Γ ::= · | Γ, x : int
e ::= k | e1 + e2 | x | letx = e1 in e2 end
k ::= 0 | 1 | . . . | 45 | . . .
x ::= (variables)

2

Here is the definition of well-formedness:

Γ, x : int,Γ′ ` x : int
var

Γ ` k : int
num

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 + e2 : int plus

Γ ` e1 : int Γ, x : int ` e2 : int
Γ ` letx = e1 in e2 end : int let

Here are the definitions of free variables and substitution:

FV(x) = {x} fv-var
FV(k) = {} fv-num

FV(e1) = S1 FV(e2) = S2

FV(e1 + e2) = S1 ∪ S2
fv-plus

FV(e1) = S1 FV(e2) = S2

FV(letx = e1 in e2 end) = S1 ∪ (S2 − {x})
fv-let

{e/x}x = e
s-var=

x 6= y

{e/x}y = y
s-var 6=

{e/x}e1 = e′1 {e/x}e2 = e′2
{e/x}(e1 + e2) = (e′1 + e′2)

s-plus {e/x}k = k
s-num

FV(e) = S y /∈ S ∪ {x} {e/x}e1 = e′1 {e/x}e2 = e′2
{e/x}(let y = e1 in e2 end) = (let y = e′1 in e

′
2 end)

s-let

In order to prove the substitution theorem, we will need two lemmas. One, called weakening,
roughly states that if an expression is well-typed in some context, we can add a variable to the
context and still have a well-typed term, as long as the new variable is not one of the free variables
of e. Weakening depends on the other lemma, called exchange, which tells us that we can swap the
positions of two different variables anywhere in the context.

Here is the statement of the lemmas and a model proof of weakening. In the proof below, we
write out each case and the steps we follow, alongside their justifications. (wts stands for “want
to show.”) You should follow this model when writing your own proofs.

Lemma 1 (Exchange)
If Γ, x : int, y : int,Γ′ ` e : int
and x 6= y
then Γ, y : int, x : int,Γ′ ` e : int

Lemma 2 (Weakening)
If Γ ` e : int
and FV(e) = S where x /∈ S
then Γ, x : int ` e : int.

3

Proof of weakening is by induction on the derivation of Γ ` e.

case Γ, y : int,Γ′ ` y : int
var

wts Γ, y : int,Γ′, x : int ` y : int
1 FV(x) = {x} (fv-var)
2 y 6= x because y /∈ {x} (given)

Γ, y : int,Γ′, x : int ` y : int (var)1

case Γ ` k : int
num

wts Γ, x : int ` k : int
Γ, x : int ` k : int (num)

case
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int plus

wts Γ, x : int ` e1 + e2 : int
1 FV(e1 + e2) = S1 ∪ S2

where FV(e1) = S1 and FV(e2) = S2

(inversion on fv-plus)

2 x /∈ S1 ∪ S2 (given)
3 x /∈ S1 (defn /∈, 2)
4 Γ, x : int ` e1 : int (induction on left premise, 3)
5 x /∈ S2 (defn /∈, 2)
6 Γ, x : int ` e2 : int (induction on right premise, 5)

Γ, x : int ` e1 + e2 : int (plus on 4,6)

case
Γ ` e1 : int Γ, y : int ` e2 : int

Γ ` let y = e1 in e2 end : int let

wts Γ, x : int ` let y = e1 in e2 end : int
1 without loss of generality, say x 6= y (α-eq)2

2 FV(let y = e1 in e2 end) = S1 ∪ (S2 − {y})
where FV(e1) = S1 and FV(e2) = S2

(inversion on fv-let)

3 x /∈ S1 ∪ (S2 − {y}) (given)
4 x /∈ S1 (defn /∈, 3)
5 x /∈ S2 (defn /∈, 3, 1)
6 Γ, x : int ` e1 : int (induction on left premise, 4)
7 Γ, y : int, x : int ` e2 : int (induction on right premise, 5)
8 Γ, x : int, y : int ` e2 : int (exchange on 7)

Γ, x : int ` let y = e1 in e2 end : int (let on 6,8)
1We could have used this step directly. However, in a language with more than one type (as most every language

we will see after this assignment) we want to make sure that the newly added variable doesn’t shadow the existing
variable at a different type. Therefore, we show here that the variables must be inequal, so that this proof looks more
like it would in a typed language.

2Here’s a nice trick. Since we consider all α-equivalent terms to be equal, we can simply choose y not equal to x
and silently α-vary the term to agree with our choice.

4

This concludes the proof of weakening.

Theorem 1 (Substitution)
If Γ ` e1 : int
and x : int,Γ ` e2 : int
and {e1/x}e2 = e3

then Γ ` e3 : int.

Question 2.1 (25 points).

Prove the substitution theorem, using rule induction. You may use the weakening and
exchange lemmas as stated, and do not have to prove them.

Hints: Think about which derivation to induct on. You should need weakening (but
not exchange). If you don’t, then you are not being careful enough or are on the wrong
track. Remember the principle of inversion: if only one rule could have been used to
derive a judgment that we know is derivable, then we know its premises must hold.

3 Propositional logic (20 points)

In this question we will look at a subset of Propositional Logic. Our universe of terms consists of
an infinite number of arity 0 operators P0, P1, . . . , Pn (“propositional variables”), and the binary
operator ⇒ (“implication”). We write A, B, . . . as metavariables standing for propositions. Thus,
the grammar of the language is as follows.

A ::= Pi | A⇒ A

Next we define a judgment A thm representing the assertion that A is a theorem of the logic.

A⇒ (B ⇒ A) thm
K

(A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C) thm
S

A⇒ B thm A thm
B thm

App

Truth Value. If we have assignments (to true or false) for all of the propositional variables in a
proposition, its truth value (either true or false) can be computed recursively using the following
familiar truth table for ⇒:

Proposition Truth Value
false ⇒ false true
false ⇒ true true
true ⇒ false false
true ⇒ true true

5

Tautology. A proposition A is a tautology iff for every assignment giving a truth value true or
false to each of the propositional variables P0, . . . , Pn appearing in A, the truth value of the whole
proposition A is true.

Question 3.1 (5 points).

Rewrite the grammar for the language as a set of inference rules. The rules should in-
ductively define the judgment A prop, which asserts that A is a well-formed proposition.

Question 3.2 (15 points).

Prove, using rule induction, that if A thm has a derivation then A is a tautology.

Question 3.3 (EXTRA CREDIT).

Find a proposition A that is a tautology, but not a theorem (that is, the judgment
A thm cannot be derived). You do not need to prove that it is not a theorem!

6

