Assignment 8
Implementing Concurrent ML

Karl Crary
15-312: Foundations of Programming Languages

Out: Sunday, April 17, 2005
Due: Friday, April 29, 2005 (11:59 pm)

1 Introduction

In this project, you will implement a fragment of Concurrent ML, including
threads, channels, and first-class synchronization. You are provided code
implementing continuations, timer interrupts, and thread-safe printing. You
are also provided with signatures for the code that you write. Figure 1 lists
the files you are provided and their contents.

You may work together in teams of at most two. The deliverables for this
project include (1) the code, (2) a brief report, and (3) a demo for the
instructor and/or TA.

To assist you in the development of this project, it is broken into several
pieces and each piece is given a signature. Each piece is designed to provide
the necessary tools for later pieces. Do not change the signatures! If you
have any questions about the interfaces, consult the instructor or TAs.

This document will walk you through the provided code, and the interfaces
you are to implement. A full listing of all signatures appears at the end of
this document.

Be sure to read the entire assignment carefully before you begin!

File Sig./Struct. Description

cont.sig CONT Interface for continuations
timer.sig TIMER Interface for timer interrupts
print.sig PRINT Interface for thread-safe print
queue.sig QUEUE Interface for ephemeral queues
thread.sig THREAD Interface for threads
condition.sig CONDITION Interface for condition signals
event.sig EVENT Interface for events

channel.sig CHANNEL Interface for channels

cml.sig CML Interface for CML as a whole
cont.sml Cont Implementation of continuations
timer.sml Timer Implementation of timer interrupts
print.sml Print Implementation of thread-safe print
cml.sml CML Glue combining your implementation
queue.sml Queue Template for queues

thread.sml Thread Template for threads
condition.sml Condition Template for condition signals
event.sml Event Template for events

channel.sml Channel Template for channels

demo . sml Demo Template for demonstration code

sources.cm

SML/NJ configuration management file

Figure 1: Provided files

2 Provided Code

You are provided four pieces of code:

e Cont

e Timer :

: CONT provides first-class continuations.

TIMER provides operations for managing timer interrupts and

atomic regions. These are discussed in the next two sections.

e Print

: PRINT provides a thread-safe printing function. Do not use

the ordinary print function while timer interrupts are active.

e CML : CML provides code that glues your implementation pieces to-
gether into a CML implementation. You can use this to implement
concurrent applications, and we will use it to test your implementa-
tion.

For your convenience, CML also provides a function activate that you
can use to start up concurrent programs. Its two arguments are the
size of the timeslice and a function to call.

Important Note: You must use Standard ML of New Jersey for Cont,
Timer, or Print to work. It is not possible to use other SML compilers with
this assignment.

3 Timer Interrupts

To assist you with the implementation of preemptive scheduling, we have
provided a package for managing timer interrupts. There are two main
functions, startTimer and stopTimer, which start and stop the timer.

The startTimer function takes three arguments that you provide, packaged
in a record:

e timeslice gives the size of the timeslice, in milliseconds.

e tickHandler gives the system a function for handing timer interrupts,
which are raised once per timeslice.

e interruptHandler gives the system a function for handling interrup-
tion interrupts (that is, for handling control-C). This is useful because
the ordinary SML/NJ handler for control-C does not work very grace-
fully while timer interrupts are active so you will wish to install a new
control-C handler.

Each interrupt handler you provide has the type unit cont -> unit cont.
Each time the timeslice expires, the interrupt handler is called with a con-
tinuation representing the current thread of control. The interrupt handler
processes that continuation then returns another continuation representing

the new thread of control. SML/NJ then continues the program using the
new continuation.

To make this more concrete, suppose SML is about to execute the expression
..expr.. when an interrupt occurs. In the place of ..expr.. we could
execute the equivalent expression:

C O ; ..expr..)

Now suppose the interrupt handler is handlerfn : unit cont -> unit
cont. Then instead of the above expression, SML executes:

(callcc (fn k => throw (handlerfn k) ()) ; ..expr..)

If handlerfn is the identity function, then the throw expression simply
throws () to the continuation k, resulting in the entire callcc expression
simply returning (). Thus, an interrupt has no effect if its handler is the
identity function.

However, a handler can also switch to a new thread by storing the old
continuation and returning a new one. Thus, we can implement preemptive
threads by putting code very similar to the code for Thread.yield (which
you will implement) into the timer interrupt handler.

4 Atomic Sections

A standard problem with preemptive multitasking is that many (or perhaps
most) data structures must be accessed exclusively by at most one thread at
a time. For example, if multiple threads attempt to access a queue at once,
it is likely that they will simultaneously attempt to perform inconsistent
writes to the queue’s state, thereby corrupting the queue.

To prevent this problem, one ordinarily implements mutual exclusion primi-
tives such as semaphores, mutexes, or monitors. These ensure that only one
thread is dealing with the data structure at one time.

However, in a single-processor concurrent setting, there is a simpler solution.
A thread that requires exclusive access to a data structure may enter an

atomic section, during which is it impossible for that thread to be preempted.
When it is done accessing the data structure, it leaves the atomic section,
allowing preemption once more.

Note: atomic sections are not a good solution to the general
problem of mutual exclusions. There are (at least!) two reasons
why not: First, atomic sections are not usually possible to begin
with on a multi-processor platform. Second, even on a single
processor, if very much time is spent in atomic sections, the
concurrent performance of the system is seriously degraded.

Therefore, atomic sections are a reasonable means to ensure mu-
tual exclusion to the data structures that implement the con-
currency system, since all concurrency primitives should execute
quickly and therefore little time will be spent in atomic sections.
However, atomic sections should mever be used in user code.
Consequently, no atomic section utilities are provided in the CML
signature.

Support for atomic sections is provided by two functions in TIMER: beginAtomic
enters an atomic section, and endAtomic leaves an atomic section. Inter-
rupt handlers are automatically executed atomically; calls to begindtomic
and endAtomic are not necessary and should not be used.

Note: calls to beginAtomic and endAtomic must be matched properly. For
example, the following code fragments may be correct:

beginAtomic ();
..expr 1..;
endAtomic ()

beginAtomic ();

if ..expr 2.. then
(
..expr 3..;
endAtomic ()
)

else
(
endAtomic ();
..expr 4..;

)

These are correct provided the only one of the elided expressions that can
raise an exception is ..expr 4.. If, for example, ..expr 1.. can raise an
exception, one must instead write something like:

beginAtomic ();
(..expr 1.. handle ex => (endAtomic (); raise ex));
endAtomic ()

To assist in diagnosing unmatched atomic section entries and departures,
the atomic section functions will raise the exception Atomic if one attempts
either to enter an atomic section while already in one, or to leave an atomic
section while not in one, or to enter or leave an atomic section while in an
interrupt handler. (However, you may find this to be of limited helpful-
ness if your implementation of threads allows threads that raise uncaught
exceptions to disappear silently.)

4.1 Atomicity Assumptions

Many of your functions will need to make assumptions regarding whether or
not they are in an atomic section when called. For example, many functions
will need to enter an atomic section to ensure exclusive access to their data
structures, and so they must assume that they are not called in an atomic
section.

Similarly, in order to write correct code, we must know whether we are in an

atomic section when a function returns. For example, some functions that
begin in an atomic section will end still in an atomic section, whereas others
will terminate the atomic section before returning. Finally, many functions
do not care about atomicity. They can be called in or out of an atomic
section and return the same way.

4.2 Documenting Atomicity Assumptions

Making invalid assumptions about atomicity is a very likely source of errors,
so you must be very careful to document all our atomicity assumptions. In
each of the signatures you are provided, all of the functions are grouped
under comments that indicate their atomicity assumptions, such as “begins
atomic, ends non-atomic”. Functions (such as those in QUEUE) that make
no assumptions about atomicity are not labelled. (A few functions that must
be called with preemption inactive, or that disable preemption are simply
marked “special”.)

For any code that we provide, you should assume that the stated atomic-
ity assumptions are satisfied. For any code that you are to provide, you
must ensure that the stated assumptions are accurate. For example, in a
function with no stated assumption (which therefore makes no assumption),
one should not call beginAtomic or endAtomic. As another example, in a
function that begins and ends non-atomic, one may call beginAtomic, pro-
vided one ensures a matching endAtomic is called. (Note that a function
that begins and ends atomic is not required to enter an atomic section, but
it may.)

Note: Since atomic sections are not available to user code, the CML signa-
ture does not list any atomicity assumptions. Implicitly, all CML functions
are “begins and ends non-atomic” (except for activate which would be
“special”).

5 Your Implementation

Your implementation is broken into five pieces: queues, threads, condition
signals, pure events, and channels. You will also provide a small demonstra-
tion program.

5.1 Queues

First you should implement ephemeral FIFO queues, with the signature
QUEUE. The reset operation empties a queue. The front operation returns
the front element of the queue without deleting it; remove returns it and
deletes it. The other functions are self-explanatory.

5.2 Threads

Next you should implement a thread package. Providing the following func-
tions:

e spawn: spawns a new thread and makes it ready.

yield: causes the current thread to yield to another ready thread.

e exit: causes the current thread to exit immediately. If no ready
threads remain, it throws to the top-level continuation (see below).

shutdown: shuts down the thread system and throws to the top-level
continuation (see below).

spawnAtomic: like spawn, but for use within an atomic section.

e beginPreemption: initializes the thread system and activates timer
interrupts. The first argument is the size of the timeslice in millisec-
onds. The second argument is a top-level continuation to throw to
in the event that either all threads die or there is an interruption
interrupt (i.e., control-C). You may assume that the top-level contin-
uation calls endPreemption. (The function CML.activate, which we
provide, supplies an appropriate top-level continuation when it calls
beginPreemption.)

e endPreemption: does any necessary final cleanup when shutting down
the thread system, such as stopping the timer. The top-level continu-
ation must call endPreemption.

Suggestions:

e Your Thread implementation does not need to know anything about
blocked threads. As far as Thread is concerned, blocked threads have
exited.

e Try implementing non-preemptive threads first. Then adapt your
yield code to an appropriate timer interrupt handler.

e When threads that raise uncaught exceptions die silently, it can be
difficult to diagnose bugs. Rather than allowing them to die silently,
have your spawn function cause threads to print a message before they
die. The built-in functions exnName or exnMessage may be helpful.

5.3 Condition Signals

The key synchronization mechanism you will use internally when implement-
ing events and channels is condition signals. (Note that condition signals
are for internal use only, and are not made available to user code.) For
those who are familiar with condition variables, condition signals are like
condition variables, except that only a single thread can ever wait on any
particular condition signal.

Condition signals are created by the wait function. When wait is called
with an argument function f, wait (1) creates a new condition signal, (2)
passes the condition signal to £, which typically places it into various queues,
then, when f has returned, (3) blocks until the condition is signalled. Once
the condition is signalled, wait’s return value is a value passed to signal
(see below).

A thread is awakened using the signal function. If the thread is still blocked
(that is, if the condition has not already been signalled) then the thread is
awakened and signal returns true. If the thread has already been awakened,
then signal returns false. When signal awakens a waiting thread, signal’s
second argument becomes the awakened thread’s return value for wait. The
function query determines whether a thread is still waiting (returning true
if so), without awakening it.

Finally, the function wrapCond composes a function with a condition signal.

Thus, if wrapCond (c,f) is signalled with value v, the waiting thread re-
ceives £ (v). The argument function is assumed never to raise an exception.

Important Note: Be careful to make sure that your wait function can
only return once. Later calls to signal should return false, they should not
reawaken or respawn a formerly blocked thread.

Suggestions:

e You will need to use callcc and throw to implement condition signals.

e You may wish to use the following code (from class) for composing a
function with a continuation:

fun compose (k : ’a cont, £ : ’b -> ’a) : ’b cont =
callcc
(fn escape =>
throw k (f (callcc (fn k’ => throw escape k’))))

Recall that this code works only when the function f never raises an
exception.

e A good way to block a thread is simply to have it exit, and to rely on
the signaller to respawn the thread once it is awakened. The thread
mechanism should not need to know anything about the condition
signal mechanism.

e Be sure to note that all the condition signal functions except wrapCond
are intended to be called within an atomic section; signal and query
return still in the atomic section, but wait ends it.

5.4 Events

Using condition signals, you will implement events. The functions sync,
select, wrap, guard, choose, never, and alwaysEvt are as described in
class.

The Event structure must also provide a back door so that other structures
(such as Channel) can create events. This back door is called makeEvt, which
builds an event from a base event. A base event contains three functions
that are used to synchronize on the event:

10

e poll returns true if the event is currently enabled (that is, it can be
synchronized immediately without blocking).

e perform immediately synchronizes the event and returns its value.

e block takes a condition signal and records it in an appropriate queue
to be signalled when the event becomes enabled. If and when the
condition is signalled, it is passed the event’s value.

All of the three functions are assumed to begin and end in an atomic section,
and all are assumed never to raise an exception. You may wish to establish
some additional invariants regarding their usage, particularly in conjunction
with each other. You may do so, provided that the invariants are properly
documented.

Suggestions:

e Think carefully about the best representation for the event type. The
right representation will make your implementation much easier.

5.4.1 Wrap and Pure Events

There are to be two implementations of the EVENT signature, one called
PureEvent and one called Event:

e In the PureEvent structure, you may assume that the function ar-
gument to wrap never raises an exception, and never calls any CML
utilities. This may be useful, because it means that the function can
be called in any context, including within an atomic section (where
many CML utilities cannot be called since they may attempt to en-
ter an atomic section), or in a context where exception raises are not
permitted.

e In the Event structure, the function argument to wrap is permitted to
be arbitrary code.

You will implement the PureEvent structure. The Event structure is pro-
vided. It uses your implementation of pure events to implement general
events.

11

5.5 Channels

Using the tools you have built so far, you will implement channels. Each of
the channel functions are as described in class.

5.6 Demonstration Code

The CML structure you are provided combines all of your code into a (hope-
fully!) working implementation of Concurrent ML. The last thing you will
implement is a small concurrent program that demonstrates your system in
an interesting manner.

Your demonstration program need not use every single feature of the system,
but at a minimum it should illustrate multiple threads, channels, select or
choose, and wrap. Of course, the more it uses the more fun it is. (Also
keep in mind that, in any case, all the features of the system will be tested
by our code.)

To assist you in calibrating how much time to spent on this part of the
assignment, the demonstration code will be worth no more than five percent
of the full assignment.

6 What to Hand In

You are to hand in two things with this assignment:

1. The code for your implementation. In order to ensure that your code
can link with ours, you must be sure:
e not to alter any signatures,
e not to change the names of any files, and
e not to rely on any files other than those listed in Figure 1.
2. A brief report (no more than 2 or 3 pages) documenting your design

decisions and invariants. Your report should be named report.txt
and included with your code.

12

You will also sign up for a project demo to be held on Monday, May 3. Stu-
dents for whom this date causes a hardship may make special arrangements
with the instructor.

7 Conclusion

Have fun!

A A Resource and a Warning

You may find Concurrent Programming in ML by John H. Reppy (Cam-
bridge University Press, 1999) to be a useful reference for Concurrent ML.
However you will probably not find its chapter on implementing concurrency
very helpful, and you may even find it confusing, as the implementation dis-
cussed there is quite different from the one you are to undertake.

B Signatures
signature CONT =

sig
type ’a cont
val callcc : (Pa cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

end

structure Cont :> CONT

13

signature TIMER =
sig
(*x special *)
val startTimer : {
timeslice : int,

tickHandler

unit Cont.cont -> unit Cont.cont,
interruptHandler

unit Cont.cont -> unit Cont.cont
} -> unit

val stopTimer : unit -> unit
exception Atomic

(* begins non-atomic, ends atomic (of course) *)
val beginAtomic : unit -> unit

(* begins atomic, ends non-atomic (of course) *)
val endAtomic : unit -> unit
end

structure Timer :> TIMER

signature PRINT =

sig
(* begins and ends non-atomic *)
val print : string -> unit

(* begins and ends atomic *)
val printAtomic : string -> unit

end

structure Print :> PRINT

14

signature QUEUE =
sig
type ’a queue

val queue : unit -> ’a queue

val reset : ’a queue -> unit
val is_empty : ’a queue —> bool
val insert : ’a queue * ’a -> unit

exception EmptyQueue

val remove : ’a queue -> ’a

val front : ’a queue -> ’a
end

signature THREAD =
sig
(* begins and ends non-atomic *)
val spawn : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> ’a
val shutdown : unit -> ’a

(* begins and ends atomic *)
val spawnAtomic : (unit -> unit) -> unit

(* special *)
val beginPreemption : int -> unit Cont.cont -> unit
val endPreemption : unit -> unit

end

15

signature CONDITION =
sig
type ’a cond

(* arg fn must not raise an exception *)

val wrapCond : ’a cond * (’b -> ’a) -> ’b cond

(x begins and ends atomic *)
val signal : ’a cond * ’a -> bool
val query : ’a cond -> bool

(* begins atomic, ends non-atomic, arg is called atomically *)
val wait : (’a cond -> unit) -> ’a

end

16

signature EVENT =
sig
type ’a event

(* begins and ends non-atomic *)

val sync : ’a event -> ’a

val select : ’a event list -> ’a

val wrap : ’a event * (a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event
val choose : ’a event list -> ’a event

val never : ’a event

val alwaysEvt : ’a -> ’a event

(* for each function belonging to a baseEvt we assume:
- the function begins and ends atomic
- the function never raises an exception *)
type ’a baseEvt = {
poll : unit -> bool,
perform : unit -> ’a,
block : ’a Condition.cond -> unit

}

(* begins and ends non-atomic *)
val makeEvt : ’a baseEvt -> ’a event
end

signature CHANNEL =
sig
type ’a chan

val channel : unit -> ’a chan

(* begins and ends non-atomic *)

val send : ’a chan * ’a -> unit
val recv : ’a chan -> ’a
val sendEvt : ’a chan * ’a -> unit Event.event
val recvEvt : ’a chan -> ’a Event.event
end

17

signature CML =
sig
type ’a event
type ’a chan

val spawn : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> ’a

val sync : ’a event -> ’a

val select : ’a event list -> ’a

val wrap : ’a event * (’a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event
val choose : ’a event list -> ’a event

val never : ’a event

val alwaysEvt : ’a -> ’a event

val channel : unit -> ’a chan

val send : ’a chan * ’a -> unit

val recv : ’a chan -> ’a

val sendEvt : ’a chan * ’a -> unit event
val recvEvt : ’a chan -> ’a event

val shutdown : unit -> ’a

val activate : int -> (unit -> ’a) -> unit
end

18

