
Part VI

Imperative Functional
Programming

WORKING DRAFT OCTOBER 9, 2002

Chapter 14

Mutable Storage

MinML is said to be a pure language because the execution model consists
entirely of evaluating an expression for its value. ML is an impure language
because its execution model also includes effects, specifically, control effects
and store effects. Control effects are non-local transfers of control; these will
be studied in Chapters 13 and 12. Store effects are dynamic modifications
to mutable storage. This chapter is concerned with store effects.

14.1 References

The MinML type language is extended with reference types τ ref whose el-
ements are to be thought of as mutable storage cells. We correspondingly
extend the expression language with these primitive operations:

e : : = l | ref (e) | ! e | e1:= e2

As in Standard ML, ref (e) allocates a “new” reference cell, ! e retrieves
the contents of the cell e, and e1:= e2 sets the contents of the cell e1 to the
value e2. The variable l ranges over a set of locations, an infinite set of iden-
tifiers disjoint from variables. These are needed for the dynamic semantics,
but are not expected to be notated directly by the programmer. The set of
values is extended to include locations.

Typing judgments have the form Λ; Γ ` e : τ , where Λ is a location typ-
ing, a finite function mapping locations to types; the other components of
the judgement are as for MinML. The location typing Λ records the types of
allocated locations during execution; this is critical for a precise statement
and proof of type soundness.

WORKING DRAFT OCTOBER 9, 2002

122 Mutable Storage

The typing rules are those of MinML (extended to carry a location typ-
ing), plus the following rules governing the new constructs of the language:

(Λ(l) = τ)
Λ; Γ ` l : τ ref (14.1)

Λ; Γ ` e : τ

Λ; Γ ` ref (e) : τ ref (14.2)

Λ; Γ ` e : τ ref
Λ; Γ ` ! e : τ (14.3)

Λ; Γ ` e1 : τ2 ref Λ; Γ ` e2 : τ2

Λ; Γ ` e1:= e2 : τ2 (14.4)

Notice that the location typing is not extended during type checking! Loca-
tions arise only during execution, and are not part of complete programs,
which must not have any free locations in them. The role of the location
typing will become apparent in the proof of type safety for MinML extended
with references.

A memory is a finite function mapping locations to closed values (but
possibly involving locations). The dynamic semantics of MinML with refer-
ences is given by an abstract machine. The states of this machine have the
form (M, e), where M is a memory and e is an expression possibly involv-
ing free locations in the domain of M . The locations in dom(M) are bound
simultaneously in (M, e); the names of locations may be changed at will
without changing the identity of the state.

The transitions for this machine are similar to those of the M machine,
but with these additional steps:

(M, e) 7→ (M ′, e′)
(M, ref (e)) 7→ (M, ref (e′)) (14.5)

(l /∈ dom(M))
(M, ref (v)) 7→ (M [l=v], l) (14.6)

(M, e) 7→ (M ′, e′)
(M, ! e) 7→ (M ′, ! e′) (14.7)

WORKING DRAFT OCTOBER 9, 2002

14.1 References 123

(l ∈ dom(M))
(M, ! l) 7→ (M,M(l)) (14.8)

(M, e1) 7→ (M ′, e′
1)

(M, e1:= e2) 7→ (M ′, e′
1:= e2) (14.9)

(M, e2) 7→ (M ′, e′
2)

(M,v1:= e2) 7→ (M ′, v1:= e′
2) (14.10)

(l ∈ dom(M))
(M, l:= v) 7→ (M [l=v], v) (14.11)

A state (M, e) is final iff e is a value (possibly a location).
To prove type safety for this extension we will make use of some auxil-

iary relations. Most importantly, the typing relation between memories and
location typings, written ` M : Λ, is inductively defined by the following
rule:

dom(M) = dom(Λ) ∀l ∈ dom(Λ) Λ; • `M(l) : Λ(l)
`M : Λ (14.12)

It is very important to study this rule carefully! First, we require that Λ
and M govern the same set of locations. Second, for each location l in their
common domain, we require that the value at location l, namely M(l), have
the type assigned to l, namely Λ(l), relative to the entire location typing Λ.
This means, in particular, that memories may be “circular” in the sense that
the value at location l may contain an occurrence of l, for example if that
value is a function.

The typing rule for memories is reminiscent of the typing rule for recur-
sive functions — we are allowed to assume the typing that we are trying
to prove while trying to prove it. This similarity is no accident, as the fol-
lowing example shows. Here we use ML notation, but the example can be
readily translated into MinML extended with references:

WORKING DRAFT OCTOBER 9, 2002

124 Mutable Storage

(* loop forever when called *)
fun diverge (x:int):int = diverge x
(* allocate a reference cell *)
val fc : (int->int) ref = ref (diverge)
(* define a function that ‘‘recurs’’ through fc *)
fun f 0 = 1 | f n = n * ((!fc)(n-1))
(* tie the knot *)
val = fc := f
(* now call f *)
val n = f 5

This technique is called backpatching. It is used in some compilers to imple-
ment recursive functions (and other forms of looping construct).

Exercise 34
1. Sketch the contents of the memory after each step in the above exam-

ple. Observe that after the assignment to fc the memory is “circular”
in the sense that some location contains a reference to itself.

2. Prove that every cycle in well-formed memory must “pass through”
a function. Suppose that M(l1) = l2, M(l2) = l3, . . . , M(ln) = l1 for
some sequence l1, . . . , ln of locations. Show that there is no location
typing Λ such that `M : Λ.

The well-formedness of a machine state is inductively defined by the
following rule:

`M : Λ Λ; • ` e : τ

(M, e) ok (14.13)

That is, (M, e) is well-formed iff there is a location typing for M relative to
which e is well-typed.

Theorem 35 (Preservation)
If (M, e) ok and (M, e) 7→ (M ′, e′), then (M ′, e′) ok.

Proof: The trick is to prove a stronger result by induction on evaluation:
if (M, e) 7→ (M ′, e′), `M : Λ, and Λ; • ` e : τ , then there exists Λ′ ⊇ Λ such
that `M ′ : Λ′ and Λ′; • ` e′ : τ . �

Exercise 36
Prove Theorem 35. The strengthened form tells us that the location typing,
and the memory, increase monotonically during evaluation — the type of a

WORKING DRAFT OCTOBER 9, 2002

14.1 References 125

location never changes once it is established at the point of allocation. This
is crucial for the induction.

Theorem 37 (Progress)
If (M, e) ok then either (M, e) is a final state or there exists (M ′, e′) such that
(M, e) 7→ (M ′, e′).

Proof: The proof is by induction on typing: if `M : Λ and Λ; • ` e : τ , then
either e is a value or there exists M ′ ⊇M and e′ such that (M, e) 7→ (M ′, e′).

�

Exercise 38
Prove Theorem 37 by induction on typing of machine states.

WORKING DRAFT OCTOBER 9, 2002

126 Mutable Storage

WORKING DRAFT OCTOBER 9, 2002

Chapter 15

Monads

As we saw in Chapter 14 one way to combine functional and imperative
programming is to add a type of reference cells to MinML. This approach
works well for call-by-value languages,1 because we can easily predict where
expressions are evaluated, and hence where references are allocated and as-
signed. For call-by-name languages this approach is problematic, because
in such languages it is much harder to predict when (and how often) ex-
pressions are evaluated.

Enriching ML with a type of references has an additional consequence
that one can no longer determine from the type alone whether an expres-
sion mutates storage. For example, a function of type int →int must
taken an integer as argument and yield an integer as result, but may or
may not allocate new reference cells or mutate existing reference cells. The
expressive power of the type system is thereby weakened, because we can-
not distinguish pure (effect-free) expressions from impure (effect-ful) expres-
sions.

Another approach to introducing effects in a purely functional language
is to make the use of effects explicit in the type system. Several methods
have been proposed, but the most elegant and widely used is the concept
of a monad. Roughly speaking, we distinguish between pure and impure ex-
pressions, and make a corresponding distinction between pure and impure
function types. Then a function of type int →int is a pure function (has
no effects when evaluated), whereas a function of type int ⇀ int may
have an effect when applied. The monadic approach is more popular for
call-by-name languages, but is equally sensible for call-by-value languages.

1We need to introduce cbv and cbn earlier, say in Chapter 8.

WORKING DRAFT OCTOBER 9, 2002

128 Monads

15.1 Monadic MinML

A monadic variant of MinML is obtained by separating pure from impure
expressions. The pure expressions are those of MinML. The impure ex-
pressions consist of any pure expression (vacuously impure), plus a new
primitive expression, called bind, for sequencing evaluation of impure ex-
pressions. In addition the impure expressions include primitives for allo-
cating, mutating, and accessing storage; these are “impure” because they
depend on the store for their execution.

The abstract syntax of monadic MinML is given by the following gram-
mar:

Types τ : : = int | bool | τ1→τ2 | τ1 ⇀ τ2

Pure e : : = x | n | o(e1. . ., ,en) |
true | false | if e then e1 else e2 fi |
fun f (x: τ1) : τ2 is e end | apply (e1, e2)
fun f (x: τ1) : τ2 is m end

Impure m : : = return e | bind x:τ ← m1 in m2

if τ e then m1 else m2 fi | apply (e1, e2)

Monadic MinML is a general framework for computing with effects. Note
that there are two forms of function, one whose body is pure, and one
whose body is impure. Correspondingly, there are two forms of applica-
tion, one for pure functions, one for impure functions. There are also two
forms of conditional, according to whether the arms are pure or impure.
(We will discuss methods for eliminating some of this redundancy below.)

The static semantics of monadic MinML consists of two typing judge-
ments, Γ ` e : τ for pure expressions, and Γ ` m : τ for impure expressions.

WORKING DRAFT OCTOBER 9, 2002

15.1 Monadic MinML 129

Most of the rules are as for MinML; the main differences are given below.

Γ, f :τ1 ⇀ τ2, x:τ1 ` m : τ2

Γ ` fun f (x: τ1) : τ2 is m end : τ1 ⇀ τ2

Γ ` e1 : τ2 ⇀ τ Γ ` e2 : τ2

Γ ` apply (:, τ)

Γ ` e : τ
Γ ` return e : τ

Γ ` m1 : τ1 Γ, x:τ1 ` m2 : τ2

Γ ` bind x:τ ← m1 in m2 : τ2

Γ ` e : bool Γ ` m1 : τ Γ ` m2 : τ
Γ ` if τ e then m1 else m2 fi : τ

So far we have not presented any mechanisms for engendering effects!
Monadic MinML is rather a framework for a wide variety of effects that we
will instantiate to the case of mutable storage. This is achieved by adding
the following forms of impure expression to the language:

Impure m : : = ref (e) | ! e | e1:= e2

Their typing rules are as follows:

Γ ` e : τ
Γ ` ref (e) : τ ref

Γ ` e : τ ref
Γ ` ! e : τ

Γ ` e1 : τ ref Γ ` e2 : τ2

Γ ` e1:= e2 : τ2

In addition we include locations as pure expressions, with typing rule

(Γ(l) = τ)
Γ ` l : τ ref

(For convenience we merge the location and variable typings.)
The dynamic semantics of monadic MinML is an extension to that of

MinML. Evaluation of pure expressions does not change, but we must

WORKING DRAFT OCTOBER 9, 2002

130 Monads

add rules governing evaluation of impure expressions. For the purposes
of describing mutable storage, we must consider transitions of the form
(M,m) 7→ (M ′,m′), where M and M ′ are memories, as in Chapter 14.

e 7→ e′

(M, return e) 7→ (M, return e′)

(M,m1) 7→ (M ′,m′
1)

(M, bind x:τ ← m1 in m2) 7→ (M ′, bind x:τ ← m′
1 in m2)

(M, bind x:τ ← return v in m2) 7→ (M, {v/x}m2)

The evaluation rules for the reference primitives are as in Chapter 14.

15.2 Reifying Effects

The need for pure and impure function spaces in monadic MinML is some-
what unpleasant because of the duplication of constructs. One way to
avoid this is to introduce a new type constructor, ! τ , whose elements are
unevaluated impure expressions. The computation embodied by the ex-
pression is said to be reified (turned into a “thing”).

The syntax required for this extension is as follows:

Types τ : : = ! τ
Pure e : : = box (m)
Impure m : : = unbox (e)

Informally, the pure expression box (m) is a value that contains an un-
evaluated impure expression m; the expression m is said to be boxed. Boxed
expressions can be used as ordinary values without restriction. The expres-
sion unbox (e) “opens the box” and evaluates the impure expression inside;
it is therefore itself an impure expression.

The static semantics of this extension is given by the following rules:

Γ ` m : τ
Γ ` box (m) : ! τ

Γ ` e : ! τ
Γ ` unbox (e) : τ

WORKING DRAFT OCTOBER 9, 2002

15.3 Exercises 131

The dynamic semantics is given by the following transition rules:

(M, unbox (box (m))) 7→ (M,m)
e 7→ e′

(M, unbox (e)) 7→ (M, unbox (e′))

The expression box (m) is a value, for any choice of m.
One use for reifying effects is to replace the impure function space,

τ1 ⇀ τ2, with the pure function space τ1→! τ2. The idea is that an impure
function is a pure function that yields a suspended computation that must
be unboxed to be executed. The impure function expression

fun f (x: τ1) : τ2 is m end

is replaced by the pure function expression

fun f (x: τ1) : τ2 is box (m) end .

The impure application,
apply (e1, e2) ,

is replaced by
unbox (apply (e1, e2)),

which unboxes, hence executes, the suspended computation.

15.3 Exercises

1. Consider other forms of effect such as I/O.

2. Check type safety.

3. Problems with multiple monads to distinguish multiple effects.

WORKING DRAFT OCTOBER 9, 2002

