
Assignment 3 Q&A

15-312 Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

February 16, 2005

Q1. Student B writes:

I have a question about stream forcing. In a case statement:

case(cons(x.e1, x.e2), e3, y.z.e4)

[... solution details omitted ...] do I substitute [values] for y, z into e4, or
do I just substitute [non-values] straight into e4?

In assignment 1, we proved the substitution theorem for substituting
expressions. Judging from the assignment 3 write-up, we can only use
the value-substitution part of that theorem. So I would guess that you
want [something] to be fully evaluated first, before substituting into the
body of the case statement. [... details omitted ...] Am I right?

A1. See the correction below. This is a good question. Your guess about the
value substitution theorem is right—even though we’re adding some laziness for the
recursive streams, we still want to keep the language as ML-like as we can, so that
means we’re only going to allow values to be substituted in for variables, not arbitrary
expressions. (Lazy languages like Haskell usually do the opposite thing... an expression
is never evaluated before being substituted.) This is usually what ML stream libraries
(like the one I used in the code for Assignment 2) do, too... in Assignment 2, whenever
a stream gets forced, the head and tail get computed down to values before they’re
returned to whoever did the forcing.

One hint I can give you is that you can invent any stack frames you want. All the
stack frames we’ve seen so far look like an expression with a box somewhere in it,
but stack frames don’t always have to look that way.

Q2. Student B writes back:

In class today, Prof. Crary added cont(k) to be a type of expression, even
though cont(k) is not a expression one would write in MinML, but just
something the C Machine to use to store intermediate values....

For case, can I invent an intermediate expression case′, and have case
step into case′ where the parts of the stream would then be evaluated (it
would be the same as evaluating let)?

1

A2. Okay... so the first thing is, I led you astray with the last message, because I
forgot that this assignment is about the M machine, not the C machine. So defining
new stack frames is out.

The second thing is, I feel more comfortable throwing in new expressions just for
the purposes of the machine, when the expressions are only in one type. The addition
of cont(k) only adds to the set of expressions having type τ cont, not to int or
bool or whatever. Throwing in new values not restricted to a single type would be
particularly bad, because we’d be apt to break the canonical forms lemma. But your
case′ wouldn’t be a value, I’m guessing, so that’s not a problem.

That being said, in the M machine it looks like something has to give; either we
add another sort of expression, like case′, or we reuse an expression like let for the
purposes of case. The underlying problem being that in the M machine, the whole
state of the machine at each moment in time has to be coded up as a single expression.

Given these two somewhat distasteful options, I think I like the case′ idea better.
But it wouldn’t be wrong to use let, because the assignment doesn’t say you’re not
allowed to do that.

2

