
15-312 Foundations of Programming Languages

Midterm Examination

March 4, 2003

Name:

Andrew User ID:

• This is a closed-book exam; only one double-sided sheet of notes is permitted.

• Write your answer legibly in the space provided.

• There are 12 pages in this exam, including 3 worksheets.

• It consists of 3 questions worth a total of 100 points and one extra credit question
worth 20 points.

• The extra credit is recorded separately, so only attempt it after you have completed
all other questions.

• You have 85 minutes for this exam.

Problem 1 Problem 2 Problem 3 Total EC

50 30 20 100 20

1

1. Operational Semantics and Type Safety (50 pts)

We can add support for lists to MinML by adding the following syntax and typing rules:

τ ::= · · · | τ list
e ::= · · · | nil | e1 :: e2 | listcase(e, e1, x y.e2)

(As in assignment 3, listcase(e, e1, x y.e2) is concise notation for case e of nil => e1

| x::y => e2.)

Γ ` nil : τ list
Γ ` e1 : τ Γ ` e2 : τ list

Γ ` (e1 :: e2) : τ list

Γ ` e : τ list Γ ` e1 : τ ′ Γ, x : τ, y : τ list ` e2 : τ ′

Γ ` listcase(e, e1, x y.e2) : τ ′

Note: In what follows, your answers should be consistent with a call-by-value language.
Lists should not be lazy.

1. (7 pts) Extend the syntactic definition of values below to include appropriate value
forms for lists.

v ::= · · · |

2. (15 pts) Give all the evaluation rules for these constructs for a small-step operational
semantics.

2

3. (8 pts) State a canonical forms lemma appropriate for lists. You do not need to prove
it.

4. (5 pts) State the progress lemma.

5. (15 pts) Show the cases for the proof of the progress lemma pertaining to the list
constructs.

3

(Extra space.)

4

2. Polymorphism and Derived Forms (30 pts)

Often one programming construct can be implemented in terms of another. For example,
we can define a let construct as follows:

let x : τ = e1 in e2
def
= (λx:τ.e2) e1

This implementation works because function application in MinML is call-by-value: First,
the function is evaluated (which takes zero steps, since it is already a value), then the
argument e1 is evaluated, then e1’s value is substituted for x in e2. In this problem you
will implement some more sophisticated derived forms called Church encodings (named
for Alonzo Church, the inventor of the lambda calculus).

The type bool need not be primitive in PolyMinML; it can be implemented using poly-
morphism. Consider the definitions:

bool
def
= ∀α.α → α → α

true
def
= Λα.λx:α.λy:α.x

false
def
= Λα.λx:α.λy:α.y

if e1 then e2 else e3

def
= e1 [τ] e2 e3

(where e2 and e3 have type τ)

Observe that true and false have the type bool, as desired, and that if e1 has the type
bool, and e2 and e3 have the type τ , then if e1 then e2 else e3 has the type τ , as desired.

1. (5 pts) Explain in words why these definitions are reasonable.

2. (5 pts) The implementation of if does not quite match the operational semantics of
if in MinML. Why not?

5

3. (5 pts) Give a revised definition of if that corrects the problem. Do not change the
definitions of bool, true, or false. Like the unrevised definitions, your solution
should use only functions (polymorphic and/or regular) and function application.

4. (15 pts) The type bool is very much like a degenerate sum type in which neither
arm of the sum carries any information (instead, all the information is given simply
by which arm is in use). Using this intuition, we can extend the Church encoding of
booleans to sums:

τ1 + τ2
def
= ∀α.(τ1 → α) → (τ2 → α) → α

Give definitions that implement:

(a) inl
τ1+τ2

e

(b) inr
τ1+τ2

e

(c) case(e1, x.e2, x.e3)
(You may assume that e1 has type τ1 + τ2, and that e2 and e3 have the type τ .)

6

5. (20 pts EXTRA CREDIT) Give a Church encoding for product types, and give defi-
nitions that implement the pairing and projection operations.

7

3. Abstract Machines (20 pts)

The abstract machine interpreter from assignment four was inefficient in its dealing with
exceptions, because in the event of failure it had to peel frames off the stack one-by-one
looking for a handler. A more efficient abstract machine would keep track of the nearest
enclosing handler and jump to it immediately in the case of failure.

The following code implements this idea:

(* eval : exp -> (unit -> ’a) -> (exp -> ’a) -> ’a *)
fun eval (v as Fun) fk k = k v

| eval (Apply(e1, e2)) fk k =
eval e1 fk
(fn v1 => eval e2 fk

(fn v2 => eval (applyFun (v1, v2)) fk k))
| eval (v as Fail) fk k = fk ()
| eval (Try(e1, e2)) fk k =

eval e1 (fn () => eval e2 fk k) k

Each arm takes two continuations: the regular continuation k, and an failure continuation
fk. The failure continuation is the prefix of the regular continuation that ends at the
innermost failure handler. A try expression installs a new failure continuation before
evaluating its first sub-expression. A fail expression invokes the failure continuation
directly, bypassing any extra frames in the regular expression.

In this problem you will formulate a formal abstract machine that expresses what this
code is doing. Your new abstract machine will have the following syntax for states and
stacks:

(states) s ::= kfail ; k > e | kfail ; k < v

(stacks) k ::= • | k . f

In the state kfail ; k > e, the stack kfail is the failure stack, and the stack k is the regular
stack, and similarly in the state kfail ; k < v.

1. (5 pts) In the code above, what information does the try expression save in its stack
frame?

8

2. (5 pts) Keeping in mind your answer to the previous question, give syntax for
frames appropriate to the code above. You need only give the cases that deal with
functions and/or exceptions.

(When giving syntax for the stack frame for try, keep in mind that the format of the
concrete syntax is not important, provided that the necessary information is present.
There is no need to devise an elegant notation.)

3. (10 pts) Using the syntax you defined for the previous question, give transition
rules for an abstract machine that formalizes the code above. Remember, your rules
should preserve the invariant that kfail is the prefix of k that ends at the innermost
failure handler.

9

Worksheet

10

Worksheet

11

Worksheet

12

