
Assignment 2 Q&A

15-312 Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

February 7, 2005

Q1. Student A writes:

For [the] evaluator, once we call evalPrimop, do we know that the returned
expression is [a] value? Or should we check if it is, and step further when
it’s not?

A1. First, looking at the rule OpVals,
(by primop o)
o(v1, ..., vn) 7→ v

OpVals
,

we see that the result must be a value. Although it wasn’t explicitly stated, you can
assume that the entire operational semantics, and the rule OpVals in particular, is
deterministic. So if e 7→ v by rule OpVals for some v, then that v is unique.

With this in mind, regarding evalPrimop, you can assume that it satisfies the
following specification:

If e 7→ v by rule OpVals, then evalPrimop(e) = v.

If e does not step to v by rule OpVals for any such v, then evalPrimop(e) =
raise PrimopStuck.

Knowing that evalPrimop satisfies this specification should allow you to use it in
a correct way within your implementation of step.

Q2. Student A continues:

Also, for compatibility rules, for example if e then e1 else e2 end, I step
on e if it’s not already true or false. So it looks like:

| step (If(e, e1, e2)) = step (If (step e, e1, e2))

But how do I know that (step e) will evaluate to true or false, as it
may require multiple steps on e alone to evaluate to [a] value?

A2. As stated in the assignment, you must implement step in a clear, correct
way, such that whenever e is a closed de Bruijn term, it satisfies the specification

If e 7→ e′ for some (unique) e′, then step(e) = e′.

If e 7→ e′ does not hold for any e′, then step(e) = raise NoStep.

1



In deciding how to implement step for eif = if e then e1 else e2 end, you should
consider the specification carefully, look at the possibilities for eif 7→ e′if , and write
code to implement that case of step accordingly. It may be that the code in Student
A’s question satisfies the specification, or it may be that it doesn’t. Note that the
specification completely determines the behavior of step on closed de Bruijn terms
because the relation e 7→ e′ is deterministic.

Q3. Student A continues:

Also for [the implementation of step on] Primop(...), is there a simple way
to know if we should use [rule] OpArg or [rule] OpVals? I’m using some list
operation[s] to determine [... coding strategy omitted ...]. I was wondering
if there’s a cleaner way to do it.

A3. The model solution I wrote uses list operations in this case. In accordance
with our grading criteria, I tried to write correct code that was as clear as possible.
You should strive to do the same. It may be that there is a clearer solution using
some technique other than list operations; if you think of one, you should use it. The
one thing you shouldn’t do is make the code for this case less clear in a misguided
attempt to make it more efficient or something.

Q4. Student A writes again:

When we’re stepping on Int(3), since this is already a value, there is no
step to take. Does this mean that the evaluator should raise [the] NoStep
[exception]? This would disallow an expression like 3, which is valid in
MinML.

A4. I am confident that you can answer this question for yourself with a little
careful thought about the implications of the specification for step given in the
assignment statement.

2


