
Part VIII

Data Structures and
Abstraction

WORKING DRAFT SEPTEMBER 30, 2002

Chapter 19

Aggregate Data Structures

It is interesting to add to MinML support for programming with aggregate
data structures such as n-tuples, lists, and tree structures. We will decom-
pose these familiar data structures into three types:

1. Product (or tuple) types. In general these are types whose values are
n-tuples of values, with each component of a specified type. We will
study two special cases that are sufficient to cover the general case:
0-tuples (also known as the unit type) and 2-tuples (also known as
ordered pairs).

2. Sum (or variant or union) types. These are types whose values are
values of one of n specified types, with an explicit “tag” indicating
which of the n choices is made.

3. Recursive types. These are “self-referential” types whose values may
have as constituents values of the recursive type itself. Familiar ex-
amples include lists and trees. A non-empty list consists of a value at
the head of the list together with another value of list type.

19.1 Products

The first-order abstract syntax associated with nullary and binary product
types is given by the following grammar:

Types τ : : = unit | τ1* τ2

Expressions e : : = () | check e1 is () in e2 end | (e1, e2) |
split e1 as (x, y) in e2 end

Values v : : = () | (v1, v2)

WORKING DRAFT SEPTEMBER 30, 2002

162 Aggregate Data Structures

The higher-order abstract syntax is given by stipulating that in the expres-
sion split e1 as (x, y) in e2 end the variables x and y are bound within
e2, and hence may be renamed (consistently, avoiding capture) at will with-
out changing the interpretation of the expression.

The static semantics of these constructs is given by the following typing
rules:

Γ ` () : unit (19.1)

Γ ` e1 : unit Γ ` e2 : τ2

Γ ` check e1 is () in e2 end : τ2 (19.2)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1* τ2 (19.3)

Γ ` e1 : τ1* τ2 Γ, x:τ1, y:τ2 ` e2 : τ

Γ ` split e1 as (x, y) in e2 end : τ (19.4)

The dynamic semantics is given by these rules:

check () is () in e end 7→ e (19.5)

e1 7→ e′1
check e1 is () in e2 end 7→ check e′1 is () in e2 end (19.6)

e1 7→ e′1
(e1, e2) 7→ (e′1, e2) (19.7)

e2 7→ e′2
(v1, e2) 7→ (v1, e′2) (19.8)

split (v1, v2) as (x, y) in e end 7→ {v1, v2/x, y}e (19.9)

e1 7→ e′1
split e1 as (x, y) in e2 end 7→ split e′1 as (x, y) in e2 end (19.10)

Exercise 48
State and prove the soundness of this extension to MinML.

WORKING DRAFT SEPTEMBER 30, 2002

19.2 Sums 163

Exercise 49
A variation is to treat any pair (e1, e2) as a value, regardless of whether
or not e1 or e2 are values. Give a precise formulation of this variant, and
prove it sound.

Exercise 50
It is also possible to formulate a direct treatment of n-ary product types (for
n ≥ 0), rather than to derive them from binary and nullary products. Give
a direct formalization of n-ary products. Be careful to get the cases n = 0
and n = 1 right!

Exercise 51
Another variation is to considered labelled products in which the compo-
nents are accessed directly by referring to their labels (in a manner similar
to C struct ’s). Formalize this notion.

19.2 Sums

The first-order abstract syntax of nullary and binary sums is given by the
following grammar:

Types τ : : = void | τ1+τ2

Expressions e : : = inl τ1+τ2(e1) | inr τ1+τ2(e2) |
case τ e0 of inl (x: τ1) => e1 | inr (y: τ2) => e2 end

Values v : : = inl τ1+τ2(v1) | inr τ1+τ2(v2)

The higher-order abstract syntax is given by noting that in the expression
case τ e0 of inl (x: τ1) => e1 | inr (y: τ2) => e2 end , the variable x is bound
in e1 and the variable y is bound in e2.

The typing rules governing these constructs are given as follows:

Γ ` e1 : τ1

Γ ` inl τ1+τ2(e1) : τ1+τ2 (19.11)

Γ ` e2 : τ2

Γ ` inl τ1+τ2(e2) : τ1+τ2 (19.12)

Γ ` e0 : τ1+τ2 Γ, x1:τ1 ` e1 : τ Γ, x2:τ2 ` e2 : τ

Γ ` case τ e0 of inl (x1: τ1) => e1 | inr (x2: τ2) => e2 end : τ (19.13)

WORKING DRAFT SEPTEMBER 30, 2002

164 Aggregate Data Structures

The evaluation rules are as follows:
e 7→ e′

inl τ1+τ2(e) 7→ inl τ1+τ2(e′) (19.14)

e 7→ e′

inr τ1+τ2(e) 7→ inr τ1+τ2(e′) (19.15)

case τ inl τ1+τ2(v) of inl (x1: τ1) => e1 | inr (x2: τ2) => e2 end 7→ {v/x1}e1

(19.16)

case τ inr τ1+τ2(v) of inl (x1: τ1) => e1 | inr (x2: τ2) => e2 end 7→ {v/x2}e2

(19.17)

Exercise 52
State and prove the soundness of this extension.

Exercise 53
Consider these variants: inl τ1+τ2(e) and inr τ1+τ2(e) are values, regard-
less of whether or not e is a value; n-ary sums; labelled sums.

19.3 Recursive Types

Recursive types are somewhat less familiar than products and sums. Few
well-known languages provide direct support for these. Instead the pro-
grammer is expected to simulate them using pointers and similar low-level
representations. Here instead we’ll present them as a fundamental concept.

As mentioned in the introduction, the main idea of a recursive type is
similar to that of a recursive function — self-reference. The idea is easily
illustrated by example. Informally, a list of integers may be thought of as
either the empty list, nil , or a non-empty list, cons (h, t) , where h is an in-
teger and t is another list of integers. The operations nil and cons (−,−)
are value constructors for the type ilist of integer lists. We may program
with lists using a form of case analysis, written

listcase e of nil => e1 | cons (x, y) => e2 end ,

where x and y are bound in e2. This construct analyses whether e is the
empty list, in which case it evaluates e1, or a non-empty list, with head x
and tail y, in which case it evaluates e2 with the head and tail bound to
these variables.

WORKING DRAFT SEPTEMBER 30, 2002

19.3 Recursive Types 165

Exercise 54
Give a formal definition of the type ilist .

Rather than take lists as a primitive notion, we may define them from
a combination of sums, products, and a new concept, recursive types. The
essential idea is that the types ilist and unit +(int * ilist) are isomor-
phic, meaning that there is a one-to-one correspondence between values
of type ilist and values of the foregoing sum type. In implementation
terms we may think of the correspondence “pointer chasing” — every list
is a pointer to a tagged value indicating whether or not the list is empty
and, if not, a pair consisting of its head and tail. (Formally, there is also a
value associated with the empty list, namely the sole value of unit type.
Since its value is predictable from the type, we can safely ignore it.) This
interpretation of values of recursive type as pointers is consistent with the
typical low-level implementation strategy for data structures such as lists,
namely as pointers to cells allocated on the heap. However, by sticking to
the more abstract viewpoint we are not committed to this representation,
however suggestive it may be, but can choose from a variety of program-
ming tricks for the sake of efficiency.

Exercise 55
Consider the type of binary trees with integers at the nodes. To what sum
type would such a type be isomorphic?

This motivates the following general definition of recursive types. The
first-order abstract syntax is given by the following grammar:

Types τ : : = t | rec t is τ
Expressions e : : = roll (e) | unroll (e)
Values v : : = roll (v)

Here t ranges over a set of type variables, which are used to stand for the
recursive type itself, in much the same way that we give a name to recursive
functions to stand for the function itself. For the present we will insist that
type variables are used only for this purpose; they may occur only inside
of a recursive type, where they are bound by the recursive type constructor
itself.

For example, the type τ = rec t is unit +(int * t) is the recursive type
of lists of integers. It is isomorphic to its unrolling, the type

unit +(int * τ).

This is the isomorphism described informally above.

WORKING DRAFT SEPTEMBER 30, 2002

166 Aggregate Data Structures

The abstract “pointers” witnessing the isomorphism are written roll (e) ,
which “allocates” a pointer to (the value of) e, and unroll (e) , which
“chases” the pointer given by (the value of) e to recover its underlying
value. This interpretation will become clearer once we have given the static
and dynamic semantics of these constructs.

The static semantics of these constructs is given by the following rules:

Γ ` e : {rec t is τ/t}τ
Γ ` roll (e) : rec t is τ (19.18)

Γ ` e : rec t is τ
Γ ` unroll (e) : {rec t is τ/t}τ (19.19)

These primitive operations move back and forth between a recursive type
and its unrolling.

The dynamic semantics is given by the following rules:

unroll (roll (v)) 7→ v (19.20)

e 7→ e′

unroll (e) 7→ unroll (e′) (19.21)

e 7→ e′

roll (e) 7→ roll (e′) (19.22)

Exercise 56
State and prove the soundness of this extension of MinML.

Exercise 57
Consider the definition of the type ilist as a recursive type given above.
Give definitions of nil , cons , and listcase in terms of the operations
on recursive types, sums, and products.

WORKING DRAFT SEPTEMBER 30, 2002

Chapter 20

Polymorphism

MinML is an explicitly typed language. The abstract syntax is defined to have
sufficient type information to ensure that all expressions have a unique
type. In particular the types of the parameters of a function must be chosen
when the function is defined.

While this is not itself a serious problem, it does expose a significant
weakness in the MinML type system. For example, there is no way to define
a generic procedure for composing two functions whose domain and range
match up appropriately. Instead we must define a separate composition
operation for each choice of types for the functions being composed. Here
is one composition function

fun (f:string->int):(char->string)->(string->int) is
fun (g:char->string):string->int is

fun (x:string):int is apply(f, apply(g, x)),

and here is another

fun (f:float->double):(int->float)->(int->double) is
fun (g:int->float):int->double is

fun (x:int):double is apply(f, apply(g, x)).

The annoying thing is that both versions of function composition exe-
cute the same way; they differ only in the choice of types of the functions
being composed. This is rather irksome, and very quickly gets out of hand
in practice. Statically typed languages have long been criticized for pre-
cisely this reason. Fortunately this inflexibility is not an inherent limita-
tion of statically typed languages, but rather a limitation of the particular

WORKING DRAFT SEPTEMBER 30, 2002

168 Polymorphism

type system we have given to MinML. A rather straightforward extension
is sufficient to provide the kind of flexibility that is essential for a practical
language. This extension is called polymorphism.

While ML has had such a type system from its inception (circa 1978),
few other languages have followed suit. Notably the Java language suffers
from this limitation (but the difficulty is mitigated somewhat in the pres-
ence of subtyping). Plans are in the works, however, for adding polymor-
phism (called generics) to the Java language. A compiler for this extension,
called Generic Java, is already available.

20.1 Polymorphic MinML

Polymorphic MinML, or PolyMinML, is an extension of MinML with the abil-
ity to define polymorphic functions. Informally, a polymorphic function is a
function that takes a type as argument and yields a value as result. The type
parameter to a polymorphic function represents an unknown, or generic,
type, which can be instantiated by applying the function to a specific type.
The types of polymorphic functions are called polymorphic types, or poly-
types.

A significant design decision is whether to regard polymorphic types
as “first-class” types, or whether they are, instead, “second-class” citizens.
Polymorphic functions in ML are second-class — they cannot be passed as
arguments, returned as results, or stored in data structures. The only thing
we may do with polymorphic values is to bind them to identifiers with a
val or fun binding. Uses of such identifiers are automatically instantiated
by an implicit polymorphic instantiation. The alternative is to treat poly-
morphic functions as first-class values, which can be used like any other
value in the language. Here there are no restrictions on how they can be
used, but you should be warned that doing so precludes using type infer-
ence to perform polymorphic abstraction and instantiation automatically.

We’ll set things up for second-class polymorphism by explicitly distin-
guishing polymorphic types from monomorphic types. The first-class case
can then be recovered by simply conflating polytypes and monotypes.

WORKING DRAFT SEPTEMBER 30, 2002

20.1 Polymorphic MinML 169

Abstract Syntax

The abstract syntax of PolyMinML is defined by the following extension to
the MinML grammar:

Polytypes σ : : = τ | ∀t(σ)
Monotypes τ : : = . . . | t
Expressions e : : = . . . | Fun t in e end | inst (e, τ)
Values v : : = . . . | Fun t in e end

The variable t ranges over a set of type variables, which are written ML-style
’a , ’b , and so on in examples. In the polytype ∀t(σ) the type variable t
is bound in σ; we do not distinguish between polytypes that differ only
in the names of bound variables. Since the quantifier can occur only at
the outermost level, in ML it is left implicit. An expression of the form
Fun t in e end is a polymorphic function with parameter t and body e. The
variable t is bound within e. An expression of the form inst (e, τ) is a
polymorphic instantiation of the polymorphic function e at monotype τ . No-
tice that we may only instantiate polymorphic functions with monotypes.
In examples we write f [τ] for polymorphic instantiation, rather than the
more verbose inst (f , τ) .

We write FTV(τ) (respectively, FTV(σ), FTV(e)) for the set of free type
variables occurring in τ (respectively, σ, e). Capture-avoiding substitution
of a monotype τ for free occurrences of a type variable t in a polytype σ
(resp., monotype τ ′, expression e) is written {τ/t}σ (resp., {τ/t}τ ′, {τ/t}e).

Static Semantics

The static semantics of PolyMinML is a straightforward extension to that of
MinML. One significant change, however, is that we must now keep track
of the scopes of type variables, as well as ordinary variables. In the static
semantics of MinML a typing judgement had the form Γ ` e : τ , where
Γ is a context assigning types to ordinary variables. Only those variables
in dom Γ may legally occur in e. For PolyMinML we must introduce an
additional context, ∆, which is a set of type variables, those that may legally
occur in the types and expression of the judgement.

The static semantics consists of rules for deriving the following two
judgements:

∆ ` τ ok τ is a well-formed type in ∆
Γ `∆ e : σ e is a well-formed expression of type σ in Γ and ∆

WORKING DRAFT SEPTEMBER 30, 2002

170 Polymorphism

The rules for validity of types are as follows:

t ∈ ∆
∆ ` t ok (20.1)

∆ ` int ok (20.2)

∆ ` bool ok (20.3)

∆ ` τ1 ok ∆ ` τ2 ok
∆ ` τ1→τ2 ok (20.4)

∆ ∪ { t } ` σ ok t /∈ ∆
∆ ` ∀t(σ) ok (20.5)

The auxiliary judgement ∆ ` Γ is defined by the following rule:

∆ ` Γ(x) ok (∀x ∈ dom(Γ))
∆ ` Γ ok . (20.6)

The rules for deriving typing judgements Γ `∆ e : σ are as follows. We
assume that ∆ ` Γ ok, ∆ ` σ ok, FV(e) ⊆ dom(Γ), and FTV(e) ⊆ ∆. We
give only the rules specific to PolyMinML; the remaining rules are those of
MinML, augmented with a set ∆ of type variables.

Γ `∆∪{ t } e : σ t /∈ ∆

Γ `∆ Fun t in e end : ∀t(σ) (20.7)

Γ `∆ e : ∀t(σ) ∆ ` τ ok

Γ `∆ inst (e, τ) : {τ/t}σ (20.8)

For example, here is the polymorphic composition function in PolyMinML:

Fun t in
Fun u in

Fun v in
fun (f:u->v):(t->u)->(t->v) is

fun (g:t->u):t->v is
fun (x:t):v is apply(f, apply(g, x))

WORKING DRAFT SEPTEMBER 30, 2002

20.1 Polymorphic MinML 171

It is easy to check that it has type

∀t(∀u(∀v((u→v)→(t→u)→(t→v)))).

We will need the following technical lemma stating that typing is pre-
served under instantiation:

Lemma 58 (Instantiation)
If Γ `∆∪{ t } e : σ, where t /∈ ∆, and ∆ ` τ ok, then {τ/t}Γ `∆ {τ/t}e :
{τ/t}σ.

The proof is by induction on typing, and involves no new ideas beyond
what we have already seen.

We will also have need of the following canonical forms lemma:

Lemma 59 (Canonical Forms)
If v : ∀t(σ), then v = Fun t in e end for some t and e such that ∅ `{ t } e : σ.

This is proved by a straightforward analysis of the typing rules.

Dynamic Semantics

The dynamic semantics of PolyMinML is a simple extension of that of MinML.
We need only add the following two SOS rules:

inst (Fun t in e end , τ) 7→ {τ/t}e (20.9)

e 7→ e′

inst (e, τ) 7→ inst (e′, τ) (20.10)

It is then a simple matter to prove safety for this language.

Theorem 60 (Preservation)
If e : σ and e 7→ e′, then e′ : σ.

The proof is by induction on evaluation.

Theorem 61 (Progress)
If e : σ, then either e is a value or there exists e′ such that e 7→ e′.

As before, this is proved by induction on evaluation.

WORKING DRAFT SEPTEMBER 30, 2002

172 Polymorphism

First-Class Polymorphism

The syntax given above describes an ML-like treatment of polymorphism,
albeit one in which polymorphic abstraction and instantiation is explicit,
rather than implicit, as it is in ML. To obtain the first-class variant of PolyMinML,
we simply ignore the distinction between poly- and mono-types, regarding
them all as simply types. Everything else remains unchanged, including
the proofs of progress and preservation.

With first-class polymorphism we may consider types such as

∀t(t→t)→∀t(t→t),

which cannot be expressed in the ML-like fragment. This is the type of
functions that accept a polymorphic function as argument and yield a poly-
morphic function (of the same type) as result. If f has the above type, then
f (Fun t in fun (x: t) : t is x end end) is well-formed. However, the ap-
plication f (fun (x: int) : int is +(x, 1) end) is ill-formed, because the
successor function does not have type ∀t(t→t). The requirement that the ar-
gument be polymorphic is a significant restriction on how f may be used!

Contrast this with the following type (which does lie within the ML-like
fragment):

∀t((t→t)→(t→t)).

This is the type of polymorphic functions that, for each type t, accept a
function on t and yield another function on t. If g has this type, the expres-
sion inst (g, int) (succ) is well-formed, since we first instantiate g at
int , then apply it to the successor function.

The situation gets more interesting in the presence of data structures
such as lists and reference cells. It is a worthwhile exercise to consider
the difference between the types ∀t(σ) list and ∀t(σ list) for various
choices of σ. Note once again that the former type cannot be expressed in
ML, whereas the latter can.

Recall the following counterexample to type soundness for the early
version of ML without the so-called value restriction:

let
val r : (’a -> ’a) ref = ref (fn x:’a => x)

in
r := (fn x:int => x+1) ; (!r)(true)

end

WORKING DRAFT SEPTEMBER 30, 2002

20.1 Polymorphic MinML 173

A simple check of the polymorphic typing rules reveals that this is a well-
formed expression, provided that the value restriction is suspended. Of
course, it “gets stuck” during evaluation by attempting to add 1 to true .

Using the framework of explicit polymorphism, I will argue that the
superficial plausibility of this example (which led to the unsoundness in
the language) stems from a failure to distinguish between these two types:

1. The type ∀t(t→t ref) of polymorphic functions yielding reference
cells containing a function from a type to itself.

2. The type ∀t(t→t) ref of reference cells containing polymorphic func-
tions yielding a function from a type to itself.

(Notice the similarity to the distinctions discussed above.) For this example
to be well-formed, we rely on an inconsistent reading of the example. At
the point of the val binding we are treating r as a value of the latter type,
namely a reference cell containing a polymorphic function. But in the body
of the let we are treating it as a value of the former type, a polymorphic
function yielding a reference cell. We cannot have it both ways at once!

To sort out the error let us make the polymorphic instantiation and ab-
straction explicit. Here’s one rendering:

let
val r : All ’a ((’a -> ’a) ref) =

Fun ’a in ref (fn x:’a => x) end
in

r[int] := (fn x:int => x+1) ; (!(r[bool]))(true)
end

Notice that we have made the polymorphic abstraction explicit, and in-
serted corresponding polymorphic instantiations. This example is type cor-
rect, and hence (by the proof of safety above) sound. But notice that it al-
locates two reference cells, not one! Recall that polymporphic functions are
values, and the binding of r is just such a value. Each of the two instances
of r executes the body of this function separately, each time allocating a
new reference cell. Hence the unsoundness goes away!

Here’s another rendering that is, in fact, ill-typed (and should be, since
it “gets stuck”!).

WORKING DRAFT SEPTEMBER 30, 2002

174 Polymorphism

let
val r : (All ’a (’a -> ’a)) ref =

ref (Fun ’a in fn x:’a => x end)
in

r := (fn x:int => x+1) ; (!r)[bool](true)
end

The assignment to r is ill-typed because the successor is not sufficiently
polymorphic. The retrieval and subsequent instantiation and application is
type-correct, however. If we change the program to

let
val r : (All ’a (’a -> ’a)) ref =

ref (Fun ’a in fn x:’a => x end)
in

r := (Fun ’a in fn x:’a => x end) ; (!r)[bool](true)
end

then the expression is well-typed, and behaves sanely, precisely because we
have assigned to r a sufficiently polymorphic function.

20.2 ML-style Type Inference

ML-style type inference may be viewed as a translation from the implicitly
typed syntax of ML to the explicitly-typed syntax of PolyMinML. Specifi-
cally, the type inference mechanism performs the following tasks:

• Attaching type labels to function arguments and results.

• Inserting polymorphic abstractions for declarations of polymorphic
type.

• Inserting polymorphic instantiations whenever a polymorphic de-
clared variable is used.

Thus in ML we may write

val I : ’a -> ’a = fn x => x
val n : int = I(I)(3)

WORKING DRAFT SEPTEMBER 30, 2002

20.2 ML-style Type Inference 175

This stands for the PolyMinML declarations1

val I : ∀t(t→t) = Fun t in fun (x: t) : t is x end end
val n : int = inst (I, int →int) (inst (I, int)) (3)

Here we apply the polymorphic identity function to itself, then apply the
result to 3. The identity function is explicitly abstracted on the type of its
argument and result, and its domain and range types are made explicit on
the function itself. The two occurrences of I in the ML code are replaced
by instantiations of I in the PolyMinML code, first at type int →int , the
second at type int .

With this in mind we can now explain the “value restriction” on poly-
morphism in ML. Referring to the example of the previous section, the
type inference mechanism of ML generates the first rendering of the ex-
ample give above in which the type of the reference cell is ∀t((t→t) ref).
As we’ve seen, when viewed in this way, the example is not problematic,
provided that polymorphic abstractions are seen as values. For in this case
the two instances of r generate two distinct reference cells, and no diffi-
culties arise. Unfortunately, ML does not treat polymorphic abstractions as
values! Only one reference cell is allocated, which, in the absence of the
value restriction, would lead to unsoundness.

Why does the value restriction save the day? In the case that the poly-
morphic expression is not a value (in the ML sense) the polymorphic ab-
straction that is inserted by the type inference mechanism changes a non-
value into a value! This changes the semantics of the expression (as we’ve
seen, from allocating one cell, to allocating two different cells), which vio-
lates the semantics of ML itself.2 However, if we limit ourselves to values
in the first place, then the polymorphic abstraction is only ever wrapped
around a value, and no change of semantics occurs. Therefore3, the in-
sertion of polymorphic abstraction doesn’t change the semantics, and ev-
erything is safe. The example above involving reference cells is ruled out,
because the expression ref (fn x => x) is not a value, but such is the
nature of the value restriction.

1We’ve not equipped PolyMinML with a declaration construct, but you can see from the
example how this might be done.

2One could argue that the ML semantics is incorrect, which leads to a different language.
3This would need to be proved, of course.

WORKING DRAFT SEPTEMBER 30, 2002

176 Polymorphism

20.3 Parametricity

Our original motivation for introducing polymorphism was to enable more
programs to be written — those that are “generic” in one or more types,
such as the composition function give above. The idea is that if the behavior
of a function does not depend on a choice of types, then it is useful to be able
to define such “type oblivious” functions in the language. Once we have
such a mechanism in hand, it can also be used to ensure that a particular
piece of code can not depend on a choice of types by insisting that it be
polymorphic in those types. In this sense polymorphism may be used to
impose restrictions on a program, as well as to allow more programs to be
written.

The restrictions imposed by requiring a program to be polymorphic un-
derlie the often-observed experience when programming in ML that if the
types are correct, then the program is correct. Roughly speaking, since the
ML type system is polymorphic, if a function type checks with a polymor-
phic type, then the strictures of polymorphism vastly cut down the set of
well-typed programs with that type. Since the intended program is one
these (by the hypothesis that its type is “right”), you’re much more likely
to have written it if the set of possibilities is smaller.

The technical foundation for these remarks is called parametricity. The
goal of this section is to give an account of parametricity for PolyMinML.
To keep the technical details under control, we will restrict attention to the
ML-like (prenex) fragment of PolyMinML. It is possibly to generalize to
first-class polymorphism, but at the expense of considerable technical com-
plexity. Nevertheless we will find it necessary to gloss over some technical
details, but wherever a “pedagogic fiction” is required, I will point it out.
To start with, it should be stressed that the following does not apply to lan-
guages with mutable references!

20.3.1 Informal Discussion

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀t(t→t). What function
could it be?

1. It could diverge when instantiated — f [τ] goes into an infinite loop.
Since f is polymorphic, its behavior cannot depend on the choice of
τ , so in fact f [τ ′] diverges for all τ ′ if it diverges for τ .

WORKING DRAFT SEPTEMBER 30, 2002

20.3 Parametricity 177

2. It could converge when instantiated at τ to a function g of type τ→τ
that loops when applied to an argument v of type τ — i.e., g(v) runs
forever. Since f is polymorphic, g must diverge on every argument v
of type τ if it diverges on some argument of type τ .

3. It could converge when instantiated at τ to a function g of type τ→τ
that, when applied to a value v of type τ returns a value v′ of type
τ . Since f is polymorphic, g cannot depend on the choice of v, so v′

must in fact be v.

Let us call cases (1) and (2) uninteresting. The foregoing discussion sug-
gests that the only interesting function f of type ∀t(t→t) is the polymorphic
identity function.

Suppose that f is an interesting function of type ∀t(t). What function
could it be? A moment’s thought reveals that it cannot be interesting! That
is, every function f of this type must diverge when instantiated, and hence
is uninteresting. In other words, there are no interesting values of this type
— it is essentially an “empty” type.

For a final example, suppose that f is an interesting function of type
∀t(t list →t list). What function could it be?

1. The identity function that simply returns its argument.

2. The constantly-nil function that always returns the empty list.

3. A function that drops some elements from the list according to a pre-
determined (data-independent) algorithm — e.g., always drops the
first three elements of its argument.

4. A permutation function that reorganizes the elements of its argu-
ment.

The characteristic that these functions have in common is that their behav-
ior is entirely determined by the spine of the list, and is independent of
the elements of the list. For example, f cannot be the function that drops
all “even” elements of the list — the elements might not be numbers! The
point is that the type of f is polymorphic in the element type, but reveals
that the argument is a list of unspecified elements. Therefore it can only
depend on the “list-ness” of its argument, and never on its contents.

In general if a polymorphic function behaves the same at every type in-
stance, we say that it is parametric in that type. In PolyMinML all polymor-
phic functions are parametric. In Standard ML most functions are, except

WORKING DRAFT SEPTEMBER 30, 2002

178 Polymorphism

those that involve equality types. The equality function is not parametric be-
cause the equality test depends on the type instance — testing equality of
integers is different than testing equality of floating point numbers, and we
cannot test equality of functions. Such “pseudo-polymorphic” operations
are said to be ad hoc, to contrast them from parametric.

How can parametricity be exploited? As we will see later, parametric-
ity is the foundation for data abstraction in a programming language. To
get a sense of the relationship, let us consider a classical example of ex-
ploiting parametricity, the polymorphic Church numerals. Let N be the type
∀t(t→(t→t)→t). What are the interesting functions of the type N? Given
any type τ , and values z : τ and s : τ→τ , the expression

f [τ] (z) (s)

must yield a value of type τ . Moreover, it must behave uniformly with
respect to the choice of τ . What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)) .

That is, the elements of N are in 1-to-1 correspondence with the natural
numbers.

Let us write n for the polymorphic function of type N representing the
natural number n, namely the function

Fun t in
fn z:t in

fn s:t->t in
s(s(... s)...))

end
end

end

where there are n occurrences of s in the expression. Observe that if we
instantiate n at the built-in type int and apply the result to 0 and succ ,
it evaluates to the number n. In general we may think of performing an
“experiment” on a value of type N by instantiating it at a type whose values
will constitute the observations, the applying it to operations z and s for
performing the experiment, and observing the result.

WORKING DRAFT SEPTEMBER 30, 2002

20.3 Parametricity 179

Using this we can calculate with Church numerals. Let us consider how
to define the addition function on N . Given m and n of type N , we wish
to compute their sum m + n, also of type N . That is, the addition function
must look as follows:

fn m:N in
fn n:N in

Fun t in
fn z:t in

fn s:t->t in
...

end
end

end
end

end

The question is: how to fill in the missing code? Think in terms of ex-
periments. Given m and n of type N , we are to yield a value that when
“probed” by supplying a type t, an element z of that type, and a function s
on that type, must yield the (m+n)-fold composition of s with z. One way
to do this is to “run” m on t, z, and s, yielding the m-fold composition of s
with z, then “running” n on this value and s again to obtain the n-fold com-
position of s with the n-fold composition of s with z — the desired answer.
Here’s the code:

fn m:N in
fn n:N in

Fun t in
fn z:t in

fn s:t->t in
n[t](m[t](z)(s))(s)

end
end

end
end

end

To see that it works, instantiate the result at τ , apply it to z and s, and
observe the result.

WORKING DRAFT SEPTEMBER 30, 2002

180 Polymorphism

20.3.2 Relational Parametricity (Optional)

In this section we give a more precise formulation of parametricity. The
main idea is that polymorphism implies that certain equations between ex-
pressions must hold. For example, if f : ∀t(t→t), then f must be equal to
the identity function, and if f : N , then f must be equal to some Church
numeral n. To make the informal idea of parametricity precise, we must
clarify what we mean by equality of expressions.

The main idea is to define equality in terms of “experiments” that we
carry out on expressions to “test” whether they are equal. The valid experi-
ments on an expression are determined solely by its type. In general we say
that two closed expressions of a type τ are equal iff either they both diverge,
or they both converge to equal values of that type. Equality of closed val-
ues is then defined based on their type. For integers and booleans, equality
is straightforward: two values are equal iff they are identical. The intu-
ition here is that equality of numbers and booleans is directly observable.
Since functions are “infinite” objects (when thought of in terms of their in-
put/output behavior), we define equality in terms of their behavior when
applied. Specifically, two functions f and g of type τ1→τ2 are equal iff
whenever they are applied to equal arguments of type τ1, they yield equal
results of type τ2.

More formally, we make the following definitions. First, we define
equality of closed expressions of type τ as follows:

e ∼=exp e′ : τ iff e 7→∗ v ⇔ e′ 7→∗ v.

Notice that if e and e′ both diverge, then they are equal expressions in this
sense. For closed values, we define equality by induction on the structure
of monotypes:

v ∼=val v′ : bool iff v = v′ = true or v = v′ = false
v ∼=val v′ : int iff v = v′ = n for some n ≥ 0

v ∼=val v′ : τ1→τ2 iff v1
∼=val v′1 : τ1 implies v(v1) ∼=exp v′(v′1) : τ2

The following lemma states two important properties of this notion of
equality.

Lemma 62
1. Expression and value equivalence are reflexive, symmetric, and tran-

sitive.

WORKING DRAFT SEPTEMBER 30, 2002

20.3 Parametricity 181

2. Expression equivalence is a congruence: we may replace any sub-
expression of an expression e by an equivalent sub-expression to ob-
tain an equivalent expression.

So far we’ve considered only equality of closed expressions of monomor-
phic type. The definition is made so that it readily generalizes to the poly-
morphic case. The idea is that when we quantify over a type, we are not
able to say a priori what we mean by equality at that type, precisely be-
cause it is “unknown”. Therefore we also quantify over all possible notions
of equality to cover all possible interpretations of that type. Let us write
R : τ ↔ τ ′ to indicate that R is a binary relation between valeus of type τ
and τ ′.

Here is the definition of equality of polymorphic values:

v ∼=val v′ : ∀t(σ) iff for all τ and τ ′, and all R : τ ↔ τ ′, v [τ] ∼=exp v′ [τ ′] : σ

where we take equality at the type variable t to be the relation R (i.e., v ∼=val
v′ : t iff v R v′).

There is one important proviso: when quantifying over relations, we
must restrict attention to what are called admissible relations, a sub-class
of relations that, in a suitable sense, respects computation. Most natural
choices of relation are admissible, but it is possible to contrive examples
that are not. The rough-and-ready rule is this: a relation is admissible iff it
is closed under “partial computation”. Evaluation of an expression e to a
value proceeds through a series of intermediate expressions e 7→ e1 7→ e2 7→
· · · en. The expressions ei may be thought of as “partial computations” of
e, stopping points along the way to the value of e. If a relation relates
corresponding partial computations of e and e′, then, to be admissible, it
must also relate e and e′ — it cannot relate all partial computations, and
then refuse to relate the complete expressions. We will not develop this
idea any further, since to do so would require the formalization of partial
computation. I hope that this informal discussion suffices to give the idea.

The following is Reynolds’ Parametricity Theorem:

Theorem 63 (Parametricity)
If e : σ is a closed expression, then e ∼=exp e : σ.

This may seem obvious, until you consider that the notion of equality be-
tween expressions of polymorphic type is very strong, requiring equiva-
lence under all possible relational interpretations of the quantified type.

Using the Parametricity Theorem we may prove a result we stated in-
formally above.

WORKING DRAFT SEPTEMBER 30, 2002

182 Polymorphism

Theorem 64
If f : ∀t(t→t) is an interesting value, then f ∼=val id : ∀t(t→t), where id is
the polymorphic identity function.

Proof: Suppose that τ and τ ′ are monotypes, and that R : τ ↔ τ ′. We wish
to show that

f [τ] ∼=exp id [τ ′] : t→t,

where equality at type t is taken to be the relation R.
Since f (and id) are interesting, there exists values fτ and idτ ′ such that

f [τ] 7→∗ fτ

and
id [τ ′] 7→∗ idτ ′ .

We wish to show that
fτ
∼=val idτ ′ : t→t.

Suppose that v1
∼=val v′1 : t, which is to say v1 R v′1 since equality at type

t is taken to be the relation R. We are to show that

fτ (v1) ∼=exp idτ ′(v′1) : t

By the assumption that f is interesting (and the fact that id is interesting),
there exists values v2 and v′2 such that

fτ (v1) 7→∗ v2

and
idτ ′(v′1) 7→∗ v′2.

By the definition of id , it follows that v′2 = v′1 (it’s the identity function!).
We must show that v2 R v′1 to complete the proof.

Now define the relation R′ : τ ↔ τ to be the set { (v, v) | v R v′1 }. Since
f : ∀t(t→t), we have by the Parametricity Theorem that f ∼=val f : ∀t(t→t),
where equality at type t is taken to be the relation R′. Since v1 R v′1, we have
by definition v1 R′ v1. Using the definition of equality of polymorphic type,
it follows that

fτ (v1) ∼=exp idτ ′(v1) : t.

Hence v2 R v′1, as required. �

You might reasonably wonder, at this point, what the relationship f ∼=val
id : ∀t(t→t) has to do with f ’s execution behavior. It is a general fact, which

WORKING DRAFT SEPTEMBER 30, 2002

20.3 Parametricity 183

we will not attempt to prove, that equivalence as we’ve defined it yields re-
sults about execution behavior. For example, if f : ∀t(t→t), we can show
that for every τ and every v : τ , f [τ] (v) evaluates to v. By the preceding
theorem f ∼=val id : ∀t(t→t). Suppose that τ is some monotype and v : τ is
some closed value. Define the relation R : τ ↔ τ by

v1 R v2 iff v1 = v2 = v.

Then we have by the definition of equality for polymorphic values

f [τ] (v) ∼=exp id [τ] (v) : t,

where equality at t is taken to be the relation R. Since the right-hand side
terminates, so must the left-hand side, and both must yield values related
by R, which is to say that both sides must evaluate to v.

WORKING DRAFT SEPTEMBER 30, 2002

184 Polymorphism

WORKING DRAFT SEPTEMBER 30, 2002

Chapter 21

Data Abstraction

Data abstraction is perhaps the most fundamental technique for structur-
ing programs to ensure their robustness over time and to facilitate team
development. The fundamental idea of data abstraction is the separation
of the client from the implementor of the abstraction by an interface. The
interface is a form of “contract” between the client and implementor. It
specifies the operations that may be performed on values of the abstract
type by the client and, at the same time, imposes the obligation on the im-
plementor to provide these operations with the specified functionality. By
limiting the client’s view of the abstract type to a specified set of operations,
the interface protects the client from depending on the details of the imple-
mentation of the abstraction, most especially its representation in terms of
well-known constructs of the programming language. Doing so ensures
that the implementor is free to change the representation (and, correspond-
ingly, the implementation of the operations) of the abstract type without
affecting the behavior of a client of the abstraction.

The purpose of this note is to develop a rigorous account of data ab-
straction in an extension of PolyMinML with existential types. Existential
types provide the fundamental linguistic mechanisms for defining inter-
faces, implementing them, and using the implementation in client code.
Using this extension of PolyMinML we will then develop a formal treat-
ment of representation independence based on Reynolds’s Parametricity
Theorem for PolyMinML. The representation independence theorem will
then serve as the basis for proving the correctness of abstract type imple-
mentations using bisimulation relations.

WORKING DRAFT SEPTEMBER 30, 2002

186 Data Abstraction

21.1 Existential Types

21.1.1 Abstract Syntax

The syntax of PolyMinML is extended with the following constructs:

Polytypes σ : : = . . .
| ∃t(σ)

Expressions e : : = . . .
| pack τ with e as σ end
| open e1 as t with x: σ in e2 end

Values v : : = . . .
| pack τ with v as σ end

The polytype ∃t(σ) is called an existential type. An existential type is the
interface of an abstract type. An implementation of the existential type ∃t(σ)
is a package value of the form pack τ with v as ∃t(σ) end consisting of a
monotype τ together with a value v of type {τ/t}σ. The monotype τ is the
representation type of the implementation; the value v is the implementation
of the operations of the abstract type. A client makes use of an implementa-
tion by opening it within a scope, written open ei as t with x: σ in ec end ,
where ei is an implementation of the interface ∃t(σ), and ec is the client
code defined in terms of an unknown type t (standing for the representa-
tion type) and an unknown value x of type σ (standing for the unknown
operations).

In an existential type ∃t(σ) the type variable t is bound in σ, and may
be renamed at will to satisfy uniqueness requirements. In an expression of
the form open ei as t with x: σ in ec end the type variable t and the ordi-
nary variable x are bound in ec, and may also be renamed at will to satisfy
non-occurrence requirements. As we will see below, renaming of bound
variables is crucial for ensuring that an abstract type is “new” in the sense
of being distinct from any other type whenever it is opened for use in a
scope. This is sometimes called generativity of abstract types, since each
occurrence of open “generates” a “new” type for use within the body of
the client. In reality this informal notion of generativity comes down to
renaming of bound variables to ensure their uniqueness in a context.

21.1.2 Correspondence With ML

To fix ideas, it is worthwhile to draw analogies between the present formal-
ism and (some aspects of) the Standard ML module system. We have the
following correspondences:

WORKING DRAFT SEPTEMBER 30, 2002

21.1 Existential Types 187

PolyMinML + Existentials Standard ML
Existential type Signature
Package Structure, with opaque ascription
Opening a package open declaration

Here is an example of these correspondences in action. In the sequel we
will use ML-like notation with the understanding that it is to be interpreted
in PolyMinML in the following fashion.

Here is an ML signature for a persistent representation of queues:

signature QUEUE =
sig

type queue
val empty : queue
val insert : int * queue -> queue
val remove : queue -> int * queue

end

This signature is deliberately stripped down to simplify the development.
In particular we leave undefined the meaning of remove on an empty
queue.

The corresponding existential type is σq : = ∃q(τq), where

τq : = q* ((int * q)→q)* (q→(int * q))

That is, the operations of the abstraction consist of a three-tuple of values,
one for the empty queue, one for the insert function, and one for the remove
function.

Here is a straightforward implementation of the QUEUEinterface in ML:

structure QL :> QUEUE =
struct

type queue = int list
val empty = nil
fun insert (x, xs) = x::xs
fun remove xs =

let val (x,xs’) = rev xs in (x, rev xs’) end
end

WORKING DRAFT SEPTEMBER 30, 2002

188 Data Abstraction

A queue is a list in reverse enqueue order — the last element to be en-
queued is at the head of the list. Notice that we use opaque signature ascrip-
tion to ensure that the type queue is hidden from the client!

The corresponding package is eq : = pack int list with vq as σq end ,
where

vq : = (nil , (vi, vr))

where vi and vr are the obvious function abstractions corresponding to the
ML code given above.

Finally, a client of an abstraction in ML might typically open it within a
scope:

local
open QL

in
...

end

This corresponds to writing

open QL as q with <n,i,r> : τq in ... end

in the existential type formalism, renaming variables for convenience.

21.1.3 Static Semantics

The static semantics is an extension of that of PolyMinML with rules gov-
erning the new constructs. The rule of formation for existential types is as
follows:

∆ ∪ { t } ` σ ok t /∈ ∆
∆ ` ∃t(σ) ok (21.1)

The requirement t /∈ ∆ may always be met by renaming the bound vari-
able.

The typing rule for packages is as follows:

∆ ` τ ok ∆ ` ∃t(σ) ok Γ `∆ e : {τ/t}σ
Γ `∆ pack τ with e as ∃t(σ) end (21.2)

The implementation, e, of the operations “knows” the representation type,
τ , of the ADT.

WORKING DRAFT SEPTEMBER 30, 2002

21.1 Existential Types 189

The typing rule for opening a package is as follows:

∆ ` τ ′ ok Γ, x:σ `∆∪{ t } ec : τc Γ `∆ ei : ∃t(σ) t /∈ ∆
Γ `∆ open ei as t with x: σ in ec end : τc (21.3)

This is a complex rule, so study it carefully! Two things to note:

1. The type of the client, τc, must not involve the abstract type t. This
prevents the client from attempting to export a value of the abstract
type outside of the scope of its definition.

2. The body of the client, ec, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in t.

As usual, the condition t /∈ ∆ can always be met by renaming the bound
variable t of the open expression to ensure that it is distinct from all other
active types ∆. It is in this sense that abstract types are “new”! Whenever
a client opens a package, it introduces a local name for the representation
type, which is bound within the body of the client. By our general con-
ventions on bound variables, this local name may be chosen to ensure that
it is distinct from any other such local name that may be in scope, which
ensures that the “new” type is different from any other type currently in
scope. At an informal level this ensures that the representation type is
“held abstract”; we will make this intuition more precise in Section 21.2
below.

21.1.4 Dynamic Semantics

We will use structured operational semantics (SOS) to specify the dynamic
semantics of existential types. Here is the rule for evaluating package ex-
pressions:

e 7→ e′

pack τ with e as σ end 7→ pack τ with e′ as σ end (21.4)

Opening a package begins by evaluating the package expressions:

ei 7→ e′i
open ei as t with x: σ in ec end 7→ open e′i as t with x: σ in ec end

(21.5)

WORKING DRAFT SEPTEMBER 30, 2002

190 Data Abstraction

Once the package is fully evaluated, we bind t to the representation type
and x to the implementation of the operations within the client code:

open pack τ with v as σ end as t with x: σ in ec end 7→ {τ, v/t, x}ec

(21.6)
Observe that there are no abstract types at run time! During execution of

the client, the representation type is fully exposed. It is held abstract only
during type checking to ensure that the client does not (accidentally or ma-
liciously) depend on the implementation details of the abstraction. Once
the program type checks there is no longer any need to enforce abstraction.
The dynamic semantics reflects this intuition directly.

21.1.5 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for PolyMinML to the new constructs.

Theorem 65 (Preservation)
If e : τ and e 7→ e′, then e′ : τ .

Lemma 66 (Canonical Forms)
If v : ∃t(σ) is a value, then v = pack τ with v′ as ∃t(σ) end for some mono-
type τ and some value v′ : {τ/t}σ.

Theorem 67 (Progress)
If e : τ then either e value or there exists e′ such that e 7→ e′.

21.2 Representation Independence

Parametricity is the essence of representation independence. The typing
rules for open given above ensure that the client of an abstract type is poly-
morphic in the representation type. According to our informal understand-
ing of parametricity this means that the client’s behavior is in some sense
“independent” of the representation type.

More formally, we say that an (admissible) relation R : τ1 ↔ τ2 is a
bisimulation between the packages

pack τ1 with v1 as ∃t(σ) end

and
pack τ2 with v2 as ∃t(σ) end

WORKING DRAFT SEPTEMBER 30, 2002

21.2 Representation Independence 191

of type ∃t(σ) iff v1
∼=val v2 : σ, taking equality at type t to be the relation

R. The reason for calling such a relation R a bisimulation will become
apparent shortly. Two packages are said to be bisimilar whenever there is a
bisimulation between them.

Since the client ec of a data abstraction of type ∃t(σ) is essentially a
polymorphic function of type ∀t(σ→τc), where t /∈ FTV(τc), it follows from
the Parametricity Theorem that

{τ1, v1/t, x}ec
∼=exp {τ2, v2/t, x}ec : τc

whenever R is such a bisimulation. Consequently,

open e1 as t with x: σ in ec end ∼=exp open e2 as t with x: σ in ec end : τc.

That is, the two implementations are indistinguishable by any client of the
abstraction, and hence may be regarded as equivalent. This is called Repre-
sentation Independence; it is merely a restatement of the Parametricity Theo-
rem in the context of existential types.

This observation licenses the following technique for proving the cor-
rectness of an ADT implementation. Suppose that we have an implemen-
tation of an abstract type ∃t(σ) that is “clever” in some way. We wish to
show that it is a correct implementation of the abstraction. Let us therefore
call it a candidate implementation. The Representation Theorem suggests
a technique for proving the candidate correct. First, we define a reference
implementation of the same abstract type that is “obviously correct”. Then
we establish that the reference implementation and the candidate imple-
mentation are bisimilar. Consequently, they are equivalent, which is to say
that the candidate is “equally correct as” the reference implementation.

Returning to the queues example, let us take as a reference implemen-
tation the package determined by representing queues as lists. As a candi-
date implementation we take the package corresponding to the following
ML code:

structure QFB :> QUEUE =
struct

type queue = int list * int list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
fun remove (bs, nil) = remove (nil, rev bs)

| remove (bs, f::fs) = (f, (bs, fs))
end

WORKING DRAFT SEPTEMBER 30, 2002

192 Data Abstraction

We will show that QLand QFBare bisimilar, and therefore indistinguishable
by any client.

Define the relation R : int list ↔ int list * int list as follows:

R = { (l, (b, f))) | l ∼=val b@rev (f) }

We will show that R is a bisimulation by showing that implementations of
empty , insert , and remove determined by the structures QLand QFBare
equivalent relative to R.

To do so, we will establish the following facts:

1. QL.empty R QFB.empty .

2. Assuming that m ∼=val n : int and l R (b, f) , show that

QL.insert ((m, l)) R QFB.insert ((n, (b, f))) .

3. Assuming that l R (b, f) , show that

QL.remove (l) ∼=exp QFB.remove ((b, f)) : int * t,

taking t equality to be the relation R.

Observe that the latter two statements amount to the assertion that the op-
erations preserve the relation R — they map related input queues to related
output queues. It is in this sense that we say that R is a bisimulation, for
we are showing that the operations from QL simulate, and are simulated
by, the operations from QFB, up to the relationship R between their repre-
sentations.

The proofs of these facts are relatively straightforward, given some rel-
atively obvious lemmas about expression equivalence.

1. To show that QL.empty R QFB.empty , it suffices to show that

nil @rev (nil) ∼=exp nil : int list ,

which is obvious from the definitions of append and reverse.

2. For insert , we assume that m ∼=val n : int and l R (b, f) , and
prove that

QL.insert (m, l) R QFB.insert (n, (b, f)) .

WORKING DRAFT SEPTEMBER 30, 2002

21.2 Representation Independence 193

By the definition of QL.insert , the left-hand side is equivalent to
m:: l, and by the definition of QR.insert , the right-hand side is
equivalent to (n:: b, f) . It suffices to show that

m:: l ∼=exp (n:: b)@rev (f) : int list .

Calculating, we obtain

(n:: b)@rev (f) ∼=exp n:: (b@rev (f))
∼=exp n:: l

since l ∼=exp b@rev (f) . Since m ∼=val n : int , it follows that m = n,
which completes the proof.

3. For remove , we assume that l is related by R to (b, f) , which is to
say that l ∼=exp b@rev (f) . We are to show

QL.remove (l) ∼=exp QFB.remove ((b, f)) : int * t,

taking t equality to be the relation R. Assuming that the queue is
non-empty, so that the remove is defined, we have l ∼=exp l′@[m] for
some l′ and m. We proceed by cases according to whether or not f is
empty. If f is non-empty, then f ∼=exp n:: f ′ for some n and f ′. Then
by the definition of QFB.remove ,

QFB.remove ((b, f)) ∼=exp (n, (b, f ′)) : int * t,

relative to R. We must show that

(m, l′) ∼=exp (n, (b, f ′)) : int * t,

relative to R. This means that we must show that m = n and l′ ∼=exp
b@rev (f ′) : int list .

Calculating from our assumptions,

l = l′@[m]
= b@rev (f)
= b@rev (n:: f ′)
= b@(rev (f ′) @[n])
= (b@rev (f ′))@[n]

From this the result follows. Finally, if f is empty, then b ∼=exp b′@[n]
for some b′ and n. But then rev (b) ∼=exp n:: rev (b′) , which reduces
to the case for f non-empty.

This completes the proof — by Representation Independence the refer-
ence and candidate implementations are equivalent.

WORKING DRAFT SEPTEMBER 30, 2002

