
80

WORKING DRAFT SEPTEMBER 23, 2002

Part V

Control and Data Flow

WORKING DRAFT SEPTEMBER 23, 2002

Chapter 11

Abstract Machines

Long considered to be a topic of primarily academic interest, abstract, or vir-
tual, machines are now attracting renewed attention, especially by the soft-
ware industry. The main idea is to define an instruction set for a “pseudo-
computer”, the abstract machine, that may be used as the object code for
compiling a high-level language (such as ML or Java) and that may be im-
plemented with reasonable efficiency on a wide variety of stock platforms.
This means that the high-level language must be implemented only once,
for the abstract machine, but that the abstract machine must itself be im-
plemented once per platform. One advantage is that it is, in principle,
much easier to port the abstract machine than it is to re-implement the
language for each platform. More importantly, this architecture supports
the exchange of object code across the network — if everyone implements
the abstract machine, then code can migrate from one computer to another
without modification. Web sites all over the world exploit this capability to
tremendous advantage, using the Java Virtual Machine.

Before we get started, let us ask ourselves the question: what is an ab-
stract machine? In other words, what is a computer? The fundamental idea
of computation is the notion of step-by-step execution of instructions that
transform the state of the computer in some determinate fashion.1 Each
instruction should be executable in a finite amount of time using a finite
amount of information, and it should be clear how to effect the required
state transformation using only physically realizable methods.2 Execution

1The question of determinacy is increasingly problematic for real computers, largely
because of the aggressive use of parallelism in their implementation. We will gloss over
this issue here.

2For example, consider the instruction that, given the representation of a program, sets
register zero to one iff there is an input on which that program halts when executed, and

WORKING DRAFT SEPTEMBER 23, 2002

84 Abstract Machines

of a program consists of initializing the machine to a known start state, ex-
ecuting instructions one-by-one until no more instructions remains; the re-
sult of the computation is the final state. Thus an abstract machine is essen-
tially a transition system between states of that machine.

According to this definition the dynamic semantics of MinML is an ab-
stract machine, the M machine. The states of the M machine are closed
MinML expressions e, and the transitions are given by the one-step eval-
uation relation e 7→M e′ defined earlier. This machine is quite high-level
in the sense that the instructions are fairly complex compared to what are
found in typical concrete machines. For example, the M machine performs
substitution of a value for a variable in one step, a decidedly large-scale
(but nevertheless finite and effective) instruction. This machine is also odd
in another sense: rather than have an analogue of a program counter that
determines the next instruction to be executed, we instead have “search
rules” that traverse the expression to determine what to do next. As you
have no doubt observed, this can be quite an involved process, one that
is not typical of real computers. We will begin to address these concerns
by first looking at the management of the flow of control in an abstract
machine, and then considering the management of bindings of values to
variables.

11.1 Control Flow

Rather than repeatedly traverse an expression looking for the next instruc-
tion to execute, we can maintain an explicit record of what to do next in
the computation using an abstract control stack that maintains a record of
the work remaining to be done (in reverse order) to finish evaluating an
expression. We will call this machine the C machine, to remind us that it is
defined to capture the idea of control flow in a computation.

The states of the C machine have the form (k, e), where k is a control
stack and e is a closed expression. Control stacks are inductively defined
by the following rules:

• stack (11.1)

f frame k stack

f . k stack (11.2)

sets it to zero otherwise. This instruction could not be regarded as the instruction of any
computing device that we could ever physically realize, because of the unsolvability of the
halting problem.

WORKING DRAFT SEPTEMBER 23, 2002

11.1 Control Flow 85

The set of stack frames is inductively defined by these rules:

e2 expr

+(�, e2) frame (11.3)

v1 value

+(v1,�) frame (11.4)

(There are analogous frames associated with the other primitive opera-
tions.)

e1 expr e2 expr

if � then e1 else e2 fi frame (11.5)

e2 expr

apply (�, e2) frame (11.6)

v1 value
apply (v1,�) frame (11.7)

Thus a control stack is a sequence of frames f1 . · · · fn . • (implicitly right-
associated), where • is the empty stack and each fi (1 ≤ i ≤ n) is a stack
frame. Each stack frame represents one step in the process of searching for
the next position to evaluate in an expression.

The transition relation for the C machine is inductively defined by a set
of transition rules. We begin with the rules for addition; the other primitive
operations are handled similarly.

(k, +(e1, e2)) 7→C (+(�, e2) . k, e1) (11.8)

(+(�, e2) . k, v1) 7→C (+(v1,�) . k, e2) (11.9)

(+(n1,�) . k, n2) 7→C (k, n1 + n2) (11.10)

The first two rules capture the left-to-right evaluation order for the argu-
ments of addition. The top stack frame records the current position within
the argument list; when the last argument has been evaluated, the opera-
tion is applied and the stack is popped.

Next, we consider the rules for booleans.

(k, if e then e1 else e2 fi) 7→C (if � then e1 else e2 fi . k, e) (11.11)

WORKING DRAFT SEPTEMBER 23, 2002

86 Abstract Machines

(if � then e1 else e2 fi . k, true) 7→C (k, e1) (11.12)

(if � then e1 else e2 fi . k, false) 7→C (k, e2) (11.13)

These rules follow the same pattern. First, the test expression is evaluated,
recording the pending conditional branch on the stack. Once the value
of the test has been determined, we branch to the appropriate arm of the
conditional.

Finally, we consider the rules for application of functions.

(k, apply (e1, e2)) 7→C (apply (�, e2) . k, e1) (11.14)

(apply (�, e2) . k, v1) 7→C (apply (v1,�) . k, e2) (11.15)

(apply (v1,�) . k, v2) 7→C (k, {v1, v2/f, x}e) (11.16)

The last rule applies in the case that v1 = fun f (x: τ1) : τ2 is e end . These
rules ensure that the function is evaluated before the argument, applying
the function when both have been evaluated.

The final states of the C machine have the form (v, •) consisting of the
empty stack (no further work to do) and a value v.

The rules defining the C machine have no premises — they are all sim-
ple transitions, without any hypotheses. We’ve made explicit the manage-
ment of the “subgoals” required for evaluating expressions using the M ma-
chine by introducing a stack of pending sub-goals that specifies the order
in which they are to be considered. In this sense the C machine is less ab-
stract than the M machine. It is interesting to examine your implementation
of the M machine, and compare it to an implementation of the C machine.
The M machine implementation makes heavy use of the ML runtime stack
to implement the recursive calls to the MinML interpreter corresponding to
premises of the evaluation rules. The runtime stack is required because the
interpreter is not a tail recursive function. In contrast an implementation of
the C machine is tail recursive, precisely because there are no premises on
any of the transitions rules defining it.

What is the relationship between the M machine and the C machine? Do
they define the same semantics for the MinML language? Indeed they do,
but a rigorous proof of this fact is surprisingly tricky to get right. The hard-
est part is to figure out how to state the correspondence precisely; having
done that, the verification is not difficult.

WORKING DRAFT SEPTEMBER 23, 2002

11.1 Control Flow 87

The first step is to define a correspondence between C machine states
and M machine states. Intuitively the control stack in the C machine corre-
sponds to the “surrounding context” of an expression, which is saved for
consideration once the expression has been evaluated. Thus a C machine
state may be thought of as representing the M machine state obtained by
“unravelling” the control stack and plugging in the current expression to
reconstruct the entire program as a single expression. The function that
does this, written k @ e, is defined by induction on the structure of k as
follows:

•@ e = e
+(�, e2) . k @ e1 = k @ +(e1, e2)
+(v1,�) . k @ e2 = k @ +(v1, e2)

if � then e1 else e2 fi . k @ e = k @ if e then e1 else e2 fi
apply (�, e2) . k @ e = k @ apply (e, e2)
apply (v1,�) . k @ e = k @ apply (v1, e)

The precise correspondence between the two machines is given by the
following theorem.

Theorem 16
1. If (k, e) 7→C (k′, e′), then either k @ e = k′ @ e′, or k @ e 7→M k′ @ e′.

2. If e 7→M e′ and (k, e′) 7→∗
C (•, v), then (k, e) 7→∗

C (•, v).

The first part of the Theorem states that the C machine transitions are either
“bookkeeping” steps that move a piece of the program onto the control
stack without materially changing the overall program, or “instruction”
steps that correspond to transitions in the M machine. The second part is a
bit tricky to understand, at first glance. It says that if the M machine moves
from a state e to a state e′, and the C machine runs to completion starting
from e′ and an arbitrary stack k, then it also runs to completion starting
from e and k.3

Proof:

1. By induction on the definition of the C machine. We will do the cases
for application here; the remainder follow a similar pattern.

3Half the battle in establishing a correspondence between the two machines was to find
the proper statement of the correspondence! So you should not be dismayed if it takes some
time to understand what is being said here, and why.

WORKING DRAFT SEPTEMBER 23, 2002

88 Abstract Machines

(a) Consider the transition

(k, apply (e1, e2)) 7→C (apply (�, e2) . k, e1).

Here e = apply (e1, e2) , k′ = apply (�, e2) . k, and e′ = e1. It
is easy to check that k @ e = k′ @ e′.

(b) Consider the transition

(apply (�, e2) . k′′, v1) 7→C (apply (v1,�) . k′′, e2).

Here e = v1, k = apply (�, e2) .k′′, e′ = e2, and k′ = apply (v1,�) .
k′′. It is easy to check that k @ e = k′ @ e′.

(c) Consider the transition

(apply (v1,�) . k′, v2) 7→C (k′, {v1, v2/f, x}e),

where v1 = fun f (x: τ2) : τ is e end . Here k = apply (v1,�) .
k′, e = v2, and e′ = {v1, v2/f, x}e. We have

k @ e = k′ @ apply (v1, v2)
7→ k′ @ e′

as desired. The second step follows from the observation that
stacks are defined so that the M search rules “glide over” k′ —
the next instruction to execute in k′ @apply (v1, v2) must be the
application apply (v1, v2) .

2. By induction on the MinML dynamic semantics. We will do the cases
for application here; the remainder follow a similar pattern.

(a) e = apply (v1, v2) 7→M {v1, v2/f, x}e2 = e′, where the value
v1 = fun f (x: τ2) : τ is e2 end . Suppose that (k, e′) 7→∗

C (•, v).
By the definition of the C machine transition relation,

(k, e) 7→C (apply (�, v2) . k, v1)
7→C (apply (v1,�) . k, v2)
7→C (k, e′)

From this, the result follows immediately.

(b) e = apply (e1, e2) 7→M apply (e′
1, e2) = e′, where e1 7→M e′

1.
Suppose that (k, e′) 7→∗

C (•, v). Since e′ = apply (e′
1, e2) , and

WORKING DRAFT SEPTEMBER 23, 2002

11.1 Control Flow 89

since the C machine is deterministic, this transition sequence
must have the form

(k, e′) = (k, apply (e′
1, e2)) 7→C (apply (�, e2) . k, e′

1) 7→∗
C (•, v)

By the inductive hypothesis, using the enlarged stack, it follows
that

(apply (�, e2) . k, e1) 7→∗
C (•, v).

Now since

(k, e) = (k, apply (e1, e2)) 7→C (apply (�, e2) . k, e1)

the result follows immediately.

(c) e = apply (v1, e2) 7→M apply (v1, e
′
2) = e′, where e2 7→M e′

2.
Suppose that (k, e′) 7→∗

C (•, v). Since e′ = apply (v1, e
′
2) , and

since the C machine is deterministic, this transition sequence
must have the form

(k, e′) = (k, apply (v1, e
′
2)) 7→C (apply (v1,�) . k, e′

2) 7→∗
C (•, v)

By the inductive hypothesis, using the enlarged stack, it follows
that

(apply (v1,�) . k, e2) 7→∗
C (•, v).

Now since

(k, e) = (k, apply (v1, e2)) 7→C (apply (v1,�) . k, e1)

the result follows immediately.

�

Exercise 17
Finish the proof of the theorem by giving a complete proof of part (1), and
filling in the missing cases in part (2).

Corollary 18
1. If (k, e) 7→∗

C (•, v), then k @ e 7→∗
M v. Hence if (•, e) 7→∗

C (•, v), then
e 7→∗

M v.

2. If e 7→∗
M e′ and (k, e′) 7→∗

C (•, v), then (k, e) 7→∗
C (•, v). Hence if e 7→∗

M v,
then (•, e) 7→∗

C (•, v).

WORKING DRAFT SEPTEMBER 23, 2002

90 Abstract Machines

Proof:

1. By induction on the transition sequence, making use of part (1) of the
theorem, then taking k = •. For the induction we have two cases to
consider, one for each rule defining multi-step transition:

(a) Reflexivity. In this case k = • and e = v. It follows that k @ e =
v 7→∗ v, as required.

(b) Reverse execution. Here we have (k′, e′) 7→C (k, e) 7→∗
C (•, v). By

induction k @ e 7→∗
M v, and by Theorem 16 k′ @ e′ 7→∗

M k @ e, so
k′ @ e′ 7→∗

M v.

2. By induction on transition sequence, making use of part (2) of the
theorem, then taking e′ = v and k = •. We have two cases:

(a) Reflexivity. In this case e = e′ and the result is immediate.

(b) Reverse execution. Here e 7→M e′′ 7→∗
M e′ and (k, e′) 7→∗

C (•, v). By
induction (k, e′′) 7→∗

C (•, v) and by Theorem 16 we have (k, e) 7→∗
C

(•, v), as required.

�

To facilitate comparison with the E machine described below, it is useful
to restructure the C machine in the following manner. First, we introduce
an “auxiliary” state of the form (v, k), which represents the process of pass-
ing the value v to the stack k. Second, we “link” these two states by the
transition rule

(k, v) 7→C (v, k). (11.17)

That is, when encountering a value, pass it to the stack. Finally, we modify
the transition relation so that all analysis of the stack is performed using
the auxiliary state. Note that transitions now have one of four forms:

(k, e) 7→C (k′, e′) process expression
(k, v) 7→C (v, k) pass value to stack
(v, k) 7→C (v′, k′) pass value up stack
(v, k) 7→C (k′, e′) process pending expression

Exercise 19
Complete the suggested re-formulation of the C machine, and show that it
is equivalent to the orginal formulation.

WORKING DRAFT SEPTEMBER 23, 2002

11.2 Environments 91

11.2 Environments

The C machine is still quite “high level” in that function application is per-
formed by substitution of the function itself and its argument into the body
of the function, a rather complex operation. This is unrealistic for two rea-
sons. First, substitution is a complicated process, not one that we would
ordinarily think of as occurring as a single step of execution of a computer.
Second, and perhaps more importantly, the use of substitution means that
the program itself, and not just the data it acts upon, changes during eval-
uation. This is a radical departure from more familiar models of compu-
tation, which maintain a rigorous separation between program and data.
In this section we will present another abstraction machine, the E machine,
which avoids substitution by introducing an environment that records the
bindings of variables.

The basic idea is simple: rather than replace variables by their bindings
when performing a function application, we instead record the bindings of
variables in a data structure, and, correspondingly, look up the bindings of
variables when they are used. In a sense we are performing substitution
“lazily”, rather than “eagerly”, to avoid unnecessary duplication and to
avoid modifying the program during execution. The main complication
introduced by environments is that we must exercise considerable caution
to ensure that we do not confuse the scopes of variables.4 It is remarkably
easy, if we are not careful, to confuse the bindings of variables that happen
to have the same name. We avoid difficulties by introducing closures, data
structures that package an expression together with an environment.

To see the point, let’s first sketch out the structure of the E machine. A
state of the E machine has the form (K, E, e), where K is a machine stack,
E is an environment, a finite function mapping variables to machine values,
and e is an open expression such that FV(e) ⊆ dom(E). Machine values
are values “inside the machine”, distinct from the syntactic notion of value
used in the M and C machines. The reason for the distinction arises from
the replacement of substitution by binding.

Since the M and C machines perform function application by substitu-
tion, there is never any need to consider expressions with free variables in
them; the invariant that the expression part of the state is closed is main-
tained throughout evaluation. The whole point of the E machine, how-
ever, is to avoid substitution by maintaining an environment that records

4In fact, the notion of “dynamic scope” arose as a result of an error in the original Lisp
interpreter (circa 1960) that confused the scopes of variables.

WORKING DRAFT SEPTEMBER 23, 2002

92 Abstract Machines

the bindings of free variables. When a function is called, the parameter
is bound to the argument, the function name is bound to the function it-
self, and the body is evaluated; when that is complete the bindings of the
function name and parameter can be released, and evaluation continues.

This suggests that the environment is a global, stack-like data structure
onto which arguments are pushed and popped during evaluation — values
are pushed on function call and popped on function return. In fact, the en-
vironment might be called the data stack for precisely this reason. However,
a moment’s thought reveals that this characterization is a tad too simplis-
tic, because it overlooks a crucial issue in the implementation of functional
languages, namely the ability to return functions as results of function ap-
plications. Suppose that f is a function of type int →int →int . When
applied to an integer n, the result apply (f, n) yields a function of type
int →int . For example, f might be the following function:

fun (x: int) : int →int is fun (y: int) : int is x end end ,

Observe that the function returned by f contains a free occurrence of the
parameter x of f . If we follow the simple stack-like discipline of function
call and return, we will, upon calling f , bind x to 1, yielding the value

fun (y: int) : int is x end ,

then pop the binding of x from the environment. But wait a minute! The
returned value is a function that contains a free occurrence of x, and we’ve
just deleted the binding for x from the environment! Subsequent uses of
this function will either capture some other binding for x that happens to
be in the environment at the time it is used, violating the static scoping
principle,5, or incur an unbound variable error if no binding for x happens
to be available.

This problem is avoided by the use of closures. The value returned by
the application apply (f, 1) is the closure6

fun (y: int) : int is x end [E[x 7→ 1]]

where E is the environment in effect at the point of the call. When f returns
the binding for x is indeed popped from the global environment, but a local

5This is the error in the original implementation of Lisp referred to earlier.
6In this case the rest of the environment, E, is superfluous. In general we can cut down

the closing environment to just those variables that actually occur in the body of the func-
tion. We will ignore this optimization for the time being.

WORKING DRAFT SEPTEMBER 23, 2002

11.2 Environments 93

copy of it is retained in the closure returned by f . This way no confusion
or capture is possible, and the static scoping discipline is maintained, even
in the absence of substitution.

The need for closures motivates the distinction between syntactic val-
ues and machine values. The latter are inductively defined by the following
rules:

n mvalue true mvalue (11.18)

true mvalue (11.19)

false mvalue (11.20)

x var y var e expr

fun x (y: τ1) : τ2 is e end [E] mvalue (11.21)

An environment, E, is a finite function mapping variables to machine val-
ues.

The set of machine stacks is inductively defined by the following rules:

• mstack (11.22)

F mframe K mstack
F . K mstack . (11.23)

Here F is a machine frame. The set of machine frames is inductively defined
by these rules:

e2 expr

+(�, e2)[E] mframe (11.24)

V1 mvalue

+(V1,�) mframe (11.25)

e1 expr e2 expr

if � then e1 else e2 fi [E] mframe (11.26)

e2 expr

apply (�, e2) [E] mframe (11.27)

V1 mvalue
apply (V1,�) mframe (11.28)

WORKING DRAFT SEPTEMBER 23, 2002

94 Abstract Machines

The notation for E machine frames is deceptively similar to the notation
for C machine frames. Note, however, that E machine frames involve ma-
chine values, and that in many cases the frame is closed with respect to an
environment recording the bindings of the free variables in the expressions
stored in the frame. The second form of addition and application frames
need no environment; do you see why?

The E machine has two kinds of states: (K, E, e), described earlier, and
“auxiliary” states of the form (V,K), where K is a machine stack and V is
a machine value. The auxiliary state represents the passage of a machine
value to the top frame of the machine stack. (In the C machine this is ac-
complished by simply filling the hole in the stack frame, but here a bit more
work is required.)

The E machine is inductively defined by a set of rules for transitions of
one of the following four forms:

(K, E, e) 7→E (K ′, E′, e′) process expression
(K, E, v) 7→E (V ′,K ′) pass value to stack

(V,K) 7→E (V ′,K ′) pass value up stack
(V,K) 7→E (K ′, E′, e′) process pending expression

We will use the same transition relation for all four cases, relying on the
form of the states to disambiguate which is intended.

To evaluate a variable x, we look up its binding and pass the associated
value to the top frame of the control stack.

(K, E, x) 7→E (E(x),K) (11.29)

Similarly, to evaluate numeric or boolean constants, we simply pass
them to the control stack.

(K, E, n) 7→E (n, K) (11.30)

(K, E, true) 7→E (true ,K) (11.31)

(K, E, false) 7→E (false ,K) (11.32)

To evaluate a function expression, we close it with respect to the current
environment to ensure that its free variables are not inadvertently captured,

WORKING DRAFT SEPTEMBER 23, 2002

11.2 Environments 95

and pass the resulting closure to the control stack.

(K, E, fun f (x: τ1) : τ2 is e end) 7→E (fun f (x: τ1) : τ2 is e end [E],K)
(11.33)

To evaluate a primitive operation, we start by evaluating its first argu-
ment, pushing a frame on the control stack that records the need to evaluate
its remaining arguments.

(K, E,+(e1, e2)) 7→E (+(�, e2)[E] . K, E, e1) (11.34)

Notice that the frame is closed in the current environment to avoid capture
of free variables in the remaining arguments.

To evaluate a conditional, we evaluate the test expression, pushing a
frame on the control stack to record the two pending branches, once again
closed with respect to the current environment.

(K, E, if e then e1 else e2 fi) 7→E (if � then e1 else e2 fi [E] . K, E, e)
(11.35)

To evaluate an application, we begin by evaluating the function posi-
tion, pushing a frame to record the pending evaluation of the argument,
closed with respect to the current environment.

(K, E, apply (e1, e2)) 7→E (apply (�, e2) [E] . K, E, e1) (11.36)

To complete the definition of the E machine, we must define the transi-
tions governing the auxiliary states.

Pending argument evaluations for primitive operations are handled as
follows. If more arguments remain to be evaluated, we switch states to
process the next argument.

(V1,+(�, e2)[E] . K) 7→E (+(V1,�) . K, E, e2) (11.37)

Notice that the environment of the frame is used to evaluate the next argu-
ment. If no more arguments remain to be evaluated, we pass the result of
executing the primitive operation to the rest of the stack.

(n2,+(n1,�) . K) 7→E (n1 + n2,K) (11.38)

WORKING DRAFT SEPTEMBER 23, 2002

96 Abstract Machines

Pending conditional branches are handled in the obvious manner.

(true , if � then e1 else e2 fi [E] . K) 7→E (K, E, e1) (11.39)

(false , if � then e1 else e2 fi [E] . K) 7→E (K, E, e2) (11.40)

Notice that the environment of the frame is restored before evaluating the
appropriate branch of the conditional.

Pending function applications are handled as follows.

(V, apply (�, e2) [E] . K) 7→E (apply (V,�) . K, E, e2) (11.41)

Observe that the environment of the frame is restored before evaluating
the argument of the application, and that the function value (which is, pre-
sumbly, a closure) is stored intact in the new top frame of the stack.

Once the argument has been evaluated, we call the function.

(V2, apply (V,�) . K) 7→E (K, E[f 7→ V][x 7→ V2], e) (11.42)

where
V = fun f (x: τ1) : τ2 is e end [E].

To call the function we bind f to V and x to V2 in the environment of the clo-
sure, continuing with the evaluation of the body of the function. Observe
that since we use the environment of the closure, extended with bindings
for the function and its parameter, we ensure that the appropriate bindings
for the free variables of the function are employed.

The final states of the E machine have the form (V, •), with final re-
sult V . Notice that the result is a machine value. If the type of the entire
program is int or bool , then V will be a numeral or a boolean constant,
respectively. Otherwise the value will be a closure.

A correspondence between the E and the C machine along the lines of
the correspondence between the C machine and the M machine may be
established. However, since the technical details are rather involved, we
will not pursue a rigorous treatment of the relationship here. Suffice it to
say that if e is a closed MinML program of base type (int or bool), then
(•, e) 7→∗

C (•, v) iff (•, ∅, e) 7→∗
E (v, •). (The restriction to base type is neces-

sary if we are to claim that both machines return the same value.)

WORKING DRAFT SEPTEMBER 23, 2002

Chapter 12

Continuations

The treatment of exceptions in terms of a handler and control stack relies on
the reification of control stacks as values that can be pushed on the handler
stack. At first glance this appears to be a rather heavyweight operation that
would involve copying the entire control stack when establishing a handler,
and restoring it when raising an exception. However, we observed that the
machine satisfies a crucial invariant, namely that the saved control stack
is always an initial segment of the current control stack. This allows us
to reify a control stack as a “finger” in the control stack, and to install it
by popping the stack back to the finger. This is a formal justification of
an implementation based on the setjmp and and longjmp constructs of
the C language. Unlike setjmp and longjmp , the exception mechanism
is completely safe — it is impossible to return past the “finger” yet later
attempt to “pop” the control stack to that point. In C the fingers are kept
as addresses (pointers) in memory, and there is no discipline for ensuring
that the set point makes any sense when invoked later in a computation.

The idea of reification of control stacks can be taken a step further, by
allowing them to be passed as values within a program and to be restored
at a later point, even if control has long since returned past the point of
reification. Reified control stacks of this kind are called first-class continu-
ations, where the qualification “first class” stresses that they are ordinary
values with an indefinite lifetime that can be passed and returned at will in
a computation. In contrast to set points in C first-class continuations never
“expire”, and it is always sensible to reinstate a continuation without com-
promising safety. Thus first-class continuations support unlimited “time
travel” — we can go back to a previous point in the computation and then
return to some point in its future, at will.

WORKING DRAFT SEPTEMBER 23, 2002

98 Continuations

How is this achieved? The key to implementing first-class continua-
tions is to arrange that control stacks are persistent data structures, just like
any other data structure in ML that does not involve mutable references.
By a persistent data structure we mean one for which operations on it yield
a “new” version of the data structure without disturbing the old version.
For example, lists in ML are persistent in the sense that if we cons an ele-
ment to the front of a list we do not thereby destroy the original list, but
rather yield a new list with an additional element at the front, retaining the
possibility of using the old list for other purposes. In this sense persistent
data structures allow time travel — we can easily switch between several
versions of a data structure without regard to the temporal order in which
they were created. This is in sharp contrast to more familiar ephemeral data
structures for which operations such as insertion of an element irrevocably
mutate the data structure, preventing any form of time travel.

Returning to the case in point, the standard implementation of a control
stack is as an ephemeral data structure, a pointer to a region of mutable
storage that is overwritten whenever we push a frame. This makes it im-
possible to maintain an “old” and a “new” copy of the control stack at the
same time, making time travel impossible. If, however, we represent the
control stack as a persistent data structure, then we can easily reify a con-
trol stack by simply binding it to a variable, and continue working. If we
wish we can easily return to that control stack by referring to the variable
that is bound to it. This is achieved in practice by representing the control
stack as a list of frames in the heap so that the persistence of lists can be
extended to control stacks. While we will not be specific about implemen-
tation strategies in this note, it should be born in mind when considering
the semantics outlined below.

Why are first-class continuations useful? Fundamentally, they are rep-
resentations of the control state of a computation at a given point in time.
Using first-class continuations we can “checkpoint” the control state of a
program, save it in a data structure, and return to it later. In fact this is
precisely what is necessary to implement threads (concurrently executing
programs) — the thread scheduler must be able to checkpoint a program
and save it for later execution, perhaps after a pending event occurs or an-
other thread yields the processor. In Chapter 3 we will show how to build
a threads package for concurrent programming using continuations.

WORKING DRAFT SEPTEMBER 23, 2002

12.1 Informal Overview of Continuations 99

12.1 Informal Overview of Continuations

We will extend MinML with the type τ cont of continuations accepting
values of type τ . A continuation will, in fact, be a control stack of type
τ stack , but rather than expose this representation to the programmer, we
will regard τ cont as an abstract type supporting two operations, letcc x in e
and throw e1 to e2.1

Informally, evaluation of letcc x in e binds the current continuation2

to x and evaluates e. The current continuation is, as we’ve discussed, a
reification of the current control stack, which represents the current point
in the evaluation of the program. The type of x is τ cont , where τ is the
type of e. The intuition is that the current continuation is the point to which
e returns when it completes evaluation. Consequently, the control stack
expects a value of type τ , which then determines how execution proceeds.
Thus x is bound to a stack expecting a value of type τ , that is, a value of
type τ cont . Note that this is the only way to obtain a value of type τ cont ;
there are no expressions that evaluate to continuations. (This is similar
to our treatment of references — values of type τ ref are locations, but
locations can only be obtained by evaluating a ref expression.)

We may “jump” to a saved control point by throwing a value to a con-
tinuation, written throw e1 to e2. The expression e2 must evaluate to a
τ1 cont , and e1 must evaluate to a value of type τ1. The current control
stack is abandoned in favor of the reified control stack resulting from the
evaluation of e2; the value of e1 is then passed to that stack.

Here is a simple example, written in Standard ML notation. The idea is
to multiply the elements of a list, short-circuiting the computation in case
0 is encountered. Here’s the code:

fun mult list (l:int list):int =
letcc ret in

let fun mult nil = 1
| mult (0::) = throw 0 to ret
| mult (n::l) = n * mult l

in mult l end)

1Close relatives of these primitives are available in SML/NJ in the following forms:
for letcc x in e, write SMLofNJ.Cont.callcc (fn x => e) , and for throw e1 to e2,
write SMLofNJ.Cont.throw e2 e1.

2Hence the name “letcc ”.

WORKING DRAFT SEPTEMBER 23, 2002

100 Continuations

Ignoring the letcc for the moment, the body of mult list is a let ex-
pression that defines a recursive procedure mult , and applies it to the ar-
gument of mult list . The job of mult is to return the product of the ele-
ments of the list times the value of the accumulator; by calling mult with l
and 1, we obtain the product of the elements of l . Ignoring the second line
of mult , it should be clear why and how this code works.

Now let’s consider the second line of mult , and the outer use of letcc .
Intuitively, the purpose of the second line of mult is to short circuit the
multiplication, returning 0 immediately in the case that a 0 occurs in the
list. This is achieved by throwing the value 0 (the final answer) to the con-
tinuation bound to the variable ret . This variable is bound by letcc sur-
rounding the body of mult list . What continuation is it? It’s the continu-
ation that runs upon completion of the body of mult list . This continua-
tion would be executed in the case that no 0 is encountered and evaluation
proceeds normally. In the unusual case of encountering a 0 in the list, we
branch directly to the return point, passing the value 0, effecting an early
return from the procedure with result value 0.

Here’s another formulation of the same function:

fun mult list l =
let fun mult nil ret = 1

| mult (0::) ret = throw 0 to ret
| mult (n::l) ret = n * mult l ret

in letcc ret in (mult l) ret end

Here the inner loop is parameterized by the return continuation for early
exit. The multiplication loop is obtained by calling mult with the current
continuation at the exit point of mult list so that throws to ret effect an
early return from mult list , as desired.

Exercise 20
Study this example carefully to be sure you understand why it works!

Let’s look at another example: given a continuation k of type τ cont
and a function f of type τ ′→τ , return a continuation k′ of type τ ′ cont
with the following behavior: throwing a value v′ of type τ ′ to k′ throws the
value f(v′) to k. This is called composition of a function with a continuation.
We wish to fill in the following template:

fun compose (f: τ ′-> τ ,k: τ cont): τ ′ cont = ...

WORKING DRAFT SEPTEMBER 23, 2002

12.1 Informal Overview of Continuations 101

The function compose will have type

((τ ′ -> τ) * τ cont) -> τ ′ cont

Exercise 21
This is a very difficult programming problem! But please take a few mo-
ments to try to solve it before reading on. The solution is very instructive,
but is, for most people, rather hard to think up.

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one
in effect at the point of the ellipsis in the expression throw f (...) to
k. This is the continuation that, when given a value v′, applies f to it, and
throws the result to k. We can seize this continuation using letcc , writing

throw f (letcc x: τ ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f, k) =
letcc ret in

throw (f (letcc r in throw ret r)) to k

The type of return is τ ′ cont cont , a continuation expecting a continu-
ation expecting a value of type τ ′!

We can do without first-class continuations by “rolling our own”. The
idea is that we can perform (by hand or automatically) a systematic pro-
gram transformation in which a “copy” of the control stack is maintained
as a function, called a continuation. Every function takes as an argument
the control stack to which it is to pass its result by applying given stack
(represented as a function) to the result value. Functions never return in
the usual sense; they pass their result to the given continuation. Programs
written in this form are said to be in continuation-passing style, or CPS for
short.

Here’s the code to multiply the elements of a list (without short-circuiting)
in continuation-passing style:

WORKING DRAFT SEPTEMBER 23, 2002

102 Continuations

fun cps mult nil k = k 1
| cps mult (n::l) k = cps mult l (fn r => k (n * r))

fun mult l = cps mult l (fn r => r)

It’s easy to implement the short-circuit form by passing an additional
continuation, the one to invoke for short-circuiting the result:

fun cps mult list l k =
let fun cps mult nil k0 k = k 1

| cps mult (0::) k0 k = k0 0
| cps mult (n::l) k0 k =

cps mult k0 l (fn p => k (n*p))
in cps mult l k k end

The continuation k0 never changes; it is always the return continuation for
cps mult list . The argument continuation to cps mult list is dupli-
cated on the call to cps mult .

Observe that the type of the first version of cps mult becomes

int list →(int →α)→α,

and that the type of the second version becomes

int list →(int →α)→(int →α)→α,

These transformations are representative of the general case.

12.2 Semantics of Continuations

The informal description of evaluation is quite complex, as you no doubt
have observed. Here’s an example where a formal semantics is much clearer,
and can serve as a useful guide for understanding how all of this works.
The semantics is suprisingly simple and intuitive.

First, the abstract syntax. We extend the language of MinML types with
continuation types of the form τ cont . We extend the language of MinML
expressions with these additional forms:

e : : = . . . | letcc x in e | throw e1 to e2 | K

WORKING DRAFT SEPTEMBER 23, 2002

12.2 Semantics of Continuations 103

In the expression letcc x in e the variable x is bound in e. As usual we
rename bound variables implicitly as convenient. We include control stacks
K as expressions for the sake for the sake of the dynamic semantics, much
as we included locations as expressions when considering reference types.
We define continuations thought of as expressions to be values:

K stack
K value (12.1)

Stacks are as defined for the C machine, extended with these additional
frames:

e2 expr

throw � to e2 frame (12.2)

v1 value
throw v1 to � frame (12.3)

Second, the static semantics. The typing rules governing the continua-
tion primitives are these:

Γ[x:τ cont] ` e : τ

Γ ` letcc x in e : τ (12.4)

Γ ` e1 : τ1 Γ ` e2 : τ1 cont

Γ ` throw e1 to e2 : τ ′ (12.5)

The result type of a throw expression is arbitrary because it does not re-
turn to the point of the call. The typing rule for continuation values is as
follows:

` K : τ stack
Γ ` K : τ cont (12.6)

That is, a continuation value K has type τ cont exactly if it is a stack
accepting values of type τ . This relation is as defined in our treatment of
exceptions, extended to include the additional frames mentioned above.

Finally, the dynamic semantics. We use the C machine as a basis. We ex-
tend the language of expressions to include control stacks K as values. Like
locations, these arise only during execution; there is no explicit notation for
continuations in the language. The key transitions are as follows:

(K, letcc x in e) 7→ (K, {K/x}e) (12.7)

WORKING DRAFT SEPTEMBER 23, 2002

104 Continuations

(throw v to � . K,K ′) 7→ (K ′, v) (12.8)

In addition we specify the order of evaluation of arguments to throw :

(K, throw e1 to e2) 7→ (throw � to e2 . K, e1) (12.9)

(throw � to e2 . K, v1) 7→ (throw v1 to � . K, e2) (12.10)

Notice that evaluation of letcc duplicates the control stack, and that eval-
uation of throw eliminates the current control stack.

Exercise 22
Simulate the evaluation of compose (f , k) on the empty stack. Observe
that the control stack substituted for x is

apply (f,�) . throw � to k . • (12.11)

This stack is returned from compose . Next, simulate the behavior of
throwing a value v′ to this continuation. Observe that the above stack is
reinstated and that v′ is passed to it.

The safety of this extension of MinML may be established using familiar
techniques. First we must define well-formedness for machine states. As
before, we define (K, e) ok iff ` K : τ stack and ` e : τ .

The preservation theorem is stated as follows:

Theorem 23 (Preservation)
If (K, e) ok and (K, e) 7→ (K ′, e′), then (K ′, e′) ok.

Proof: The proof is by induction on evaluation. The verification is left as
an exercise. �

To establish progress we need the following extension to the canonical
forms lemma:

Lemma 24 (Canonical Forms)
If ` v : τ cont , then v = K for some control stack K such that ` K :
τ stack .

Finally, progress is stated as follows:

WORKING DRAFT SEPTEMBER 23, 2002

12.3 Coroutines 105

Theorem 25 (Progress)
If (K, e) ok then either K = • and e value, or there exists K ′ and e′ such that
(K, e) 7→ (K ′, e′).

Proof: By induction on typing. The verification is left as an exercise. �

12.3 Coroutines

Some problems are naturally implemented using coroutines, two (or more)
routines that interleave their execution by an explicit hand-off of control
from one to the other. In contrast to conventional sub-routines neither rou-
tine is “in charge”, with one calling the other to execute to completion.
Instead, the control relationship is symmetric, with each yielding control to
the other during excecution.

A classic example of coroutining is provided by the producer-consumer
model of interaction. The idea is that there is a common, hidden resource
that is supplied by the producer and utilized by the consumer. Production
of the resource is interleaved with its consumption by an explicit hand-
off from producer to consumer. Here is an outline of a simple producer-
consumer relationship, writting in Standard ML.

val buf : int ref = ref 0

fun produce (n:int, cons:state) =
(buf := n; produce (n+1, resume cons))

fun consume (prod:state) =
(print (!buf); consume (resume prod))

There the producer and consumer share an integer buffer. The producer
fills it with successive integers; the consumer retrieves these values and
prints them. The producer yields control to the consumer after filling the
buffer; the consumer yields control to the producer after printing its con-
tents. Since the handoff is explicit, the producer and consumer run in strict
synchrony, alternating between production and consumption.

The key to completing this sketch is to detail the handoff protocol. The
overall idea is to represent the state of a coroutine by a continuation, the
point at which it should continue executing when it is resumed by another
coroutine. The function resume captures the current continuation and
throws it to the argument continuation, transferring control to the other

WORKING DRAFT SEPTEMBER 23, 2002

106 Continuations

coroutine and, simultaneously, informing it how to resume the caller. This
means that the state of a coroutine is a continuation accepting the state of
(another) coroutine, which leads to a recursive type. This leads to the fol-
lowing partial solution in terms of the SML/NJ continuation primitives:

datatype state = S of state cont

fun resume (S k : state) : state =
callcc (fn k’ : state cont => throw k (S k’))

val buf : int ref = ref 0

fun produce (n:int, cons:state) =
(buf := n; produce (n+1, resume cons))

fun consume (prod:state) =
(print (Int.toString(!buf)); consume (resume prod))

All that remains is to initialize the coroutines. It is natural to start by
executing the producer, but arranging to pass it a coroutine state corre-
sponding to the consumer. This can be achieved as follows:

fun run () =
consume (callcc (fn k : state cont =>

produce (0, S k)))

Because of the call-by-value semantics of function application, we first seize
the continuation corresponding to passing an argument to consume , then
invoke produce with initial value 0 and this continuation. When produce
yields control, it throws its state to the continuation that invokes consume
with that state, at which point the coroutines have been initialized — fur-
ther hand-off’s work as described earlier.

This is, admittedly, a rather simple-minded example. However, it il-
lustrates an important idea, namely the symmetric hand-off of control be-
tween routines. The difficulty with this style of programming is that the
hand-off protocol is “hard wired” into the code. The producer yields con-
trol to the consumer, and vice versa, in strict alternating order. But what
if there are multiple producers? Or multiple consumers? How would we
handle priorities among them? What about asynchronous events such as
arrival of a network packet or completion of a disk I/O request?

An elegant solution to these problems is to generalize the notion of a
coroutine to the notion of a user-level thread. As with coroutines, threads

WORKING DRAFT SEPTEMBER 23, 2002

12.3 Coroutines 107

enjoy a symmetric relationship among one another, but, unlike coroutines,
they do not explicitly hand off control amongst themselves. Instead threads
run as coroutines of a scheduler that mediates interaction among the threads,
deciding which to run next based on considerations such as priority rela-
tionships or availability of data. Threads yield control to the scheduler,
which determines which other thread should run next, rather than explic-
itly handing control to another thread.

Here is a simple interface for a user-level threads package:

signature THREADS = sig
exception NoMoreThreads
val fork : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> ’a

end

The function fork is called to create a new thread executing the body of
the given function. The function yield is called to cede control to another
thread, selected by the thread scheduler. The function exit is called to
terminate a thread.

User-level threads are naturally implemented as continuations. A thread
is a value of type unit cont . The scheduler maintains a queue of threads
that are ready to execute. To dispatch the scheduler dequeues a thread from
the ready queue and invokes it by throwing () to it. Forking is imple-
mented by creating a new thread. Yielding is achieved by enqueueing the
current thread and dispatching; exiting is a simple dispatch, abandoning
the current thread entirely. This implementation is suggestive of a slogan
suggested by Olin Shivers: “A thread is a trajectory through continuation
space”. During its lifetime a thread of control is represented by a succes-
sion of continuations that are enqueued onto and dequeued from the ready
queue.

Here is a simple implementation of threads:

WORKING DRAFT SEPTEMBER 23, 2002

108 Continuations

structure Threads :> THREADS = struct
open SMLofNJ.Cont
exception NoRunnableThreads
type thread = unit cont
val readyQueue : thread Queue.queue = Queue.mkQueue()
fun dispatch () =

let
val t = Queue.dequeue readyQueue

handle Queue.Dequeue
=> raise NoRunnableThreads

in
throw t ()

end
fun exit () = dispatch()
fun enqueue t = Queue.enqueue (readyQueue, t)
fun fork f =

callcc (fn parent => (enqueue parent; f ();
exit()))

fun yield () =
callcc (fn parent => (enqueue parent;

dispatch()))
end

Using the above thread interface we may implement the simple producer-
consumer example as follows:

structure Client = struct
open Threads
val buffer : int ref = ref (˜1)
fun producer (n) =

(buffer := n ; yield () ; producer (n+1))
fun consumer () =

(print (Int.toString (!buffer)); yield ();
consumer())

fun run () =
(fork (consumer); producer 0)

end

This example is excessively naı̈ve, however, in that it relies on the strict
FIFO ordering of threads by the scheduler, allowing careful control over

WORKING DRAFT SEPTEMBER 23, 2002

12.3 Coroutines 109

the order of execution. If, for example, the producer were to run several
times in a row before the consumer could run, several numbers would be
omitted from the output.

Here is a better solution that avoids this problem (but does so by “busy
waiting”):

structure Client = struct
open Threads
val buffer : int option ref = ref NONE
fun producer (n) =

(case !buffer
of NONE => (buffer := SOME n ; yield() ;

producer (n+1))
| SOME => (yield (); producer (n)))

fun consumer () =
(case !buffer

of NONE => (yield (); consumer())
| SOME n =>

(print (Int.toString n);
buffer := NONE; yield(); consumer()))

fun run () =
(fork (consumer); producer 0)

end

There is much more to be said about threads! We will return to this
later in the course. For now, the main idea is to give a flavor of how first-
class continuations can be used to implement a user-level threads package
with very little difficulty. A more complete implementation is, of course,
somewhat more complex, but not much more. We can easily provide all
that is necessary for sophisticated thread programming in a few hundred
lines of ML code.

WORKING DRAFT SEPTEMBER 23, 2002

110 Continuations

WORKING DRAFT SEPTEMBER 23, 2002

Chapter 13

Exceptions

Exceptions effects a non-local transfer of control from the point at which
the exception is raised to a dynamically enclosing handler for that excep-
tion. This transfer interrupts the normal flow of control in a program in
response to unusual conditions. For example, exceptions can be used to
signal an error condition, or to indicate the need for special handling in
certain circumstances that arise only rarely. To be sure, one could use ex-
plicit conditionals to check for and process errors or unusual conditions,
but using exceptions is often more convenient, particularly since the trans-
fer to the handler is direct and immediate, rather than indirect via a series
of explicit checks. All too often explicit checks are omitted (by design or
neglect), whereas exceptions cannot be ignored.

We’ll consider the extension of MinML with an exception mechanism
similar to that of Standard ML, with the significant simplification that no
value is associated with the exception — we simply signal the exception
and thereby invoke the nearest dynamically enclosing handler. We’ll come
back to consider value-passing exceptions later.

The following grammar describes the extensions to MinML to support
valueless exceptions:

e : : = . . . | fail | try e1 owe2

The expression fail raises an exception. The expression try e1 owe2 eval-
uates e1. If it terminates normally, we return its value; otherwise, if it fails,
we continue by evaluating e2.

The static semantics of exceptions is quite straightforward:

Γ ` fail : τ (13.1)

WORKING DRAFT SEPTEMBER 23, 2002

112 Exceptions

Γ ` e1 : τ Γ ` e2 : τ
Γ ` try e1 owe2 : τ (13.2)

Observe that a failure can have any type, precisely because it never returns.
Both clauses of a handler must have the same type, to allow for either pos-
sible outcome of evaluation.

The dynamic semantics of exceptions is given in terms of the C ma-
chine with an explicit control stack. The set of frames is extended with the
following additional clause:

e2 expr

try � owe2 frame (13.3)

The evaluation rules are extended as follows:

(K, try e1 owe2) 7→ (try � owe2 . K, e1) (13.4)

(try � owe2 . K, v) 7→ (K, v) (13.5)

(try � owe2 . K, fail) 7→ (K, e2) (13.6)

(F 6= try � owe2)
(F . K, fail) 7→ (K, fail) (13.7)

To evaluate try e1 owe2 we begin by evaluating e1. If it achieves a value,
we “pop” the pending handler and yield that value. If, however, it fails, we
continue by evaluating the “otherwise” clause of the nearest enclosing han-
dler. Notice that we explicitly “pop” non-handler frames while processing
a failure; this is sometimes called unwinding the control stack. Finally, we
regard the state (•, fail) as a final state of computation, corresponding to
an uncaught exception.

Exercise 26
Hand-simulate the evaluation of a few simple expressions with exceptions
and handlers to get a feeling for how it works.

To prove safety we define well-formedness of machine states by the
following rule:

` K : τ stack ` e : τ
(K, e) ok (13.8)

WORKING DRAFT SEPTEMBER 23, 2002

113

That is, a state (K, e) is well-formed iff e is an expression of type τ and K
is a τ -accepting control stack. The latter is defined by the following rules:

` • : τ stack (13.9)

` F : (τ , τ ′) frame ` K : τ ′ stack
` F . K : τ stack (13.10)

A stack is well-formed iff its frames compose properly. The type of a frame
is defined by the following rules:

` e2 : int
` +(�, e2) : (int , int) frame (13.11)

v1 value ` v1 : int
` +(v1,�) : (int , int) frame (13.12)

` e1 : τ ` e2 : τ
` if � then e1 else e2 fi : (bool , τ) frame (13.13)

` e2 : τ2

` apply (�, e2) : (τ2→τ , τ) frame (13.14)

v1 value ` v1 : τ2→τ
` apply (v1,�) : (τ2, τ) frame (13.15)

` e2 : τ

` try � owe2 : (τ , τ ′) frame (13.16)

Intuitively, a frame of type (τ1, τ2) frame takes an “argument” of type τ1

and yields a “result” of type τ2. The argument is represented by the “�”
in the frame; the result is the type of the frame once its hole has been filled
with an expression of the given type.

With this in place we can state and prove safety.

Theorem 27 (Preservation)
If (K, e) ok and (K, e) 7→ (K ′, e′), then (K, e) ok.

Proof: By induction on evaluation. �

WORKING DRAFT SEPTEMBER 23, 2002

114 Exceptions

Exercise 28
Prove Theorem 27.

Theorem 29 (Progress)
If (K, e) ok then either

1. K = • and e value, or

2. K = • and e = fail , or

3. there exists K ′ and e′ such that (K, e) 7→ (K ′, e′).

Proof: By induction on typing. �

Exercise 30
Prove Theorem 29.

Exercise 31
Combine the treatment of references and exceptions to form a language
with both of these features. You will face a choice of how to define the
interaction between mutation and exceptions:

1. As in ML, mutations are irrevocable, even in the face of exceptions
that “backtrack” to a surrounding handler.

2. Invocation of a handler rolls back the memory to the state at the point
of installation of the handler.

Give a dynamic semantics for each alternative, and argue for and against
each choice.

The dynamic semantics of exceptions is somewhat unsatisfactory be-
cause of the explicit unwinding of the control stack to find the nearest en-
closing handler. While this does effect a non-local transfer of control, it does
so by rather crude means, rather than by a direct “jump” to the handler. In
practice exceptions are implemented as jumps, using the following ideas.
A dedicated register is set aside to contain the “current” exception handler.
When an exception is raised, the current handler is retrieved from the ex-
ception register, and control is passed to it. Before doing so, however, we
must reset the exception register to contain the nearest handler enclosing
the new handler. This ensures that if the handler raises an exception the
correct handler is invoked. How do we recover this handler? We maintain
a stack of pending handlers that is pushed whenever a handler is installed,

WORKING DRAFT SEPTEMBER 23, 2002

115

and popped whenever a handler is invoked. The exception register is the
top element of this stack. Note that we must restore the control stack to the
point at which the handler was installed before invoking the handler!

This can be modelled by a machine with states of the form (H,K, e),
where

• H is a handler stack;

• K is a control stack;

• e is a closed expression

A handler stack consists of a stack of pairs consisting of a handler together
its associated control stack:

• hstack (13.17)

K stack e expr H hstack

(K, e) . H hstack (13.18)

A handler stack element consists of a “freeze dried” control stack paired
with a pending handler.

The key transitions of the machine are given by the following rules. On
failure we pop the control stack and pass to the exception stack:

((K ′, e′) . H, K, fail) 7→ (H,K ′, e′) (13.19)

We pop the handler stack, “thaw” the saved control stack, and invoke the
saved handler expression. If there is no pending handler, we stop the ma-
chine:

(•,K, fail) 7→ (•, •, fail) (13.20)

To install a handler we preserve the handler code and the current control
stack:

(H,K, try e1 owe2) 7→ ((K, e2) . H, try � owe2 . K, e1) (13.21)

We “freeze dry” the control stack, associate it with the unevaluated han-
dler, and push it on the handler stack. We also push a frame on the control
stack to remind us to remove the pending handler from the handler stack
in the case of normal completion of evaluation of e1:

((K, e2) . H, try � owe2 . K, v1) 7→ (H,K, v1) (13.22)

WORKING DRAFT SEPTEMBER 23, 2002

116 Exceptions

Exercise 32
State and prove the safety of this formulation of exceptions.

The idea of “freeze-drying” an entire control stack and “thawing” it
later may seem like an unusually heavy-weight operation. However, a key
invariant governing a machine state (H,K, e) is the following prefix prop-
erty: if H = (K ′, e′) . H ′, then K ′ is a prefix of K. This means that we can
store a control stack by simply keeping a “finger” on some initial segment
of it, and can restore a saved control stack by popping up to that finger.

Exercise 33
Prove that the prefix property is preserved by every step of evaluation.

Finally, let us consider value-passing exceptions such as are found in
Standard ML. The main idea is to replace the failure expression, fail , by a
more general raise expression, raise (e) , which associates a value (that of
e) with the failure. Handlers are generalized so that the “otherwise” clause
is a function accepting the value associated with the failure, and yielding
a value of the same type as the “try” clause. Here is a sketch of the static
semantics for this variation:

Γ ` e : τexn

Γ ` raise (e) : τ (13.23)

Γ ` e1 : τ Γ ` e2 : τexn→τ
Γ ` try e1 owe2 : τ (13.24)

These rules are parameterized by the type of values associated with excep-
tions, τexn.

The question is: what should be the type τexn? The first thing to observe
is that all exceptions should be of the same type, otherwise we cannot guar-
antee type safety. The reason is that a handler might be invoked by any
raise expression occurring during the execution of its “try” clause. If one
exception raised an integer, and another a boolean, the handler could not
safely dispatch on the exception value. Given this, we must choose a type
τexn that supports a flexible programming style.

For example, we might choose, say, string , for τexn, with the idea that
the value associated with an exception is a description of the cause of the
exception. For example, we might write

fun div (m, 0) = raise "Division by zero attempted."
| div (m, n) = ... raise "Arithmetic overflow occurred." ...

WORKING DRAFT SEPTEMBER 23, 2002

117

However, consider the plight of the poor handler, which may wish to dis-
tinguish between division-by-zero and arithmetic overflow. How might it
do that? If exception values were strings, it would have to parse the string,
relying on the message to be in a standard format, and dispatch based on
the parse. This is manifestly unworkable. For similar reasons we wouldn’t
choose τexn to be, say, int , since that would require coding up exceptions as
numbers, much like “error numbers” in Unix. Again, completely unwork-
able in practice, and completely unmodular (different modules are bound
to conflict over their numbering scheme).

A more reasonable choice would be to define τexn to be a given datatype
exc . For example, we might have the declaration

datatype exc = Div | Overflow | Match | Bind

as part of the implicit prelude of every program. Then we’d write

fun div (m, 0) = raise Div
| div (m, n) = ... raise Overflow ...

Now the handler can easily dispatch on Div or Overflow using pattern
matching, which is much better. However, this choice restricts all programs
to a fixed set of exceptions, the value constructors associated with the pre-
declared exc datatype.

To allow extensibility Standard ML includes a special extensible datatype
called exn . Values of type exn are similar to values of a datatype, namely
they are constructed from other values using a constructor. Moreover, we
may pattern match against values of type exn in the usual way. But, in ad-
dition, we may introduce new constructors of type exn “on the fly”, rather
than declare a fixed set at the beginning of the program. Such new con-
structors are introduced using an exception declaration such as the follow-
ing:

exception Div
exception Overflow

Now Div and Overflow are constructors of type exn , and may be used
in a raise expression or matched against by an exception handler. Excep-
tion declarations can occur anywhere in the program, and are guaranteed
(by α-conversion) to be distinct from all other exceptions that may occur

WORKING DRAFT SEPTEMBER 23, 2002

118 Exceptions

elsewhere in the program, even if they happen to have the same name. If
two modules declare an exception named Error , then these are different
exceptions; no confusion is possible.

The interesting thing about the exn type is that it has nothing whatsoever
to do with the exception mechanism (beyond the fact that it is the type of val-
ues associated with exceptions). In particular, the exception declaration
introduces a value constructor that has no inherent connection with the ex-
ception mechanism. We may use the exn type for other purposes; indeed,
Java has an analogue of the type exn , called Object . This is the basis for
downcasting and so-called typecase in Java.

WORKING DRAFT SEPTEMBER 23, 2002

