
Assignment 6: Coercion Elaboration

15-312: Foundations of Programming Languages
Kevin Watkins 〈kw@cmu.edu〉

Out: Tuesday, March 29, 2005
Due: Thursday, April 7, 2005 (11:59 p.m.)

100 points total

§ 1. Introduction In this assignment you will modify an implementation

of PolyMinML by adding a coercion-based notion of subtyping. The language

includes most of the constructs we’ve seen in the course, including universal,

existential, and recursive types and references for mutable state.

The idea of coercion elaboration is to take a program that typechecks with

applications of the subsumption rule, and elaborate it by inserting code at

each point where subsumption is used, to actually perform the coercions. For

example, the subsumption rule might allow an int expression to be used where

a float was expected. In that case the coercion elaboration would insert the

primitive operation itof to explicitly convert the int to a float.

Once elaboration has been done to get rid of instances of the subsumption

rule, the program can be fed to the operational semantics and evaluated. If

we tried to run a program without elaborating it first, it could get stuck. For

example, we might imagine that integers and floating-point numbers are stored

in separate registers in the machine, according to its calling convention. In that

case the subsumption rule (which just says “an int is a float”) needs to be

replaced with actual work to move the value from one kind of register to the

other.

The static semantics of our language has also been refined to get rid of

the typing annotations that were formerly needed on many of the expression

constructs to ensure unique typing. Instead, we use the bidirectional system

discussed in recitation to replace all these different kinds of typing annotations

with a single construct.

The text of the assignment is rather long; this is mostly because the topics

here were only treated in recitation, and I also want to give you a “reference

card” for almost all of the features we looked at in the static semantics of

PolyMinML.

1

§ 2. Syntax The syntax of the variation of PolyMinML we’ll be using is

as follows:

τ ::= α | int | bool | float | τ1 → τ2 | 1 | τ1 × · · · × τn | 0 | τ1 + · · · + τn

| τ ref | τ cont | ∀α. τ | ∃α. τ | µα. τ

e ::= x | fun f(x). e | e1 e2

| () | (e1, . . . , en) | e. i

| ini e | (case e of in1 x1 ⇒ e1 | . . . | inn xn ⇒ en) | abort e

| true | false | if e then e1 else e2 | e1 = e2 | e1 < e2

| n | e1 + e2 | e1 − e2 | e1 × e2 | ẽ | e1 mod e2

| f | e1 +. e2 | e1 ×. e2 | sqrt e | itof e

| ref e | !e | e1 := e2 | (e1; e2)

| letcc x in e | throw e1 to e2

| try e1 ow e2 | fail

| Λα. e | e[τ]

| pack(τ, e) | unpack(α, x) = e1 in e2

| roll e | unroll e

| let x = e1 in e2 | let type α = τ in e | (e : τ)

Γ ::= · | Γ, (α type) | Γ, (x : τ)

(As you can see, we’ve put together pretty much all the concepts we’ve studied

so far. Once you’ve thrown coercion-based subtyping into the mix as part of do-

ing this assignment, you will have implemented a language that’s syntactically

simple, but with more subtle features than any currently marketed language,

and nearly every experimental language.)

There is new syntax here, modeled on SML’s, concerning references and

imperative programming:

ref e Make a new reference

!e Get the value stored in e

e1 := e2 Store the value of e2 in e1

(e1; e2) Evaluate e1, then e2

We’ve also modified the syntax for product types and sum types to take any

number n ≥ 2 of arguments. Although syntax for unit types (1) and void types

(0) is given above, in the implementation these are reduced by the parser to

special cases (with n = 0) of the general product and sum types. Similarly

the unit expression () is turned by the parser into just a 0-ary tuple, and the

abort expression abort e is turned by the parser into a case with no arms.

(You should think about why an abort and a case with no arms are the same

thing.) Thus, in what follows, I won’t mention the unit and void types again,

since the SML typechecker never has to deal with them explicitly.

The corresponding SML representations of these things now take lists:

datatype exp =

...

| Tuple of exp list

| Proj of exp * int

| Inj of int * exp

| Case of exp * (bind * exp) list

2

So for instance

(e1, e2, e3) becomes Tuple[pe1q,pe2q,pe3q]

e. 5 becomes Proj(peq, 5)

in3 e becomes Inj(3, peq)

case e of in1 x1 ⇒ e1 becomes Case(peq, [(px1q,pe1q),

| in2 x2 ⇒ e2 (px2q,pe2q)])

There is now a type float and operations on it:

f A floating-point constant

e1 +. e2 Floating-point addition

e1 ×. e2 Floating-point multiplication

sqrt e Square root

An additional operation itofe is used internally to do the work of coercing ints

to floats. There’s generally no reason to use it in the external language, because

in the external language, an int can be used whenever a float is required.

A new construct let type α = τ in e has been added, which lets you give

a type a shorter name. This should help you if you choose to do the following

extra credit problem. The operational semantics is just

(let type α = τ in e) 7→ {τ/α}e

and the static semantics is given below.

Q 2.1. [extra credit] Code up a few of your System F examples, or an

abstract type (like queues) in PolyMinML. Put them in a file polytest.mml

and hand it in.

Finally, note that all of the type subscripts have been removed from the ex-

pression syntax. The only remaining places types can occur within an expression

are when applying a type function, packing an existential (abstract) type, in

the let type construct, and in a new expression form (e : τ) that explicitly

ascribes the type τ to the expression e.

The ASCII syntax for all these things should be pretty clear; consult the

comments at the beginning of the parser in parse.sml for details. As usual, a

construct like fun, case, if, let, letcc, throw, try, pack, or unpack extends

as far to the right as possible except that they all end at the colon in e : τ (which

helps keep the parentheses for type ascriptions to a minimum). So for example

we can say

fun f(x) is x+1 : int -> int

You can look at the example PolyMinML files to see how this works.

The universal, existential, and recursive types get ASCII syntax as follows:

!a a -> a Read as ∀α. α → α

?a a -> a Read as ∃α. α → α

#a a -> a Read as µα. α → α

One other minor change in the ASCII syntax is that the expressions you type

into the system (or put in a .mml file) have to be terminated with ;; because

a single ; is now for sequencing imperative computations.

3

§ 3. Bidirectional Checking Now we’ll consider how to typecheck in

bidirectional style. The basic idea is to separate the single judgment Γ ` e : τ we

had before into two judgments, Γ ` e ⇐ τ for checking an expression e against

a type τ , and Γ ` e ⇒ τ for synthesizing (computing) a type τ by looking

at the expression e. Thus we take into account that type information might

flow downward from an expression into its subexpressions, or upward from the

subexpressions to the whole expression. There is also, as usual, a judgment

Γ ` τ : type declaring that the type τ is well-formed in context Γ. This doesn’t

need to be separated into two judgments, because we always know that we’re

checking τ as a type. There is also a judgment Γ ` τ1 v τ2 for checking that

one type is a subtype of another; here both τ1 and τ2 are inputs.

In the notation of modes we saw in recitation, we then have the following

modes for the four basic type checking judgments:

Γ+ ` τ+ type tok g t Check that τ is a type in Γ

Γ+ ` e+ ⇐ τ+ ck g e t Check e against type τ

Γ+ ` e+ ⇒ τ− syn g e Infer a type τ for e

Γ+ ` τ+
1 v τ+

2 sub g t1 t2 Check τ1 a subtype of τ2

(Remember that a superscript + on a part of the judgment signifies that it

is supplied as input when we read the judgment as an algorithm, while the

superscript − means that the part is generated as output.) In the following

rules, you should check for yourself that the modes are correct. The names of

the functions that implement the algorithm in the SML code are also shown.

Type Validity First, we have the rules for the well-formedness of a type.

In lecture we summarized this by saying that all the free variables of the type

should be in the context. In the SML implementation of the language, a func-

tion tok (“type okay”) performs this check. Since both type variables and

term (value) variables are represented by de Bruijn indices, it’s necessary to

go through the type, looking each de Bruijn index up in the context and seeing

that it corresponds to a type variable, not a value variable. There are also

conditions as usual saying that whenever we put a variable in the context, it’s

not there already; I’ll take those as understood without being written explicitly.

Γ, (α type),Γ′ ` α type

Γ ` int type Γ ` bool type Γ ` float type

Γ ` τ1 type Γ ` τ2 type

Γ ` (τ1 → τ2) type

Γ ` τ type

Γ ` (τ ref) type

Γ ` τ type

Γ ` (τ cont) type

Γ ` τ1 type . . . Γ ` τn type

Γ ` (τ1 × · · · × τn) type

Γ ` τ1 type . . . Γ ` τn type

Γ ` (τ1 + · · · + τn) type

Γ, (α type) ` τ type

Γ ` (∀α. τ) type

Γ, (α type) ` τ type

Γ ` (∃α. τ) type

Γ, (α type) ` τ type

Γ ` (µα. τ) type

4

Subtyping Next, we consider the subtyping rules, checked by the SML

function sub. Generally, we think of the subtyping relation τ1 ≤ τ2 as having

transitivity, which wouldn’t be mode correct (in checking that τ1 ≤ τ2, we might

have to guess a type σ and check τ1 ≤ σ and σ ≤ τ2). Fortunately, we can write

the rules in such a way that transitivity ends up being a theorem, rather than

needing to be added as a rule. When we do subtyping this way, we write τ1 v τ2

rather than τ1 ≤ τ2 and call it algorithmic subtyping. We could also remove the

reflexivity rule, but since it’s okay as to mode correctness, it’s fine to leave it

in, too.

One more thing is that generally, in order to prove any theorems about

subtyping, it’s necessary to have the contexts hanging around too. (Otherwise,

at various points in the proofs, it’s hard to argue that the types involved are

well-formed. What context should they be well-formed in?) So our algorithmic

subtyping judgment will actually be written Γ ` τ1 v τ2.

Without further ado, the subtyping rules:

Γ ` τ v τ Γ ` int v float

Γ ` σ1 v τ1 Γ ` τ2 v σ2

Γ ` (τ1 → τ2) v (σ1 → σ2)

Γ ` τ1 v σ1 . . . Γ ` τn v σn

Γ ` (τ1 × · · · × τn) v (σ1 × · · · × σn)

Γ ` τ1 v σ1 . . . Γ ` τn v σn

Γ ` (τ1 + · · · + τn) v (σ1 + · · · + σn)

Γ, (α type) ` τ v σ

Γ ` (∀α. τ) v (∀α. σ)

Γ, (α type) ` τ v σ

Γ ` (∃α. τ) v (∃α. σ)

By adding the reflexivity rule, we’ve been able to get away without a bunch of

boring axioms like bool v bool or α v α.

You’ll note that nothing was said about the type constructors τ ref, τ cont,

or µα. τ . In the case of ref, neither covariant nor contravariant subtyping would

work, for the reasons discussed in lecture. For cont, we could have a contravari-

ant subtyping rule, but the associated coercion is tricky enough that adding the

cont rule is left as an extra credit problem. Finally, we come to the recursive

types µα. τ . On last fall’s version of this assignment, the following UNSOUND

rule was given:

¿

Γ, (α type) ` τ v σ

Γ ` (µα. τ) v (µα. σ) ?

It’s worth thinking about why this rule doesn’t work, and what a correct rule

might look like.

Q 3.1. [extra credit] (Somewhat tricky.) Show how to use the bogus rule

above to write a program of type int that evaluates to 3. 14159.

Checking Next we come to the rules for checking an expression against

a known input type: Γ ` e ⇐ τ . These are implemented by the SML function

ck. It turns out that there are three general classes of rules which fall into this

category. First of all, we have rules for constructing things of all the various

5

types for which things can be explicitly constructed:

Γ ` n ⇐ int Γ ` f ⇐ float

Γ ` true ⇐ bool Γ ` false ⇐ bool

Γ, (f : τ1 → τ2), (x : τ1) ` e ⇐ τ2

Γ ` (fun f(x). e) ⇐ (τ1 → τ2)

Γ ` e ⇐ τ

Γ ` (ref e) ⇐ (τ ref)

Γ ` e1 ⇐ τ1 . . . Γ ` en ⇐ τn

Γ ` (e1, . . . , en) ⇐ (τ1 × · · · × τn)

Γ ` e ⇐ τi

Γ ` ini e ⇐ (τ1 + · · · + τn)

Γ, (α type) ` e ⇐ τ

Γ ` (Λα. e) ⇐ (∀α. τ)

Γ ` τ type Γ ` e ⇐ {τ/α}σ

Γ ` pack(τ, e) ⇐ (∃α. σ)

Γ ` e ⇐ {µα. τ/α}τ

Γ ` roll e ⇐ (µα. τ)

Notice how nicely we can treat pack and roll, for instance, because we assume

that the pack or roll is located at a position in the term in which we already

know what existential or recursive type the result is supposed to have. We also

got rid of the big annotation on the injection ini e. You should verify to yourself

that all these rules are mode correct.

In the next category we have various rules for deconstructing things, where

the type being deconstructed isn’t related to the type of the whole expression.

Here there’s mixing of the checking judgment (for the whole expression) and

the synthesis judgment (for the part of the expression being deconstructed).

Γ ` e ⇒ bool Γ ` e1 ⇐ σ Γ ` e2 ⇐ σ

Γ ` (if e then e1 else e2) ⇐ σ

Γ ` e ⇒ (τ1 + · · · + τn) Γ, (x1 : τ1) ` e1 ⇐ σ . . . Γ, (xn : τn) ` en ⇐ σ

Γ ` (case e of in1 x1 ⇒ e1 | . . . | inn xn ⇒ en) ⇐ σ

Γ ` e1 ⇒ (∃α. τ) Γ, (α type), (x : τ) ` e2 ⇐ σ

Γ ` (unpack(α, x) = e1 in e2) ⇐ σ

Γ ` e2 ⇒ (τ cont) Γ ` e1 ⇐ τ

Γ ` (throw e1 to e2) ⇐ σ

In the third rule, we need the special condition that α isn’t free in σ. The last

rule is only mode correct if we put the premises in “backwards.” This suggests

that the syntax of throw might have been better the other way around. (Maybe

goto e2 with e1?)

The third category is more of a catchall for rules that don’t construct or

6

deconstruct anything, really:

Γ ` e1 ⇒ τ Γ, (x : τ) ` e2 ⇐ σ

Γ ` (let x = e1 in e2) ⇐ σ

Γ ` τ type Γ ` {τ/α}e ⇐ σ

Γ ` (let type α = τ in e) ⇐ σ

Γ, (x : σ cont) ` e ⇐ σ

Γ ` (letcc x in e) ⇐ σ

Γ ` e1 ⇒ τ Γ ` e2 ⇐ σ

Γ ` (e1; e2) ⇐ σ

Γ ` e1 ⇐ σ Γ ` e2 ⇐ σ

Γ ` (try e1 ow e2) ⇐ σ Γ ` fail ⇐ σ

Γ ` e ⇒ int

Γ ` itof e ⇐ float

Γ ` e ⇒ τ Γ ` τ v σ

Γ ` e ⇐ σ

The rule for itof looks a bit strange. We could certainly give it different modes.

(Actually, we could give it all four possible mode combinations, and it would

still be mode correct). But since itof is going to be inserted in place of a use

of subsumption (the last rule) it had better have exactly the same modes as

subsumption, or strange things could happen. We want the result of the coercion

elaboration to be well-typed without changing any of the modes around.

Synthesis Finally, we need to think about the rules for synthesizing a type

for expressions for which this makes sense. We will be quite restrictive about

this, only giving synthesis rules for constructs for which there was not also a

checking rule. This seems restrictive, but in a realistically larger language, it

becomes quite important. One reason is that if there’s only one mode in which

any particular construct can be handled, there’s no non-determinism in the

algorithm. All these rules are implemented by the SML function syn.

Most of the synthesis rules are about deconstructing something:

Γ ` e1 ⇒ (σ → τ) Γ ` e2 ⇐ σ

Γ ` (e1 e2) ⇒ τ

Γ ` e ⇒ (τ1 × · · · × τn)

Γ ` e. i ⇒ τi

Γ ` e ⇒ (τ ref)

Γ ` !e ⇒ τ

Γ ` e1 ⇒ (τ ref) Γ ` e2 ⇐ τ

Γ ` (e1 := e2) ⇒ τ

Γ ` e ⇒ (∀α. τ) Γ ` σ type

Γ ` e[σ] ⇒ {σ/α}τ

Γ ` e ⇒ (µα. τ)

Γ ` unroll e ⇒ {µα. τ/α}τ

The remaining synthesis rules handle variables, primitive operations such as

(+) and the like, and the type annotation construct:

(opr : τ1 × · · · × τn → σ) Γ ` e1 ⇐ τ1 . . . Γ ` en ⇐ τn

Γ ` opr(e1, . . . , en) ⇒ σ

Γ, (x : τ),Γ′ ` x ⇒ τ

Γ ` τ type Γ ` e ⇐ τ

Γ ` (e : τ) ⇒ τ

The rule for variables makes sense because the modes for all of the judgments

specify that the context Γ is input. (If you look back at all the rules that put

variables in the context, you’ll see that in each case the type is known.) Thus,

when we come to a variable, we can find its type in the context and produce

that type as output, so variables get a synthesis rule.

7

A somewhat subtle point about the bidirectional system is that it lets us get

away with fewer checks on the well-formedness of types, as long as we think

about the algorithm correctly. The general invariant is that we assume that

any types mentioned in Γ or τ (if τ is an input) are already well-formed before

the algorithm that decides the judgment runs. Conversely, when the algorithm

finishes, if it produces a type as output, it is responsible for guaranteeing that

the output type is well-formed. With this invariant, pretty much the only time

a type needs to be checked for well-formedness is when it’s something that

was mentioned explicitly in the expression being checked (like in the syntax for

ascriptions, or for applying a type function).

This completes the initial static semantics of our language. In a later section

we will extend it to generate coercions to replace instances of the subsumption

rule.

§ 4. De Bruijn Indices for Type Variables Before we get to the

rules for generating coercions, I want to mention an interesting phenomenon

that occurs when you use de Bruijn indices for type variables.

Looking at the rule for typing functions:

Γ, (f : τ1 → τ2), (x : τ1) ` e ⇐ τ2

Γ ` (fun f(x). e) ⇐ (τ1 → τ2)

let’s think about what it looks like in de Bruijn representation. To make this

more concrete, let’s pick a specific context and types:

(α type), (y : α), (f : α → α × α), (x : α) ` (x, y) ⇐ (α × α)

(α type), (y : α) ` (fun f(x). (x, y)) ⇐ (α → α × α)

Now what should the de Bruijn version look like? This is tricky because

there are type variables hanging around in the context, and in order to give

them numbers, we have to decide what how many “nested binders” to count.

We want to think of each item in the context as being a binder, the scope

of which extends everywhere to its right, both within the context, and in the

expression and type on the right side of the turnstile.

Following this rule, we arrive at:

(− type), (− : #1), (− : #2 → #2 × #2), (− : #3) ` (#1,#3) ⇐ (#4 × #4)

(− type), (− : #1) ` (fun − (−). (#1,#3)) ⇐ (#2 → #2 × #2)

One way to check that this is right is to recall that we have the invariant

that whenever the checking algorithm is invoked with Γ ` e ⇐ τ , we should

have Γ ` τ type. In this case, that means that we should have

(− type), (− : #1) ` (#2 → #2 × #2) type

in the conclusion, which indeed checks out, and

(− type), (− : #1), (− : #2 → #2 × #2), (− : #3) ` (#4 × #4) type

in the premise, which also checks out.

But this means that the same type can have a different form when it’s carried

from the conclusion into the premise, or when it moves into various places in

the context. In fact, the type (#2 → #2 × #2) in the conclusion takes three

different forms in the premise: it’s used in the hypothesis for the type of the

8

function name: (− : #2 → #2×#2); part of it is used in the hypothesis for the

type of the function argument: (− : #3); and part of it is used in the right-hand

side of the premise as the type of the function’s body: (#4 × #4).

All of these different forms arise by shifting the indices in the type up by

different amounts. We want to summarize the outcome of this shifting process

without getting drowned in numbers, so we’ll use the notation τ (n) for the result

of taking a type τ in de Bruijn notation and shifting all its free indices by n (so

#1 becomes #(n + 1), and so on).

With this notation, we can restate the general form of the function typing

rule for de Bruijn indices as follows:

Γ, (f : τ1 → τ2), (x : τ
(1)
1) ` e ⇐ τ

(2)
2

Γ ` (fun f(x). e) ⇐ (τ1 → τ2)

Here the names f and x are only mnemonics—they don’t actually occur in

the de Bruijn representation. Nothing in e itself needs to be shifted, because

anything in e is already in the scope of Γ, f , and x in the conclusion, and is

still in the scope of Γ, f , and x in the premise—the number of binders hasn’t

changed.

Certain laws help us reason about this shifting process. For instance, if

Γ ` τ type, and Γ′ has length n, then Γ,Γ′ ` τ (n) type. Also, whenever

Γ, (x : τ),Γ′ is well-formed, then Γ ` τ type.

There are two reasons I’m belaboring all this: first of all, the code you’ll be

working with has all of this shifting in it, and I don’t want you to be confused.

Second, this is tricky stuff. The sample “solution” handed out last fall for this

assignment got all this totally wrong. I think the only reason the problems with

it weren’t discovered was that, amusingly, all the various de Bruijn index bugs

in it had mostly canceled each other out.

So although initially this assignment was to have had you writing part of

the code for the bidirectional checker yourselves, it seemed cruel and unusual

punishment to make you do it when not even the teaching staff got it right last

fall.

§ 5. Generating Coercions Now we’ve almost come—finally!—to the

actual questions.

The initial code for this assignment is able to typecheck certain programs

that it can’t run. For example, using Top.itype() you can verify that

(fun f(x). sqrt(x +. 3.14159) : float → float)(1 : int) : float

typechecks, but if you try to run it with Top.ieval_noelab(), the machine

gets stuck. The reason is that the type system allows subsumption to silently

convert an int to a float, but the operational semantics can’t do that. (Remem-

ber that ints and floats might need to be in different registers, or something.)

What we want is for all the uses of subsumption to be elaborated into explicit

coercions. If we’re just subsuming int to float, the corresponding coercion will

be the primitive operation itof. With more complicated uses of subsumption,

though, the coercions will be more complex.

Stubs for the code to do this are already given in typing.sml; if you fill

9

them in, then the Top.ieval() function will use them to elaborate terms

before sending them to the evaluator, and thus the function above should run

properly rather than getting stuck.

The basic idea is that you’ll instrument the static semantics above with extra

outputs giving the elaborated form of the expressions being checked:

Γ+ ` e+ ⇐ τ+
 e′− elck g e t

Check e against type τ returning e′

Γ+ ` e+ ⇒ τ−
 e′− elsyn g e

Infer a type τ for e and return e′

Γ+ ` τ+
1 v τ+

2 /e+
 e′− elsub g t1 t2 e

Check τ1 a subtype of τ2 and convert e to e′

Thus, there will be a written part, where you give the rules for these judg-

ments, and a programming part, where you implement them.

To get you started, here is the rule, alluded to above, for converting an int

to a float:
Γ ` int v float/e (itof e)

And here is the subsumption rule instrumented with elaborations:

Γ ` e ⇒ τ1 e′ Γ ` τ1 v τ2/e
′
 e′′

Γ ` e ⇐ τ2 e′′

The mode correctness is now a bit tricky. First, in the conclusion, we get Γ and

e and τ2 as inputs. Next, by invoking the algorithm for the first premise, we

get τ1 and e′ as outputs. Then, invoking the algorithm for the second premise,

we get e′′ as output. Finally, we return e′′ in the conclusion as output to our

caller.

As another example, here’s the rule for applications:

Γ ` e1 ⇒ (σ → τ) e′1 Γ ` e2 ⇐ σ e′2
Γ ` (e1 e2) ⇒ τ (e′1 e′2)

The rule for let type we’ll be using is the following:

Γ ` τ type Γ ` {τ/α}e ⇐ σ e′

Γ ` (let type α = τ in e) ⇐ σ e′

This is the only elaboration rule where some kind of “evaluation” happens; that

is, the let type is no longer present in the result e′ of the elaboration. In general,

it’s hard to see how e′ could be put back into the form let type α = τ in . . .,

at least not in a uniquely determined way.

And a final example, the rule for annotations:

Γ ` e ⇐ τ e′

Γ ` (e : τ) ⇒ τ (e′ : τ)

(The annotation is still there in the output; otherwise, the output wouldn’t

typecheck.)

In general, we’d like the following theorems to be true (though you don’t

have to write up the proofs).

1. If Γ ` e ⇐ τ , then Γ ` e ⇐ τ e′ for some e′, and furthermore

Γ ` e′ ⇐ τ without any subsumptions (other than reflexivity).

10

2. If Γ ` e ⇒ τ , then Γ ` e ⇒ τ e′ for some e′, and furthermore

Γ ` e′ ⇒ τ without subsumptions other than reflexivity.

3. If Γ ` τ1 v τ2, and Γ ` e ⇒ τ1, then Γ ` τ1 v τ2/e e′ for some

e′, and furthermore Γ ` e′ ⇐ τ2 without any non-trivial subsump-

tions (assuming e doesn’t use any non-trivial subsumptions).

Take particular note of the modes in part 3. They ensure that the coercion

from e to e′ fits into the same slot that the original use of the subsumption rule

did, because the modes are the same as for the subsumption rule.

Conversely, we don’t want the system instrumented with elaborations to type

any more programs than the original system:

1. If Γ ` e ⇐ τ e′, then Γ ` e ⇐ τ .

2. If Γ ` e ⇒ τ e′, then Γ ` e ⇒ τ .

3. If Γ ` τ1 v τ2/e e′, then Γ ` τ1 v τ2.

Finally, although we won’t make the notion precise here, the original ex-

pression and the elaborated one should “do the same thing” in the operational

semantics. You shouldn’t elaborate true into false, for instance. (The difficulty

in making this precise is that part of the point is that the original term and the

elaborated term don’t do exactly the same thing, because one gets stuck and

the other doesn’t!)

Q 5.1. [45 pts] Write up instrumented versions of all the typing rules (the

named-form rules, not the de Bruijn ones) given in Section 3 of the assignment.

This includes the rules for Γ ` e ⇒ τ e′, for Γ ` e ⇐ τ e′, and for

Γ ` τ1 v τ2/e e′. The theorems above should hold for your rules, but you

don’t have to prove them. Turn your work in in lecture, or email it to me by

11:59 p.m. (If you do it by hand, you can always scan it and email me the

scans.)

The final part of the assignment is to implement your elaboration rules.

For this, you should fill in the stubs of elsyn, elck, and elsub in the file

typing.sml. The code for syn, ck, and sub should be your model, except that

you will need to add extra outputs (and an input, for elsub) to return the

result of the elaboration.

You should not need to do any de Bruijn shifting, or call the functions for

substitution, on the elaborated terms that you construct (although the part

that you inherit from ck will still have to).

Q 5.2. [45 pts] Write code for the elsyn, elck, and elsub functions in

typing.sml. Turn your modified file in to the handin directory in AFS.

Finally, you should check that Top.ielab(), which calls your elaboration

functions, returns sensible results, and that Top.ieval(), which elaborates

before evaluating, doesn’t get stuck on some examples you cook up for which

the unelaborated version Top.ieval_noelab() does.

Q 5.3. [10 pts] Put your test examples in a file testelab.mml, and hand

it in to your AFS handin directory.

11

