
Assignment 5: Universal, Existential, and Recursive

Types

15-312: Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

Out: Tuesday, March 15, 2005
Due: Tuesday, March 22, 2005 (10:30 a.m.)

50 points total

§ 1. Encodings in System F It turns out that (if we ignore side effects

for a moment), there are encodings of all the type constructs we’ve seen so far

in terms of just function (→) and universal (∀) types. This was first noticed

by a logician, Jean-Yves Girard, in his 1972 Ph.D. thesis, where he proposed

a pure language based on just these two type constructors, called System F.

(Actually, his thesis has many different variations in it, some of which have

other type constructors, and the language wasn’t originally called System F,

although everyone calls it that now.) Girard wanted to use his language to

investigate certain questions in constructive logic, although he also pointed out

that it could be thought of as a programming language. Girard was the first to

prove that every well-typed program in System F terminates.

At nearly the same time, John Reynolds was investigating polymorphism in

programming languages, and came up with a system identical to one of Girard’s,

which he published in 1974 in the paper “Towards a theory of type structure.”

In that paper Reynolds also investigated data abstraction and showed how

polymorphic types could be used to enforce it.

The point of this question is to investigate some of these encodings of various

type constructors in terms of functions and universal types. For our purposes,

“System F” will mean the fragment of MinML with just the following type

constructors: τ ::= α | τ1 → τ2 | ∀α. τ

and without any side effects or recursive functions. It turns out then that every

well typed expression evaluates to a value in finitely many steps.

§ 1.1. Encoding Pairs Still working in System F, let’s introduce the

type τ1 × τ2 by defining it to be

τ1 × τ2 = ∀α. (τ1 → τ2 → α) → α

where α is some type variable not free in τ1 or τ2 (to avoid capture).

Think about what the values of type τ1 × τ2 could be. Since it is a ∀-type,

a value of this type must have the form Λα. e where e is an expression of type

(τ1 → τ2 → α) → α for arbitrary α. So the value of e has to be a function

λx : (τ1 → τ2 → α). e′, where e′ has type α. But the only way we have of

1

making a value of type α is by applying x to a couple of arguments. So the

value of e′ must be of the form xe1 e2, where e1 has type τ1 and e2 has type τ2.

So inside any value of type τ1 × τ2 there will be embedded expressions of type

τ1 and τ2, which is why it acts like a product type.

Q 1.1. [5 pts] Write System F functions having the types

mkpair : ∀β1.∀β2. β1 → β2 → β1 × β2

fst : ∀β1.∀β2. β1 × β2 → β1

snd : ∀β1.∀β2. β1 × β2 → β2

that implement the basic operations on these encoded pairs. The function

mkpair should take a value of type β1 and a value of type β2 and return

something in type β1 ×β2 that acts like a pair. (Remember that β1 ×β2 means

the definition above!) The functions fst and snd should extract the components

of a simulated pair.

Q 1.2. [5 pts] (a) We can make an analogy from pair types to unit types

by thinking of pairs as the 2-ary and units as the 0-ary case of the same idea.

Following this analogy, propose a definition for unit types

unit =?

in System F.

(b) Your encoding of the unit type should contain exactly one System F

value. What is it?

§ 1.2. Encoding Existential Types In lecture, we saw a similar en-

coding of existential types:

∃α. τ = ∀β. (∀α. τ → β) → β

where β is some type variable not free in τ (to avoid capture).

Q 1.3. [5 pts] Figure out and describe how to translate the constructs

pack (τ ′, e) as ∃α. τ and unpack (α, x) = e1 in e2 from lecture into System

F programs that have the same meaning, but use the definition of ∃α. τ given

above. That is, you should give definitions for pack and unpack that expand

them into the constructs of System F. Your translation should have the property

that if a pack or unpack is well-typed in MinML, its encoding into System F

should be well-typed in System F and “do the same thing”.

§ 1.3. A Mystery Encoding Consider the following definition:

τ1 ♥ τ2 = ∀α. (τ1 → α) → (τ2 → α) → α

where again α is not free in τ1 or τ2. This is an encoding into System F of a

very familiar type constructor from MinML.

Q 1.4. [5 pts] Which MinML type constructor is it? For all of the MinML

expression constructs involving this type (there are three of them), give encod-

ings into System F in the style of Question 1.1.

Q 1.5. [extra credit] Discover which MinML types are represented by the

following System F types: foo = ∀α. α

τ bar = ∀α. τ → α

2

§ 1.4. Simulation Theorem Actually proving that the encoding of MinML

constructs into System F works is a bit tricky. For example, we might guess the

following correctness theorem:

Let e be a MinML expression involving product types, and let peq

be its translation into System F. Then if e 7→ e′ in the M-machine

for MinML, we have peq 7→ pe′
q in the M-machine for System F,

where pe′
q is the System F translation of e′.

Q 1.6. [5 pts] Find a counterexample to the supposed theorem.

§ 2. Existential and Recursive Types For this part of the assign-

ment, we are going back to using MinML constructs and syntax, not System

F.

Consider the following SML datatype for bitstrings:

datatype bits = Empty | Zero of bits | One of bits

The idea is that a bitstring such as 1011 will be represented as One (Zero

(One (One Empty))) (so the representation is big-endian).

Q 2.1. [5 pts] Represent the bits datatype in MinML as a recursive (µ)

type.

Q 2.2. [5 pts] Write a MinML function or : bits × bits → bits using

your definition of bits as a recursive type. Your or function should compute

the bitwise OR of its two arguments; for example, the bitwise OR of 11000 and

01010 is 11010. If the two arguments to or do not have the same length, it

should use MinML’s fail operation to raise an exception.

Q 2.3. [5 pts] Now use MinML’s existential type (∃) to represent the bits

datatype as an abstract type, exposing just the three constructors and the de-

structor. (The destructor is just an operation that lets you do case analysis on

values of type bits.)

Q 2.4. [10 pts] Revise your or function from Question 2.2 to work with

the abstract type instead of operating on the recursive type directly.

3

