
Part II

Defining a Language

WORKING DRAFT AUGUST 28, 2002

Chapter 3

Concrete Syntax

The concrete syntax of a language consists of the rules for representing ex-
pressions as strings, linear sequences of characters (or symbols) that may
be written on a page or entered using a keyboard. The concrete syntax usu-
ally is designed to enhance readability and to eliminate ambiguity. While
there are good methods (grounded in the theory of formal languages) for
eliminating ambiguity, improving readability is, of course, a matter of taste
about which reasonable people may disagree. Techniques for eliminating
ambiguity include precedence conventions for binary operators and vari-
ous forms of parentheses for grouping sub-expressions. Techniques for en-
hancing readability include the use of suggestive key words and phrases,
and establishment of punctuation and layout conventions.

3.1 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free
grammar (CFG) for the language. A grammar consists of three things:

1. An alphabet Σ of terminals, or letters.

2. A finite set N of non-terminals that stand for the syntactic categories.

3. A set P of productions of the form A : : = α, where A is a non-terminal
and α is a string of terminals and non-terminals.

WORKING DRAFT AUGUST 28, 2002

20 Concrete Syntax

Whenever there is a set of productions

A : : = α1
...

A : : = αn.

all with the same left-hand side, we often abbreviate it as follows:

A : : = α1 | · · · | αn.

A context-free grammar is essentially a simultaneous inductive defini-
tion of its syntactic categories. Specifically, we may associate a rule set R
with a grammar according to the following procedure. First, we treat each
non-terminal as a label of its syntactic category. Second, for each produc-
tion

A : : = s1 A1 s2 . . . sn−1 An sn

of the grammar, where A1, . . . , An are all of the non-terminals on the right-
hand side of that production, and s1, . . . , sn are strings of terminals, add a
rule

t1 A1 . . . tn An

s1 t1 s2 . . . sn−1 tn sn A

to the rule set R. For each non-terminal A, we say that s is a string of syntactic
category A, written s ∈ L(A), iff s ∈ I(R)A (i.e., s A ∈ I(R)).

An example will make these ideas clear. Let us give a grammar defining
the syntax of a simple language of arithmetic expressions extended with a
variable-binding construct.

Digits d : : = 0 | 1 | · · · | 9
Numbers n : : = d | n d
Expressions e : : = n | e+e | e* e

A number n is a non-empty sequence of decimal digits. An expression e is
either a number n, or the sum or product of two expressions.

Here is this grammar presented as a simultaneous inductive definition:

0 digit · · · 9 digit (3.1)

d digit

d number

n number d digit

n d number
(3.2)

WORKING DRAFT AUGUST 28, 2002

3.2 Ambiguity 21

n number
n expr (3.3)

e1 expr e2 expr
e1+e2 expr (3.4)

e1 expr e2 expr
e1* e2 expr (3.5)

Let R be the above set of rules, and let I = I(R). The syntactic cate-
gories of the grammar are the sections of I by the non-terminal standing
for that category. For example, the set of expressions is Iexpr, and so forth.

3.2 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to eliminate ambiguity. The grammar of arithmetic ex-
pressions given above is ambiguous in the sense that some strings may
be thought of as arising in several different ways. For example, the string
1+2* 3 may be thought of as arising by applying the rule for multiplication
first, then the rule for addition, or vice versa. The former interpretation cor-
responds to the expression (1+2)* 3; the latter corresponds to the expression
1+(2* 3).

The trouble is that we cannot simply tell from the generated string
which reading is intended. This causes numerous problems. For exam-
ple, suppose that we wish to define a function eval that assigns to each
arithmetic expression e its value n ∈ N . A natural approach is to use rule
induction on the rules determined by the grammar of expressions.

We will define three functions simultaneously, as follows:

evaldig(0) = 0
...

evaldig(9) = 9

evalnum(d) = evaldig(d)
evalnum(n d) = 10× evalnum(n) + evaldig(d)

evalexp(n) = evalnum(n)
evalexp(e1+e2) = evalexp(e1) + evalexp(e2)
evalexp(e1* e2) = evalexp(e1)× evalexp(e2)

WORKING DRAFT AUGUST 28, 2002

22 Concrete Syntax

The all-important question is: are these functions well-defined? The an-
swer is no! The reason is that a string such as 1+2* 3 arises in two differ-
ent ways, using either the rule for addition expressions (thereby reading it
as 1+(2* 3)) or the rule for multiplication (thereby reading it as (1+2)* 3).
Since these have different values, it is impossible to prove that there exists
a unique value for every string of the appropriate grammatical class. (It is
true for digits and numbers, but not for expressions.)

What do we do about ambiguity? The two most common methods to
eliminate this kind of ambiguity are these:

1. Introduce parenthesization into the grammar so that the person writ-
ing the expression can choose the intended intepretation.

2. Introduce precedence relationships that resolve ambiguities between
distinct operations (e.g., by stipulating that multiplication takes prece-
dence over multiplication).

3. Introduce associativity conventions that determine how to resolve
ambiguities between operators of the same precedence (e.g., by stip-
ulating that addtion is right-associative).

Using these techniques, we arrive at the following revised grammar for
arithmetic expressions.

Digits d : : = 0 | 1 | · · · | 9
Numbers n : : = d | n d
Expressions e : : = t | t+e
Terms t : : = f | f* t
Factors f : : = n | (e)

We have made two significant changes. The grammar has been “layered”
to express the precedence of multiplication over addition and to express
right-associativity of each, and an additional form of expression, parenthe-
sization, has been introduced.

It is a straightforward exercise to translate this grammar into an induc-
tive definition. Having done so, it is also straightforward to revise the def-
inition of the evaluation functions so that are well-defined. The revised
definitions are given by rule induction; they require additional clauses for

WORKING DRAFT AUGUST 28, 2002

3.3 Exercises 23

the new syntactic categories.

evaldig(0) = 0
...

evaldig(9) = 9

evalnum(d) = evaldig(d)
evalnum(n d) = 10× evalnum(n) + evaldig(d)

evalexp(t) = eval trm(t)
evalexp(t+e) = eval trm(t) + evalexp(e)

eval trm(f) = eval trm(f)
eval trm(f* t) = eval trm(f)× eval trm(t)

eval trm(n) = evalnum(n)
eval trm((e)) = evalexp(e)

A straightforward proof by rule induction shows that these functions are
well-defined.

3.3 Exercises

1. Give context-free grammars for various languages.

2. Ensure that a grammar is parseable using the techniques described
here.

WORKING DRAFT AUGUST 28, 2002

24 Concrete Syntax

WORKING DRAFT AUGUST 28, 2002

Chapter 4

First-Order Abstract Syntax

The concrete syntax of a language is an inductively-defined set of strings
over a given alphabet. Its first-order abstract syntax is an inductively-defined
set of first-order terms, or ast’s, over a set of operators. Abstract syntax
avoids the ambiguities of concrete syntax by employing operators that de-
termine the outermost form of any given expression, rather than relying
on parsing conventions to disambiguate strings. The reason to call this
representation “first-order” will become apparent in Chapter 5, where we
introduce mechanisms to account for the binding and scope of variables.

4.1 Abstract Syntax Trees

To specify the first-order abstract syntax of a language, it is necessary to
specify in advance the set of operators, and their arities, used to build ast’s.
For example, to specify the abstract syntax of a language of arithmetic ex-
pressions, we may specify the following operators:

Operator Arity
num(n) 0
+ 2
* 2

Here n ranges over the natural numbers; the operator num(n) is the nth
numeral, which takes no arguments. The operators + and * take two argu-
ments each, as might be expected.

Having specified the operators, we then give an inductive definition
of the various syntactic categories of the language. For example, in the

WORKING DRAFT AUGUST 28, 2002

26 First-Order Abstract Syntax

case of arithmetic expressions there is only one syntactic category, that of
expressions, which may be specified as follows:

num(n) expr (4.1)

e1 expr e2 expr

plus (e1, e2) expr (4.2)

e1 expr e2 expr

times (e1, e2) expr (4.3)

Notice that the conclusion of each rule is an ast whose outermost construc-
tor uniquely identifies the rule used to construct it.

As an alternative to rules, we often use a notation similar to context-free
grammars to specify the abstract syntax. The difference compared to simi-
lar specifications of concrete syntax lies in how we interpret the grammar.
In the case of concrete syntax we interpret the grammar as a simultaneous
inductive definition of sets of strings, whereas in the case of (first-order)
abstract syntax, we interpret it as a simultaneous inductive definition of
sets of ast’s. For example, the abstract syntax of the language of arithmetic
expressions introduced in Chapter 3 may be defined by the following gram-
mar:

Expressions e : : = num(n) | plus (e1, e2) | times (e1, e2)

This grammar, understood as a specification of abstract syntax, has the
same meaning as the rules just given for the same language.

In practice we do not explicitly declare the operators and their arities
in advance of giving an inductive definition of the abstract syntax of a lan-
guage. Instead we leave it to the reader to infer the set of operators and
their arities required for the definition to make sense.

4.2 Structural Induction

When applied to the rules defining the abstract syntax of a language, the
principle of rule induction is called structural induction. We say that a propo-
sition is proved “by induction on the structure of . . . ” or “by structural in-
duction on . . . ” to indicate that we are applying the general principle of
rule induction to the rules defining the abstract syntax of some expression.

WORKING DRAFT AUGUST 28, 2002

4.3 Parsing 27

In the case of the abstract syntax of arithmetic expressions just given,
the principle of structural induction is as follows. To prove that a property
P holds of every expression e of the abstract syntax, it is enough to show
that P is closed under the rules defining the abstract syntax. Specifically,

1. Show that P holds of num(n) for any number n.

2. Assuming that P holds of e1 and e2, show that P holds of plus (e1, e2).

3. Assuming that P holds of e1 and e2, show that P holds of times (e1, e2).

For example, we may prove that the equations

eval(num(n)) = n
eval(plus (e1, e2)) = eval(e1) + eval(e2)

eval(times (e1, e2)) = eval(e1)× eval(e2)

determine a function eval from the abstract syntax of expressions to num-
bers. That is, we may show by induction on the structure of e that there is
a unique n such that eval(e) = n.

In practice we often (somewhat sloppily) define both the concrete and
abstract syntax of a language by a single grammar. The idea is that the same
grammar can be read as a (possibly ambiguous) specification of the con-
crete syntax, and as an (unambiguous) specification of the abstract syntax.
Since the ambiguities in the concrete syntax can, presumably, be resolved
using standard methods, we do not bother to specify them, but rather rely
on the reader’s experience to fill in the details. It takes a little experience
to get used to this approach, but it greatly simplifies the presentation of
languages for which we are not concerned to design a “pretty” concrete
syntax.

4.3 Parsing

The process of translation from concrete to abstract syntax is called pars-
ing. If C is the concrete syntax of a language (an inductively-defined set
of strings), and A is its abstract syntax (an inductively-defined set of ast’s),
then a parser is a function parse : C → A mapping strings to ast’s. Since C
is inductively defined, it is natural to formulate the definition of parse by
induction on the rules defining the concrete syntax.

For example, consider the language of arithmetic expressions discussed
in Chapter 3. Since we wish to define a function on the concrete syntax, it

WORKING DRAFT AUGUST 28, 2002

28 First-Order Abstract Syntax

should be clear from the discussion in Section 3.2 that we should work
with the disambiguated grammar that makes explicit the precedence and
associativity of addition and multiplication. With the rules of this grammar
in mind, we may define simultaneously a family of parsing functions for
each syntactic category by the following equations:

parsedig(0) = 0
...

parsedig(9) = 9

parsenum(d) = num(parsedig(d))
parsenum(n d) = num(10× k + parsedig d), where parsenum n = num(k)

parseexp(t) = parsetrm(t)
parseexp(t+e) = plus (parsetrm(t), parseexp(e))

parsetrm(f) = parse fct(f)
parsetrm(f* t) = times (parse fct(f), parsetrm(t))

parse fct(n) = parsenum(n)
parse fct((e)) = parseexp(e)

It is a simple matter to prove by rule induction that these functions are all
well-defined.

There is one remaining issue about this specification of the parsing func-
tion that requires further remedy. Look closely at the definition of the func-
tion parsenum. It relies on a decomposition of the input string into two parts:
a string, which is parsed as a number, followed a character, which is parsed
as a digit. This is quite unrealistic, at least if we expect to process the input
“on the fly”, since it requires us to work from the end of the input, rather
than the beginning. To remedy this, we modify the grammatical clauses for
numbers to be right recursive, rather than left recursive, as follows:

Numbers n : : = d | d n

This re-formulation ensures that we may process the input from left-to-
right, one character at a time. It is a simple matter to re-define the parser to
reflect this change in the grammar, and to check that it is well-defined.

An implementation of a parser that obeys this left-to-right discipline
and is defined by induction on the rules of the grammar is called a recursive

WORKING DRAFT AUGUST 28, 2002

4.4 Exercises 29

descent parser. This is the method of choice for hand-coded parsers. Parser
generators, which automatically create parsers from grammars, make use
of a different technique that is more efficient, but much harder to imple-
ment by hand.

4.4 Exercises

1. Give a concrete and (first-order) abstract for a language.

2. Write a parser for that language.

WORKING DRAFT AUGUST 28, 2002

30 First-Order Abstract Syntax

WORKING DRAFT AUGUST 28, 2002

Chapter 5

Higher-Order Abstract Syntax

First-order abstract syntax captures the “deep structure” of an expression
in the sense that it makes explicit the hierarchical relationships among the
components of an expression. For example, in the case of arithmetic expres-
sions the rules of abstract syntax make clear whether a given expression is
an addition, one of whose arguments is a multiplication, or vice-versa.

Higher-order abstract syntax takes this process one step further to take
account of the binding and scope of variables. The binding of a variable is
the point at which it is introduced; its scope is its range of significance. The
names of bound variables are not significant; this is captured by the no-
tion of α-conversion. Variables may be replaced by other terms by a process
called substitution. Both of these notions are captured through the mecha-
nism of higher-order terms.

5.1 Variables, Binding, and Scope

Variables are place-holders. They may be replaced by other terms (possi-
bly involving other variables) to obtain a new term. For example, if we
extend the syntax of arithmetic expressions to include variables, we obtain
(integer) polynomials.

Variables x : : = any identifier
Expressions e : : = var (x) | num(n) | plus (e1, e2) | times (e1, e2)

We will not be specific about what counts as an identifier; typically we
admit any string over some specified alphabet.

For example, plus (times (3, var (x)), 1) is an expression involving the
variable var (x), written in abstract syntax notation. Using standard con-

WORKING DRAFT AUGUST 28, 2002

32 Higher-Order Abstract Syntax

crete syntax conventions, this expression would be written 3* x+1, relying
on precedence to disambiguate. We may replace var (x) by another expres-
sion, say plus (2, y) to obtain the expression plus (times (3, plus (2, y)), 1).
Written in terms of concrete syntax, this is plus (times (3, (plus (2, y))), 1);
parentheses are required to disambiguate.

As far as first-order abstract syntax is concerned there is nothing else to
be said. Variables are just a form of abstract syntax, no different from any
other piece of abstract syntax in the language. But something interesting
happens when we introduce operators that introduce, or bind, variables.
For example, we might extend the language of arithmetic expressions to
include a “let” statement that introduces a variable and gives it a definition.
The syntax is extended as follows:

Variables x : : = any identifier
Expressions e : : = var (x) | num(n) | plus (e1, e2) | times (e1, e2) |

let (x, e1, e2)

The ast let (x, e1, e2) might be written in concrete syntax as let x be e1 in e2

to make it a little easier to read.
What is important about the let expression is that the variable x is in-

troduced, or bound, for use within its scope, the expression e2. Ordinarily we
would interpret this as defining x to be the expression e1 for use within e2,
but that interpretation is not especially important for the present purposes.
All that matters is that the let binds a variable within a specified scope.

All occurrences of a variable within the scope of a binding are treated
as references to its binding site, the point at which the variable is bound.
Whenever we see a variable, we consider it to be a reference to the nearest
enclosing binding occurrence of that variable. Thus the occurrences of x
in the expression let x be 2 in x+x refer to the binding introduced by the
let . Similarly, in the expression

let x be 2 in let y be 3 in x+y,

the occurrence of x refers to the outermost let , and the occurence of y
refers to the innermost. Finally, in the expression

let x be 2 in let x be 3 in x+x,

both occurrences of x in the addition refer to the innermost binding occur-
rence, since it is the nearest enclosing binding for the variable x. There is no
way to refer to the outermost let ; the inner binding for x is said to shadow
the outer.

WORKING DRAFT AUGUST 28, 2002

5.1 Variables, Binding, and Scope 33

Determining the binding occurrence corresponding to a use of a vari-
able is called scope resolution. The convention of treating a variable oc-
currence as a reference to the nearest enclosing binding of that variable
is called lexical, or static, scope. The adjectives “lexical” and “static” indi-
cate that scope resolution is determined by the program text, rather than its
execution behavior. In Chapter 11 we will consider an alternative, called
dynamic scope, in which bindings are left unresolved until execution time.

Not all variables in an expression refer to a binding. For example, con-
sider the expression

let x be 2 in x+y.

The variable x is bound by the let , according to the rules just given; it is
said to be a bound variable of the expression. On the other hand the variable
y is not bound anywhere in this expression; it is said to be a free variable of
the expression. An expression containing free variables is said to be open,
whereas one that does not contain any free variables is said to be closed.
Note that expressions with no variables at all are closed, as are expressions
all of whose variables are bound.

Since bound variables are used only to refer to their binding site, the
choice of names of bound variable does not matter. Thus the expression

let x be 2 in x+x

is not materially different from the expression

let y be 2 in y+y,

since their binding structure is the same. That is, the variable x is used to
refer to the outermost binding in the first expression, whereas the variable
y is used for the same purpose in the second. Of course we typically choose
mnemonic identifiers, but for the purposes of scope resolution the choice
does not matter.

Two expressions that differ only in the choice of bound variable names
are said (for historical reasons) to be α-equivalent. We write e1 ≡ e2 to
indicate that e1 and e2 are α-equivalent. This is clearly an equivalence rela-
tion. Moreover, it is a congruence, which means that if we replace any sub-
expression by an α-equivalent sub-expression, the result is α-equivalent to
the original.

The fundamental principle of higher-order abstract syntax is that we
identify α-equivalent expressions. Put in other terms, higher-order abstract

WORKING DRAFT AUGUST 28, 2002

34 Higher-Order Abstract Syntax

syntax is the quotient of first-order abstract syntax by α-equivalence. Ele-
ments of the quotient are equivalence classes of first-order ast’s under α-
equivalence.

The main consequence of working with higher-order abstract syntax
is that we do not distinguish between ast’s that differ only in the names
of their bound variables, because we are really working with equivalence
classes. However, to write down an equivalence class requires that we
choose a representative. That is, we must make an arbitrary choice of
names for the bound variables. The beauty of higher-order abstract syntax
is that we may always choose the bound variable name to be different from
any given finite set of variable names. Such a choice is said to be fresh, or
new, relative to that set of names. Thus, when we write let x be 3 in x+x,
we implicitly choose x to be a “new” variable, different from all others cur-
rently in use. This completely avoids the problem of shadowing, since we
may always choose another representative that avoids re-use of variable
names. Provided that we make such a choice, the variable name uniquely
determines its binding occurrence.

We will often wish to replace all occurrences of a free variable x in an
expression e′ by another expression e. This process is called substitution,
and is written {e/x}e′. While substitution may, at first glance, seem like
a simple process of replacement (changing all x’s into e′), there is a subtle
difficulty that must be avoided, called capture. Since the variable x might
occur within the scope of a binding occurrence of some variable y within
e′, if y also occurs free in e, then simple replacement would incur capture,
thereby changing the meaning of the expression.

For example, suppose that e′ is the expression let y be 7 in x+y, and
let e be the expression y* 2. The result of simply replacing x by y* 2 yields
the expression

let y be 7 in y* 2+y.

The binding for y in e′ is said to capture the free occurrence of y in e. Capture
is to be avoided is because it is inappropriately sensitive to the choice of
bound variable names. If we had chosen a different representative for e′,
say

let z be 7 in x+z,

then the result of substitution would be

let z be 7 in y* 2+z,

which is a different expression!

WORKING DRAFT AUGUST 28, 2002

5.2 Higher-Order Terms 35

Thus, substitution is well-defined on α-equivalence classes only if we
avoid capture. This can always be achieved by simply choosing all bound
variable names in the target of the the substitution to be different from
those that occur free in the substituting expression. Since there are only
finitely many such variables, this requirement can always be met by a suit-
able choice of representatives. In the above example we would choose the
bound variable in e′ to be z, rather than y, since y occurs free in e.

5.2 Higher-Order Terms

To make all of this more precise and systematic, we will introduce higher-
order (more precisely, second-order) terms as a generalization of first-order
terms. Recall that a first-order term has the form o(t1, . . . , tn) where o is
an operator of arity n, meaning that it takes n arguments, and t1, . . . , tn
are themselves first-order terms. To make the step to higher-order, we will
generalize the notion of arity and simultaneously extend the notion of term.

In the higher-order case an arity is a list of natural numbers, written
[n1, . . . , nk]. An operator of this arity takes k arguments; we may form a
simple term by applying o to k higher-order terms, written o(t1, . . . , tk) as
before. However, in contrast to the first-order case, the arguments may
either be simple terms (including variables) or abstractions of the form

x1, . . . , xn.t,

where n ≥ 0 and t is a simple term.1 Such an abstraction the variables
x1, . . . , xn in the simple term t, and is said to have degree n. If o is an op-
erator of arity [n1, . . . , nk], then o(t1, . . . , tk) is well-formed only if ti has
degree ni for each 1 ≤ i ≤ k. Notice that first-order terms arise as a spe-
cial case; a first-order operator of (first-order) arity k is just a higher-order
operator of (higher-order) arity [0, . . . , 0], where 0 occurs k times, once for
each sub-term.

Thus, in the higher-order case, the operator + may be regarded as an
operator of arity [0, 0], and let may be regarded as an operator of arity
[0, 1]. This indicates that no variables are bound in the first position, but
one argument is bound in the second. Thus we would write let (e1, x.e2) in
the higher-order case, rather than let (x, e1, e2) as we did in the first-order
case. This notation, while a bit unfamiliar, makes clear which variables are
bound where in the expression, whereas in the first-order case we must
state this information separately.

1We do not distinguish between .t and t in the case that n = 0.

WORKING DRAFT AUGUST 28, 2002

36 Higher-Order Abstract Syntax

Higher-order abstract syntax, then, will be the quotient of higher-order
terms by α-equivalence (renaming of bound variables). In particular the ab-
straction x.plus (x, x) is α-equivalent to the abstraction y.plus (y, y). Con-
sequently, the simple terms

let (7, x.plus (x, x))

and
let (7, y.plus (y, y))

are also α-equivalent.
It is important to observe that α-equivalence preserves the structure of

a term. That is, a term of the form o(t1, . . . , tn) is α-equivalent only to terms
of the same form. This means that structural induction can be extended
from first-order to higher-order abstract syntax without special mention.
Note, however, that a proof by structural induction on higher-order ab-
stract syntax must respect α-conversion in the sense that the validity of the
proof cannot depend upon the exact choice of bound variable names. In
practice this is never an issue.

5.3 Renaming and Substitution

In this section we will give a more rigorous account of variable renaming
and substitution for higher-order terms. First, we will define variable re-
naming as a function on raw higher-order terms. Second, we will use this to
define α-equivalence. Third, we will define capture-avoiding substitution
on α-equivalence classes of higher-order terms.

The set of free variables, FV(t), in a raw higher-order term t is inductively
defined by the following equations:

FV(var (x)) = {x }
FV(o(t1, . . . , tn)) =

⋃
1≤i≤n FV(ti)

FV(x1, . . . , xn.t) = FV(t) \ {x1, . . . , xn }

Let ~x = x1, . . . , xk and ~x′ = x′1, . . . , x
′
k. The simultaneous renaming

of variables ~x to ~x′ in a higher-order term t, written {~x′/~x}t, defined by
induction on the structure of t as follows:

{~x′/~x}y =
{

x′i if y = xi

y ow
{~x′/~x}o(t1, . . . , tn) = o({~x′/~x}t1, . . . , {~x′/~x}tn)
{~x′/~x}y1, . . . , yn.t = y1, . . . , yn.{~x′/~x}t

WORKING DRAFT AUGUST 28, 2002

5.4 de Bruijn Indices 37

The last clause is defined only in case that no yi (1 ≤ i ≤ n) is among the ~x′

(so as to preclude capture) or among the ~x (so as to avoid confusion).2

We may now define α-equivalence as the least congruence containing
all instances of the axiom

x1, . . . , xn.t ≡ x′1, . . . , x
′
n.{x′1, . . . , x′n/x1, . . . , xn}t

whenever the substitution on the right-hand side is defined. By the “least
congruence”, we mean that ≡ is the least equivalence relation closed under
the following congruence principles:

t1 ≡ t′1 · · · tn ≡ t′n
o(t1, . . . , tn) ≡ o(t′1, . . . , t

′
n)

t ≡ t′

x1, . . . , xn.t ≡ x1, . . . , xn.t′

Thus we may replace any sub-term of a term by an α-equivalent one, and
obtain a term that is α-equivalent to the one we started with. Moreover,
α-equivalence preserves the structure of a higher-order term. In particular,
an abstraction of degree n is α-equivalent only to other abstractions of the
same degree.

Finally, we may define simultaneous substitution of a sequence ~t =
t1, . . . , tk of terms for a sequence ~x = x1, . . . , xk in a term t, written {~t/~x}t.
We will define substitution only up to α-equivalence, relying on implicit re-
naming of bound variables to ensure that capture is avoided. Simultaneous
substitution is defined by induction on the structure of t as follows:

{~t/~x}y =
{

ti if y = xi

y ow
{~t/~x}o(t′1, . . . , t′n) = o({~t/~x}t′1, . . . , {~t/~x}t′n)
{~t/~x}y1, . . . , yn.t′ = y1, . . . , yn.{~t/~x}t′ if ∀1 ≤ i ≤ n yi /∈ FV(~t)

Notice that by α-conversion the restriction on the last clause may always
be met, and hence substitution is always defined on α-equivalence classes.
Consequently, the result of substitution is only defined up to α-equivalence.

5.4 de Bruijn Indices

Most of the difficulties in formalizing the notion of higher-order abstract
syntax stem from the use of names to refer to binding occurrences of vari-
ables. An alternative is to replace variables by “direct references” to their

2These restrictions are stronger than strictly necessary, but are weak enough for present
purposes.

WORKING DRAFT AUGUST 28, 2002

38 Higher-Order Abstract Syntax

binding occurrences, dispensing with names entirely. Such a representa-
tion is said to be name-free, since it avoids the need to choose names for
bound variables at all. While such a representation is technically conve-
nient (since it avoids the messiness of working with equivalence classes), it
is practically impossible to read.

A reasonable compromise is to reserve named form for the concrete
syntax, and to use name-free form for the abstract syntax. One popular
method, invented by the Dutch mathematicians N. G. deBruijn, is to use
an indexing scheme, now called de Bruijn indices, to refer to the binding
occurrence of a variable. Specifically, a bound variable is represented by
a natural number representing the “distance” from the occurrence to the
binder for that variable. The index 1 refers to the nearest enclosing binder,
2 to the second nearest, and so on. We write deBruijn indices in the form
idx (i), where i ≥ 1. Note that this convention works well only in the case
that all binders have degree 1. The method can be generalized to binders
of higher-degree, but we do not consider this possibility here.

Using deBruijn’s notation the expression

let x be 7 in x+1

has the name-free representation

let (num(7), plus (idx (1), num(1))).

Similarly, the expression

let x be 1 in let y be 2 in x+y

has the name-free representation

let (num(1), let (num(2), plus (idx (2), idx (1)))).

A peculiarity of the deBruijn represenation is that different occurences
of the same variable may be represented by different indices. The reason is
that it may be necessary to “hop over” intervening binders in some posi-
tions, but not in others. For example, the expression

let x=10 in (let y=11 in y+x)+x

is represented in name-free form as

let (num(10), plus (let (num(11), plus (idx (1), idx (2))), idx (1)))

WORKING DRAFT AUGUST 28, 2002

5.5 Exercises 39

The two uses variable that we called x in the named form are represented
by the occurrence of the deBruijn index idx (2) and the second occurrence
of the deBruijn index idx (1). The first occurrence of idx (1) refers not to x ,
but to y .

5.5 Exercises

1. Give the higher-order abstract syntax for an interesting language.

2. Implement named and name-free representations of hoas.

3. Develop the theory of deBruijn indices, including substitution.

4. Prove some properties of susbtitution and renaming.

WORKING DRAFT AUGUST 28, 2002

40 Higher-Order Abstract Syntax

WORKING DRAFT AUGUST 28, 2002

Chapter 6

Static Semantics

The static semantics of a language isolates a subset of the abstract syntax
of the language that is deemed well-formed. In simple cases every ast is
well-formed, but in most cases additional constraints must be imposed.
Chief among these are type constraints that ensure that the constructors of
the language are combined in a sensible manner. An inductive definition
of the type constraints governing a language is called a (static) type system,
or static semantics.

6.1 Well-Formed Arithmetic Expressions

Since it is difficult to give a fully general account of static semantics, we
will instead illustrate the main ideas by example. We will give a formal
definition of well-formedness of arithmetic expressions that ensures that
there are no unbound variables in a complete expression. Of course we
could simply define e to be well-formed in this sense iff FV(e) = ∅, but we
will instead give a direct axiomatization of well-formedness.

A well-formedness judgement, or well-formedness assertion, has the form
Γ ` e ok, where Γ is a finite set of variables. The intended meaning of this
assertion is that e is an arithmetic expression all of whose free variables are
in the set Γ. In particular, if ∅ ` e ok (often abbreviated to e ok), then e has
no unbound (free) variables, and is therefore suitable for evaluation to an
integer.

WORKING DRAFT AUGUST 28, 2002

42 Static Semantics

Formally, well-formedness is inductively defined by the following rules:

(x ∈ Γ)
Γ ` var (x) ok

(n ≥ 0)
Γ ` num(n) ok

Γ ` e1 ok Γ ` e2 ok

Γ ` plus (e1, e2) ok

Γ ` e1 ok Γ ` e2 ok

Γ ` times (e1, e2) ok

Γ ∪ {x } ` e2 ok (x /∈ Γ)
Γ ` let (e1, x.e2) ok

Frequently well-formedness rules are stated using concrete syntax for the
sake of readability, but it is understood that we are really referring to the
abstract syntax of the language.

There are a few things to notice about these rules. First, a variable is
well-formed iff it is in Γ. This is consistent with the informal reading of
the judgement. Second, a let expression adds a new variable to Γ for use
within e2. The “newness” of the variable is captured by the requirement
that x /∈ Γ. By the conventions of higher-order abstract syntax, this condi-
tion can always be met by a suitable renaming prior to application of the
rule. Third, the rules are syntax-directed in the sense that there is one rule
for each form of expression; as we will see later, this is not necessarily the
case.

6.2 Exercises

1. Show that Γ ` e ok iff FV(e) ⊆ Γ. From left to right, proceed by rule
induction. From right to left, proceed by induction on the structure
of e.

2. Integers and floats. Add types to variable declarations.

WORKING DRAFT AUGUST 28, 2002

Chapter 7

Dynamic Semantics

The dynamic semantics of a language specifies how programs are to be ex-
ecuted. There are two popular methods for specifying dynamic seman-
tics. One method, called structured operational semantics (SOS), or transi-
tion semantics, presents the dynamic semantics of a language as a transition
system specifying the step-by-step execution of programs. Another, called
evaluation semantics, or ES, presents the dynamic semantics as a binary re-
lation specifying the result of a complete execution of a program.

7.1 Structured Operational Semantics

A structured operational semantics for a language consists of a transition
system whose states are programs and whose transition relation is defined
by induction over the structure of programs. We will illustrate SOS for
the simple language of arithmetic expressions (including let expressions)
presented in Chapter 5.

The set of states is the set of well-formed arithmetic expressions:

S = { e | ∃Γ Γ ` e ok }.

The set of initial states, I ⊆ S, is the set of closed expressions:

I = { e | ∅ ` e ok }.

The set of final states, F ⊆ S, is just the set of numerals for natural numbers:

F = {num(n) | n ≥ 0 }.

WORKING DRAFT AUGUST 28, 2002

44 Dynamic Semantics

The transition relation 7→ ⊆ S × S is inductively defined by the follow-
ing rules:

(p = m + n)
plus (num(m), num(n)) 7→ num(p)

(p = m× n)
times (num(m), num(n)) 7→ num(p)

let (num(n), x.e) 7→ {num(n)/var (x)}e

e1 7→ e′1
plus (e1, e2) 7→ plus (e′1, e2)

e2 7→ e′2
plus (num(n1), e2) 7→ plus (num(n1), e′2)

e1 7→ e′1
times (e1, e2) 7→ times (e′1, e2)

e2 7→ e′2
times (num(n1), e2) 7→ times (num(n1), e′2)

e1 7→ e′1
let (e1, x.e2) 7→ let (e′1, x.e2)

Observe that variables are stuck states, but they are not final. Free variables
have no binding, and hence cannot be evaluated to a number.

To enhance readability we often write SOS rules using concrete syntax,
as follows:

(p = m + n)
m+n 7→ p

(p = m× n)
m* n 7→ p

let x be n in e 7→ {n/x}e

e1 7→ e′1
e1+e2 7→ e′1+e2

e2 7→ e′2
n1+e2 7→ n1+e′2

e1 7→ e′1
e1* e2 7→ e′1* e2

e2 7→ e′2
n1* e2 7→ n1* e′2

e1 7→ e′1
let x be e1 in e2 7→ let x be e′1 in e2

The intended meaning is the same, the only difference is the presentation.

The first three rules defining the transition relation are somtimes called
instructions, since they correspond to the primitive execution steps of the
machine. Addition and multiplication are evaluated by adding and mul-
tiplying; let bindings are evaluated by substituting the definition for the

WORKING DRAFT AUGUST 28, 2002

7.1 Structured Operational Semantics 45

variable in the body. In all three cases the principal arguments of the con-
structor are required to be numbers. Both arguments of an addition or
multiplication are principal, but only the binding of the variable in a let
expression is principal. We say that these primitives are evaluated by value,
because the instructions apply only when the principal arguments have
been fully evaluated.

What if the principal arguments have not (yet) been fully evaluated?
Then we must evaluate them! In the case of arithmetic expressions we ar-
bitrarily choose a left-to-right evaluation order. First we evaluate the first
argument, then the second. Once both have been evaluated, the instruction
rule applies. In the case of let expressions we first evaluate the binding,
after which the instruction step applies. Note that evaluation of an argu-
ment can take multiple steps. The transition relation is defined so that one
step of evaluation is made at a time, reconstructing the entire expression as
necessary.

For example, consider the following evaluation sequence:

let x be 1+2 in (x+3)* 4 7→ let x be 3 in (x+3)* 4
7→ (3+3)* 4
7→ 6* 4
7→ 24

Each step is justified by a rule defining the transition relation. Instruction
rules are axioms, and hence have no premises, but all other rules are justi-
fied by a subsidiary deduction of another transition. For example, the first
transition is justified by a subsidiary deduction of 1+2 7→ 3, which is justi-
fied by the first instruction rule definining the transition relation. Each of
the subsequent steps is justified similarly.

Since the transition relation in SOS is inductively defined, we may rea-
son about it using rule induction. Specifically, to show that P (e, e′) holds
whenever e 7→ e′, it is sufficient to show that P is closed under the rules
defining the transition relation. For example, it is a simple matter to show
by rule induction that the transition relation for evaluation of arithmetic
expressions is deterministic: if e 7→ e′ and e 7→ e′′, then e′ = e′′. This may be
proved by simultaneous rule induction over the definition of the transition
relation.

WORKING DRAFT AUGUST 28, 2002

46 Dynamic Semantics

7.2 Evaluation Semantics

Another method for defining the dynamic semantics of a language, called
evaluation semantics, consists of a direct inductive definition of the evalu-
ation relation, written e ⇓ v, specifying the value, v, of an expression, e.
More precisely, an evaluation semantics consists of a set E of evaluatable ex-
pressions, a set V of values, and a binary relation ⇓ ⊆ E × V . In contrast
to SOS the set of values need not be a subset of the set of expressions; we
are free to choose values as we like. However, it is often advantageous to
choose V ⊆ E.

We will give an evaluation semantics for arithmetic expressions as an
example. The set of evaluatable expressions is defined by

E = { e | ∅ ` e ok }.

The set of values is defined by

V = {num(n) | n ≥ 0 }.

The evaluation relation for arithmetic expressions is inductively defined
by the following rules:

num(n) ⇓ num(n)

e1 ⇓ num(n1) e2 ⇓ num(n2) (n = n1 + n2)
plus (e1, e2) ⇓ num(n)

e1 ⇓ num(n1) e2 ⇓ num(n2) (n = n1 × n2)
times (e1, e2) ⇓ num(n)

e1 ⇓ num(n1) {num(n1)/var (x)}e2 ⇓ v

let (e1, x.e2) ⇓ v

Notice that the rules for evaluation semantics are not syntax-directed! The
value of a let expression is determined by the value of its binding, and
the value of the corresponding substitution instance of its body. Since the
substitution instance is not a sub-expression of the let , the rules are not
syntax-directed.

Since the evaluation relation is inductively defined, it has associated
with it a principle of proof by rule induction. Specifically, to show that
P (e, v) holds for some property P ⊆ E × V , it is enough to show that P is
closed under the rules given above. Specifically,

WORKING DRAFT AUGUST 28, 2002

7.3 Relating Transition and Evaluation Semantics 47

1. Show that P (num(n), num(n)).

2. Assume that P (e1, num(n1)) and P (e2, num(n2)). Show that P (plus (e1, e2), num(n1 + n2))
and that P (times (e1, e2), num(n1 × n2)).

3. Assume that P (e1, v1) and P ({v1/var (x)}e2, v2). Show that P (let (e1, x.e2), v2).

7.3 Relating Transition and Evaluation Semantics

We have given two different forms of dynamic semantics for the same lan-
guage. It is natural to ask whether they are equivalent, but to do so first re-
quires that we consider carefully what we mean by equivalence. The tran-
sition semantics describes a step-by-step process of execution, whereas the
evaluation semantics suppresses the intermediate states, focussing atten-
tion on the initial and final states alone. This suggests that the appropriate
correspondence is between complete execution sequences in the transition
semantics and the evaluation relation in the evaluation semantics.

Theorem 2
For all well-formed, closed arithmetic expressions e and all natural num-
bers n, e 7→! num(n) iff e ⇓ num(n).

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 3
If e ⇓ num(n), then e 7→! num(n).

Proof: By induction on the definition of the evaluation relation. For ex-
ample, suppose that plus (e1, e2) ⇓ num(n) by the rule for evaluating addi-
tions. By induction we know that e1 7→! num(n1) and e2 7→! num(n2). We
reason as follows:

plus (e1, e2) 7→∗ plus (num(n1), e2)
7→∗ plus (num(n1), num(n2))
7→ num(n1 + n2)

Therefore plus (e1, e2) 7→! num(n1 + n2), as required. The other cases are
handled similarly. �

What about the converse? Recall from Chapter 2 that the complete eval-
uation relation, 7→!, is the restriction of the multi-step evaluation relation,

WORKING DRAFT AUGUST 28, 2002

48 Dynamic Semantics

7→∗, to initial and final states (here closed expressions and numerals). Recall
also that multi-step evaluation is inductively defined by two rules, reflex-
ivity and closure under head expansion. By definition num(n) ⇓ num(n), so
it suffices to show closure under head expansion.

Lemma 4
If e 7→ e′ ⇓ num(n), then e ⇓ num(n).

Proof: By induction on the definition of the transition relation. For exam-
ple, suppose that plus (e1, e2) 7→ plus (e′1, e2), where e1 7→ e′1. Suppose
further that plus (e′1, e2) ⇓ num(n), so that e′1 ⇓ num(n1), and e2 ⇓ num(n2)
and n = n1 + n2. By induction e1 ⇓ num(n1), and hence plus (e1, e2) ⇓ n,
as required. �

7.4 Exercises

1. Prove that if e 7→ e1 and e 7→ e2, then e1 ≡ e2.

2. Prove that if e ∈ I and e 7→ e′, then e′ ∈ I . Proceed by induction on
the definition of the transition relation.

3. Prove that if e ∈ I \F , then there exists e′ such that e 7→ e′. Proceed by
induction on the rules defining well-formedness given in Chapter 6.

4. Prove that if e ⇓ v1 and e ⇓ v2, then v1 ≡ v2.

5. Complete the proof of equivalence of evaluation and transition se-
mantics.

WORKING DRAFT AUGUST 28, 2002

