
Assignment 4: Adding exceptions and continuations to

MinML

15-312: Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

Out: Thursday, February 17, 2005
Due: Thursday, March 3, 2005 (11:59 p.m.)

100 points total

In this programming assignment, your task will be to extend the MinML type-
checker and evaluator of Assignment 2 to work with sum types, product types,
exceptions and continuations. The code you’ll start with is mostly the starter code
for Assignment 2, except that syntax, parsing and printing for all the new features
have been added. Your job will be to start with either your solution or the model
solution to Assignment 2, and extend the type checker and evaluator for all the new
features. (This time, I’ve done the de Bruijn translator for you.)

As before, you can find the starter code in

/afs/andrew/scs/cs/15-312/handout/4/,

and you’ll be handing your solution in by copying it to

/afs/andrew/scs/cs/15-312/handin/you/4/.

The files you will be handing in are:
typing.sml 1.mml

eval.sml 2.mml

fail.mml 3.mml
If you don’t remember all the advice regarding submitting your solution, grading

criteria for programming assignments, and all that jazz, now would be a good time
to go back to the problem statement for Assignment 2 and refresh your memory.

The C machine. One thing that’s changed since Assignment 2 is that we’re using
the C machine rather than the M machine. So our step function is now going to take
a state and return another state, rather than taking an expression and returning
another expression.

So how should we represent states in SML? It seems reasonable to have a datatype
with a separate constructor for each kind of state, so we’d end up with something

1

like
datatype state =

Eval of stack× exp pk > eq = Eval(k, e)
| Return of stack× exp pk < vq = Return(k, v)
| Fail of stack pk << failq = Fail(k)

where on the right I’ve written the representation function p−q showing how each
state of the C machine is represented in SML.

Now we have to figure out how to represent stacks. Probably the most straight-
forward solution would be to have a separate datatype constructor for each kind of
stack frame. But there are so many kinds of frames that it would be pretty tedious to
list them all. And the different kinds of frames all seem to have pretty much the same
structure; they all represent some kind of postponed work that has to be done to
finish evaluating an expression. It would be great if we could represent the postponed
work as an SML function, and just call the function to do whatever the stack frame
is supposed to do.

One way to think about stacks is to consider what kinds of things we’ll be doing
when we need to look at the stack. In fact, the C machine only looks at the stack
when it’s trying to take a step in one of the situations k < v or k << fail. If we know
what to do in both of those situations, we’re set.

This suggests that our representation for a stack k should be a pair of SML
functions (f1, f2). The function f1 says what to do when we’re returning a value
k < v to the stack k. In that case, we’ll call f1 v and step to whatever state that is.
The other function f2 says what to do when we’re returning failure k << fail to the
stack k. In that case, we’ll just call f2 (). Finally, if we want to print states of the
machine, it’s impossible to print the SML functions f1 and f2, but if we store the
number of frames with the stack, at least we can see how many there are. With this
in mind, we set

datatype stack = Stack of int× (exp→ state)× (unit→ state).

(Actually, this is mutually recursive with state and exp, so the SML syntax makes
us declare them all at the same time.)

The disadvantage of this representation is that we have no way of printing out a
stack so that we can see what exactly it looks like at each step of the C machine
evaluation. But the convenience of using SML functions for the stack seems to be
worth more than the ability to print them out.

These datatypes have been included in the starter code for this assignment. The M
machine evaluator from Assignment 2 has been converted to a C machine evaluator
based on them. You should look at the supplied code in eval.sml now, and make
sure you understand how it works. In particular, you need to fully understand the
functions eval, ret, fail, frame, and try. Only eval, ret, and frame are used in
the starter code you’ve been given, but I provided fail and try in the hope that
they will be useful to you when implementing exceptions.

2

Syntax and parsing. Once again, the parser for the language we’re dealing with
has been provided for you. Rather than include the grammar for the ASCII syntax
here, I’ll just mention that it’s in the file parse.sml.

Note that the syntax has changed slightly from what we used in Assignment 2. I
got fed up with the ends everywhere, so now they’re not necessary. For example,

fun f(x : bool) : int is if x then 1 else 2

is now legal MinML syntax. A construct like fun or if extends as far to the right as
possible, consistent with the pairing of parentheses and so forth.

Many constructs in the extended language we’ll be working with need extra type
information to ensure that types are unique. The convention in such cases is that
the type of the whole expression is written in brackets after the keyword starting the
expression. For example, in letcc[τ] x in e, the type of the whole expression is τ .

I also added comment syntax to the lexical analyzer; any line starting with the
character ‘%’ is ignored.

§ 1. Product and sum types. The first extensions to the language from As-
signment 2 are product and sum types. These have the syntax

τ ::= . . . | 1 | τ1 × τ2 | 0 | τ1 + τ2

The corresponding expressions are

e ::= . . . | () | e1, e2 | e. 1 | e. 2
| abort[τ] e | in1[τ] e | in2[τ] e | case e of in1 x1 ⇒ e1 | in2 x2 ⇒ e2

First, the products. They have static semantics given by the following typing rules:

Γ ` () : 1
UnitTyp

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1, e2 : τ1 × τ2

PairTyp

Γ ` e : τ1 × τ2

Γ ` e. 1 : τ1

FstTyp
Γ ` e : τ1 × τ2

Γ ` e. 2 : τ2

SndTyp

We only treat binary and zero-ary products. The unit type, written 1, is a zero-ary
product. Parentheses are optional around pairs e1, e2; this means you can use the
left-associativity of ‘,’ and ‘×’ together to write things like 1, 2, 3 : int× int× int.

Now, the sums. They have static semantics given by the following typing rules:
Γ ` e : 0

Γ ` abort[τ] e : τ
AbortTyp

Γ ` e : τ1 + τ2 Γ, (x1 : τ1) ` e1 : τ Γ, (x2 : τ2) ` e2 : τ
Γ ` case e of in1 x1 ⇒ e1 | in2 x2 ⇒ e2 : τ CaseTyp1

Γ ` e : τ1

Γ ` in1[τ1 + τ2] e : τ1 + τ2

InlTyp
Γ ` e : τ2

Γ ` in2[τ1 + τ2] e : τ1 + τ2

InrTyp

1 x1, x2 /∈ dom Γ
The void type, written 0, is a zero-ary sum. This can come in handy when we’re

programming with complicated control structures—continuations or what have you—
because we can express the invariant that certain code never returns by giving it a
type involving 0. The only expression associated with the void type is abort, which

3

is just like case except that it has zero arms instead of two.
Now, for the dynamic semantics. The values for products and sums are

v ::= . . . | () | v1, v2 | in1[τ] v | in2[τ] v

The C machine rules for products and sums are as follows:

k > () 7→ k < ()

k > e1, e2 7→ k . �, e2 > e1

k . �, e2 < v1 7→ k . v1,� > e2

k . v1,� < v2 7→ k < v1, v2

k > e. 1 7→ k . �. 1 > e

k . �. 1 < v1, v2 7→ k < v1

k > e. 2 7→ k . �. 2 > e

k . �. 2 < v1, v2 7→ k < v2

k > abort[τ] e 7→ k . abort[τ]� > e

k > in1[τ] e 7→ k . in1[τ]� > e

k . in1[τ]� < v 7→ k < in1[τ] v
k > in2[τ] e 7→ k . in2[τ]� > e

k . in2[τ]� < v 7→ k < in2[τ] v

k > case e of in1 x1 ⇒ e1 | in2 x2 ⇒ e2

7→ k . case � of in1 x1 ⇒ e1 | in2 x2 ⇒ e2 > e

k . case � of in1 x1 ⇒ e1 | in2 x2 ⇒ e2 < in1[τ] v
7→ k > {v/x1}e1

k . case � of in1 x1 ⇒ e1 | in2 x2 ⇒ e2 < in2[τ] v
7→ k > {v/x2}e2

Note that the first rule for abort is analogous to the first rule for case, but whereas
case has two more rules, abort has zero. Funny how that works out.

Q 1.1. [45 pts] Following the rules above, extend the typing function in typing.sml

and the step function in eval.sml to handle products and sums (including the unit
and void constructs).

Note that the C machine implemented in eval.sml uses SML functions to represent
the stack, rather than explicit syntax. Still, the syntax for frames in the rules above
should suggest to you what SML functions to use to implement them.

As usual, the step function must satisfy the following specification:

If s is a closed C machine state, and psq is its SML representation as
a state, and s 7→ s′, then step(psq) = ps′q, where ps′q is the SML
representation of the C machine state s′.

If s is a closed C machine state, and psq is its SML representation, and
s cannot take a C machine step, then step(psq) must raise exception
NoStep.

Note that the specification says nothing about the states involved being well

4

typed.

§ 2. Exceptions. The next extension to the language introduces exceptions and
exception handling. As in lecture, the exceptions you’ll be implementing don’t carry
any values along with them, unlike SML exceptions.

The syntax for exceptions is as follows:

e ::= . . . | try e1 ow e2 | fail[τ]

No new types or values are introduced. The static semantics is based on the rules

Γ ` fail[τ] : τ
FailTyp

Γ ` e1 : τ Γ ` e2 : τ
Γ ` try e1 ow e2 : τ

TryTyp

and the C machine dynamic semantics is based on the rules

k > try e1 ow e2 7→ k . try � ow e2 > e1

k . try � ow e2 < v 7→ k < v

k . try � ow e2 << fail 7→ k > e2

k . f << fail 7→ k << fail if f 6= try � ow e2

k > fail[τ] 7→ k << fail

Q 2.1. [20 pts] As before, extend typing.sml and eval.sml to treat the new
constructs.

§ 3. First-class continuations. The last extension to the language adds first-
class continuations in the style we saw in lecture. The new types are

τ ::= . . . | τ cont

while the new expressions are

e ::= . . . | letcc[τ] x in e | throw[τ] e1 to e2 | cont(k)

The static semantics is given by the rules
Γ, (x : τ cont) ` e : τ
Γ ` letcc[τ] x in e : τ LetccTyp1

Γ ` e1 : τ ′ Γ ` e2 : τ ′ cont
Γ ` throw[τ] e1 to e2 : τ

ThrowTyp

· ` k : τ stack
· ` cont(k) : τ cont

ContTyp

1 x /∈ dom Γ
Now since stacks k are represented by SML functions, there is no way, really, to
typecheck an expression of the form cont(k). Thus, you do not have to implement
the rule ContTyp. You will need to implement the other two typing rules.

Now for the dynamic semantics. There is a new value, namely, cont(k), where k
is a stack. The C machine rules are

k > letcc[τ] x in e 7→ k > {cont(k)/x}e
k > throw[τ] e1 to e2 7→ k . throw[τ] � to e2 > e1

k . throw[τ] � to e2 < v1 7→ k . throw[τ] v1 to � > e2

k . throw[τ] v1 to � < cont(k′) 7→ k′ < v1

Q 3.1. [30 pts] As before, extend typing.sml and eval.sml to treat the new
constructs. You do not have to implement the rule ContTyp, however.

5

§ 4. Test cases. You are responsible for creating some test cases to help ver-
ify that your implementation is working. Your test cases should include comments
describing what is being tested and what the expected results are.

Q 4.1. [5 pts] Create four test cases that exercise these new constructs. Exactly
one, fail.mml, should fail to typecheck, for an “interesting” reason. All of the others
must be well typed. None of the test cases can loop forever. Name your test cases
1.mml, 2.mml, 3.mml, and fail.mml. The test cases should be handed in together
with your other files.

6

