
Assignment 7: Subtyping and Labeled Variants

15-312: Foundations of Programming Languages
Tom Murphy 7

Modified by Kevin Watkins 〈kw@cmu.edu〉

Out: Thursday, April 7, 2005
Due: Thursday, April 14, 2005

but hand in Tuesday, April 19, 2005 (10:30 a.m.)

50 points total

In this assignment you will be asked to investigate several aspects of subtyp-

ing. For each question, assume that we are employing the subset interpretation

of subtyping.

This assignment is nominally due in one week, on April 14, but since there’s

no class meeting then (owing to Carnival), you will actually be handing it in

on the following Tuesday, April 19, in lecture (and that’s when the late clock

starts). Be advised, though, that Assignment 8 goes out on April 14.

§ 1. Width Subtyping for Products We’ve seen already (in lecture)

some subtyping rules for records, namely width, depth, and permutation sub-

typing. Now products and records are rather similar; essentially the only dif-

ference is that the constituents of a record are labeled. So we might imagine

carrying over some of these rules for records to the case of products. (In this

assignment, all products are binary—they will have exactly two components.)

It’s clear that permutation makes no sense for products; the labels are needed

there. And we already have “depth” subtyping for products, given by the rule

τ1 ≤ σ1 τ2 ≤ σ2

τ1 × τ2 ≤ σ1 × σ2

from lecture.

But what about a “width” subtyping rule for products? Such a rule might

look like
τ1 × τ2 ≤ τ1

Q 1.1. [10 pts] Why would adding this rule to MinML be a bad idea?

What key property of MinML’s static and dynamic semantics would be vi-

olated? (“Key properties” might include: type safety, progress, preservation,

canonical forms, or determinism. Be as specific as you can.) Show a MinML

term that illustrates the problem.

§ 2. Labeled Variants By adding labels to our products, we arrived at

the useful notion of records. What if we add labels to sums? Then we get what

are called labeled variants. A labeled variant is like a sum type, except that

it can contain any number of options (not necessarily two), and each option is

1

labeled. The in (injection) and case constructs then refer to these labels rather

than referring to the various options by number.

The syntax is as follows:

Types τ ::= · · · | [`1 : τ1, . . . , `n : τn]

Terms e ::= · · · | in` e

| (case e of in`1 x1 ⇒ e1 | · · · | in`n
xn ⇒ en)

Values v ::= · · · | in` v

So for instance, we could write the type of integer lists as:

intlist = (µα. [nil : 1, cons : int× α]),

and the list [1, 2] would be coded as:

roll (incons (1, roll (incons (2, roll (innil ()))))),

and the operation hd x to get the first element of a list could be coded as

hd x = (case unroll x of incons y ⇒ y. 1 | innil ⇒ fail).

Q 2.1. [10 pts] Come up with typing rules for in` and case on labeled

variants. Explain in words why your rules are correct. (It might help to go back

and look at the rules for sums, and use them as a model.)

Q 2.2. [10 pts] Come up with subtyping rules for labeled variant types.

You should have rules analogous to width, depth, and permutation subtyping

for records. (But the rules will not be exactly the same!) Explain in words why

your rules are correct.

Thinking about how to do the type safety proof for the language extended

with labeled variants, it turns out that we need a major change to the canon-

ical forms lemma. Usually, this lemma is extremely easy to prove; in fact, it’s

usually just a single inversion step. With subtyping, though, it turns out that

an inductive argument is needed.

Q 2.3. [20 pts] State a canonical forms lemma for labeled variants with

subtyping, and prove it.

Hints If you find the proof difficult, it may be that your typing rules or

subtyping rules—the answers to questions 2.1 and 2.2—are wrong. Consider this

possibility if you run into trouble. Also, it’s likely you’ll need an extra lemma

(with its own induction) saying something about subtyping. It’ll probably be

easier to try the canonical forms proof first, and in the process of working it

out, you’ll find out what the other lemma you’ll need is.

2

