Assignment 5: Universal, Existential, and Recursive
Types
Model Solution

15-312 Foundations of Programming Languages
Kevin Watkins (kw@cmu.edu)

April 28, 2005

Please refer to the assignment itself for the full description and statement of
each problem.

§ 1. Encodings in System F A 1.1. [5 pts]

mkpair = AB1.Afo. Axq: f1. Az fo. A Ay 2 (B1 — P2 — ).y 1 @2
fst = AB1.AB2. Ap: Bi X Bo.p [B1] (A1 : 1. Awa : Bo. 1)
snd = AB1.ABo. Ap: B1 X Ba.p [B2] (Ax1 : B1. Ax2 : Bo. x2)

A 1.2. [5pts] Let unit = Va.a — «, which has the single System F value
Aa. Az : .. (In System F we usually allow evaluation under a lambda.)

§ 2. Encoding Existential Types A 1.3. [5 pts]

Tpack (7',e) as Ja. 77 = AB.\y: (Va.7 — B).y[r']"e
Tunpack, (a,z) =erines’ = Teg' 7/ (Aa. Az : 7.7ey")

§ 3. A Mystery Encoding A 1.4. [5 pts] It’s the MinML type con-

structor for sums. The encodings are

Fingryme’ = Aady;: (11— ). Aya: (2 — ).y e

Fing, 4., e Ao Ay = (11 — ). Ays : (7o — ). y2 e
I_C&SGT e Ofil’ll T = €1 | il’lQ To = 62—I = Telt [T] ()\.%'1 T '_61—‘) ()\JJQ 1 To. I_eg—l)

A 1.5. [extra credit] foo is the void type 0; 7 bar is the type 7 cont. (The
type 7bar isn’t particularly useful in pure System F, though, because the letcc
construct isn’t available.)

§ 4. Simulation Theorem A 1.6. [5 pts] This is broken in so many
ways it’s not even funny. First of all, each MinML step gets simulated by many
System F steps. For example, the MinML step (v1,v2).1 — vy is simulated by



the sequence

(Aa)\y . (Tl — T — a).yv1 ’UQ) [Tl] (/\.’E1 : Tl.)\.’EQ : Tg.xl)
= (Ay:(m— 12— 7m).yviv) (Azy 71 AT 2 T2 2)
= (Axy T Az oL x) U1 U2

— (Axg 1. v1) V2

— U1

Beyond that, we have the problem that MinML evaluates the components
of a pair eagerly, while the System F encoding of a pair is a value (because it
involves lambdas, which are values). So the encoding is really for lazy pairs,
not eager pairs. Since in pure System F, every term evaluates to a value in
finitely many steps, this isn’t a big deal for System F itself. But it does break
the simulation theorem as it’s stated, because the order of evaluation will be
totally different between pure MinML and pure System F.

A 2.1. [5pts] Let bits = pa. 1+a+a. I'll use ternary sums (see Assignment

7). Then we define

empty = roll(in; ())
zero = Az : bits.roll (iny x)
one = Az : bits.roll (inj z)
bitcase = Az : bits. A\y1 : (1 — 7). Aya = (bits — 7). Ay : (bits — 7).

case unroll z of in; - = y; () | ing 29 = yo x2 | ing 3 = y3 x3

A 2.2. [5pts] One tedious but simple solution is

or = fun or(x : bits) : bits. \y : bits.
bitcase x
(M. bitcasey (A-. empty) (A_. fail) (\_. fail))
(A’ bitcase y (A_. fail) (A\y'. zero (orz’ y')) (A\y'. one (orz’ y')))
(A\a'. bitcasey (M- fail) (\y'. one (orz’ y')) (Ay'. one (ora’ y')))

A 2.3. [5pts] Let

BITS = 3a.ax(a—a)x(a—a)x
Bits = pack (bits, (empty, zero, one, AS. bitcase)) as BITS

with bits, empty, zero, one, and bitcase as above.
A 2.4. [10 pts] Use

unpack (bits, z) = Bitsin {x.1,z.2,x. 3, x. 4 [bits] | empty, zero, one, bitcase} or

with or as above.



