
Assignment 3: Adding streams to MinML

15-312: Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

Out: Thursday, February 10, 2005
Due: Thursday, February 17, 2005 (10:30 a.m.)

50 points total

In this written assignment, you’re asked to add recursive streams to MinML. You’ll
have to provide the static and dynamic semantics for the new constructs and prove
type safety for the extended language.

MinML with recursive streams. Our new version of MinML is the language
from Assignment 2 extended with the following constructs for recursive streams.

Construct Concrete Abstract (h.o.a.s.)
Empty stream nil nil()
Recursive cons cons rec x = e1 # e2 cons(x. e1, x. e2)
Case of stream case e of nil⇒ e1 | x# y ⇒ e2 case(e, e1, x. y. e2)

Right now, you have no idea what these constructs mean. Below, we try to give
some intuition for what they should mean by example. But part of your job for this
assignment is to say, yourself, precisely what they mean, by giving static and dynamic
semantics for them.

The recursive cons cons rec x = e1 # e2 constructs a stream with head e1 and
tail e2. The quirk that makes a recursive stream different from an ML list, say, is
that the variable x stands for the stream itself within e1 and e2 (so x is a bound
variable with e1 and e2 as its scope). In this way a recursive stream can refer to itself
within its definition. You can think of the symbol # as being analogous to ML’s list
constructor ::. If x doesn’t actually occur in e1 or e2, then the recursive cons is more
like a list cons, and we can abbreviate cons rec x = e1 # e2 as cons rec = e1 # e2

or even just e1 # e2.
There is a new case construct for taking a stream apart. The meaning of

case e of nil⇒ e1 | x# y ⇒ e2

is e1 if e is nil, or e2 if e is a cons. When it’s a cons, the variables x and y stand for
the head and tail of the stream. Their scope is e2.

The operational semantics of streams is lazy; in cons rec x = e1 # e2, e1 and e2

are not evaluated until the value is needed. It’s hard to see how recursive streams
could be defined in a non-lazy way without leading to infinite looping in the examples

1



below. To keep things simple, we only consider streams of integers; these have type
stream.

Now we present a few examples intended to guide you in defining the precise static
and dynamic semantics of recursive streams. In the informal descriptions we write
[x, y, z, . . .] for the finite or infinite sequence of integers making up a stream.

cons rec x = 1 # (cons rec y = 2 # nil)

The finite stream [1, 2].

1 # 2 # nil

The same, abbreviated.

ones = (cons rec x = 1 # x)

The infinite stream [1, 1, . . .].

plus = fun plus(s1 : stream) : stream→ stream is
fun p(s2 : stream) : stream is

case s1 of
nil⇒ nil
| x1 # s′1 ⇒ case s2 of

nil⇒ nil
| x2 # s′2 ⇒ (x1 + x2) # plus s′1 s

′
2

end
end

Add finite or infinite streams [x1, y1, . . .] and [x2, y2, . . .], yielding [x1 +
x2, y1 + y2, . . .].

map = fun map(f : int→ int) : stream→ stream is
fun m(s : stream) : stream is

case s of
nil⇒ nil
| x# s′ ⇒ (f x) # (m s′)

end
end

Map f over the finite or infinite stream [x1, x2, . . .], yielding [f x1, f x2, . . .].

nats = (cons rec s = 0 # (plus ones s))

The infinite stream [0, 1, 2, 3, . . .].

fibs = (cons rec s = 0 # (cons rec t = 1 # (plus s t)))

The Fibonacci numbers [0, 1, 1, 2, 3, 5, 8, . . .].

§ 1. Static semantics. The static semantics of the original MinML is shown in
Figure 1 for your reference.

2



Γ(x) = τ

Γ ` x : τ
VarTyp

Γ ` k : int
NumTyp

Γ ` true : bool
TrueTyp

Γ ` false : bool
FalseTyp

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ
Γ ` if e then e1 else e2 end : τ

IfTyp
Γ ` e1 : τo1 . . . Γ ` en : τon

Γ ` o(e1, . . . , en) : τo
OpTyp

Γ, (f : τ1 → τ2), (x : τ1) ` e : τ2

Γ ` fun f(x : τ1) : τ2 is e end : τ1 → τ2
FunTyp1

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
AppTyp

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 end : τ2
LetTyp2

1 f, x /∈ dom Γ 2 x /∈ dom Γ

Figure 1: Static semantics of the original MinML

Q 1.1. [5 pts] Write the full grammar of MinML types τ and expressions e

extended with the new constructs. (Include only the “official” syntax, not the ab-
breviations.)

Q 1.2. [5 pts] Define the typing judgment Γ ` e : τ for each of the new syntactic
constructs.

§ 2. Dynamic semantics. The dynamic semantics of the original MinML is
shown in Figure 2 for your reference.

Q 2.1. [5 pts] Write the grammar of MinML values v extended with the new
constructs.

Q 2.2. [5 pts] Complete the dynamic semantics for the new constructs. You must
define a small-step semantics e 7→ e′. The evaluation of cons rec must be lazy, and
the semantics must be deterministic (but you don’t have to prove this).

Q 2.3. [extra credit] Extend the definition of the C-machine s 7→ s′ with the new
constructs for streams.

§ 3. Type safety. You are free to make use of the following lemmas. You do not
have to prove them. (But if these lemmas don’t hold for your static semantics from
Section 1, you must go back and change it so that they do.)

Weakening. If Γ ` e : τ and x /∈ dom Γ, then Γ, (x : τ ′) ` e : τ .

Value substitution. If · ` v : τ ′ and (x : τ ′),Γ ` e : τ then Γ ` {v/x}e :
τ .

If you use any lemmas other than the ones above, you must state and prove them
too.

Q 3.1. [30 pts] State and prove the preservation and progress theorems for your
new language. You can skip any cases for rules and constructs that haven’t changed
from the original MinML (but your proofs must be structured in such a way that the
skipped cases work exactly the way they were done in lecture).

3



ei 7→ e′i
o(v1, . . . , ei, . . . , en) 7→ o(v1, . . . , e

′
i, . . . , en)

OpArg

(by primop o)
o(v1, . . . , vn) 7→ v

OpVals

e 7→ e′

if e then e1 else e2 end 7→ if e′ then e1 else e2 end IfCond

if true then e1 else e2 end 7→ e1
IfTrue

if false then e1 else e2 end 7→ e2
IfFalse

e1 7→ e′1
e1 e2 7→ e′1 e2

AppFun
e2 7→ e′2

v1 e2 7→ v1 e
′
2

AppArg

(v1 = fun f(x : τ1) : τ2 is e end)
v1 v2 7→ {v1, v2/f, x}e

AppCall

e1 7→ e′1
let x = e1 in e2 end 7→ let x = e′1 in e2 end

LetArg

let x = v1 in e2 end 7→ {v1/x}e2
LetVal

Figure 2: Dynamic semantics of the original MinML

Be sure to show all necessary steps in your proofs—the model solution for Assign-
ment 1, available from the course web page, has more information on what “necessary”
means.

4


