296

WORKING DRAFT DECEMBER 5, 2002

Part XIV

Storage Management

WORKING DRAFT DECEMBER 5, 2002

Chapter 31

Storage Management

The dynamic semantics for MinML given in Chapter 8, and even the C-
machine given in Chapter 11, ignore questions of storage management. In
particular, all values, be they integers, booleans, functions, or tuples, are
treated the same way. But this is unrealistic. Physical machines are capable
of handling only rather “small” values, namely those that can fit into a
word. Thus, while it is reasonable to treat, say, integers and booleans as
values directly, it is unreasonable to do the same with “large” objects such
as tuples or functions.

In this chapter we consider an extension of the C-machine to account for
storage management. We proceed in two steps. First, we give an abstract
machine, called the A-machine, that includes a heap for allocating “large”
objects. This introduces the problem of garbage, storage that is allocated for
values that are no longer needed by the program. This leads to a discussion
of automatic storage management, or garbage collection, which allows us to
reclaim unused storage in the heap.

31.1 The A Machine

The A-machine is defined for an extension of MinML in which we add an
additional form of expression, a location, [, which will serve as a “reference”
or “pointer” into the heap.
Values are classified into two categories, small and large, by the follow-
ing rules:
(I € Loc)
I svalue (31.1)

WORKING DRAFT DECEMBER 5, 2002

300 Storage Management

(nez)

n svalue (31.2)
true svalue (31.3)
false svalue (31.4)

xvar yvar eexpr
fun z(y:) : mis eend lvalue (31.5)

A state of the A-machine has the form (H,k,e), where H is a heap, a
finite function mapping locations to large values, k is a control stack, and e
is an expression. A heap H is said to be self-contained iff FL(H) C dom(H),
where FL(H) is the set of locations occuring free in any location in H, and
dom H is the domain of H.

Stack frames are similar to those of the C-machine, but refined to ac-
count for the distinction between small and large values.

€9 expr

+(O, e2) frame (31.6)
v1 svalue

+(v1,0) frame (31.7)

(There are analogous frames associated with the other primitive opera-

tions.)
€1 expr es expr

if Othen ejelse esfi frame (31.8)
€9 expr

apply (O, es) frame (31.9)
v1 svalue

apply (vi,0) frame (31.10)

Notice that v; is required to be a small value; a function is represented by a
location in the heap, which is small.
As with the C-machine, a stack is a sequence of frames:

e stack (31.11)

WORKING DRAFT DECEMBER 5, 2002

31.1 The A Machine 301

f frame k stack
f >k stack (31.12)

The dynamic semantics of the A-machine is given by a set of rules defin-
ing the transition relation (H, k,e) —a (H', k', €’). The rules are similar to
those for the C-machine, except for the treatment of functions.

Arithmetic expressions are handled as in the C-machine:

(H7k7+(61762)) A (H,+(D,€2)l>k?,61) (3113)
(H,+(D,62)l>k,’l}1) A (H,+(Q}1,|:|)l>k‘,€2) (31.14)
(H,+(n1,0) > k,ng) —a (H, k,nq +TL2) (31.15)

Note that the heap is simply “along for the ride” in these rules.
Booleans are also handled similarly to the C-machine:

(H,E,if ethen ejelse exfi)
A (31.16)
(H,if Othen ejelse exfi >k, e)

(H,if Othen ejelse exfi >k true)i—p (H, k,e1) (31.17)

(H,if Othen ejelse exfi >k, false)—a (H, k, e2) (31.18)

Here again the heap plays no essential role.

The real difference between the C-machine and the A-machine is in the
treatment of functions. A function expression is no longer a (small) value,
but rather requires an execution step to allocate it on the heap.

(H,k,fun 2 (y: 71): m2is eend)
=A (31.19)
(H[l — fun z(y: 11): m2is eend], k,l)

where [is chosen so that [¢ dom H.
Evaluation of the function and argument position of an application is
handled similarly to the C-machine.

(H7 k7 apply (€1, 62)) —A (H7 apply (I:,a 62) > k) 61) (3120)

WORKING DRAFT DECEMBER 5, 2002

302 Storage Management

(H,apply (0O,e3) >k,v1) —a (H,apply (vi,0) >k, e) (31.21)

Execution of a function call differs from the corresponding C-machine
instruction in that the function must be retrieved from the heap in order
to determine the appropriate instance of its body. Notice that the location
of the function, and not the function itself, is substituted for the function
variable!

viloc H(vy)=fun f(z:7m):mis eend
(H) apply (V1, D) > ka UQ) —A (H> kv {Uh U?/fv 33}6) (3122)

The A-machine preserves self-containment of the heap. This follows
from observing that whenever a location is allocated, it is immediately
given a binding in the heap, and that the bindings of heap locations are
simply those functions that are encountered during evaluation.

Lemma 104

If H is self-contained and (H,k,e) —a (H',K',€'), then H' is also self-
contained. Moreover, if FL(k) U FL(e) C dom H, then FL(k") U FL(¢') C
dom H'.

It is not too difficult to see that the A-machine and the C-machine have
the same “observable behavior” in the sense that both machines deter-
mine the same value for closed expressions of integer type. However, it is
somewhat technically involved to develop a precise correspondence. The
main idea is to define the heap expansion of an A-machine state to be the
C-machine state obtained by replacing all locations in the stack and expres-
sion by their values in the heap. (It is important to take care that the lo-
cations occurring in a value stored are themselves replaced by their values
in the heap!) We then prove that an A-machine state reaches a final state
in accordance with the transition rules of the A-machines iff its expansion
does in accordance with the rules of the C-machine. Finally, we observe
that the value of a final state of integer type is the same for both machines.

Formally, let H (e) stand for the substitution

(H, . H() /s L Ye,

where dom H = {l;,...,l, }. Similarly, let H (k) denote the result of per-
forming this substitution on every expression occurring in the stack k.

WORKING DRAFT DECEMBER 5, 2002

31.2 Garbage Collection 303

Theorem 105 R R - .
If (H, k,e) —p (H', k', "), then (H (k), H(e)) —¢" (H'(K'), H'(¢")).

Notice that the allocation of a function in the A-machine corresponds to
zero steps of execution on the C-machine, because in the latter case func-
tions are values.

31.2 Garbage Collection

The purpose of the A-machine is to model the memory allocation that would
be required in an implementation of MinML. This raises the question of
garbage, storage that is no longer necessary for a computation to complete.
The purpose of a garbage collector is to reclaim such storage for further use.
Of course, in a purely abstract model there is no reason to perform garbage
collection, but in practice we must contend with the limitations of finite,
physical computers. For this reason we give a formal treatment of garbage
collection for the A-machine.

The crucial issue for any garbage collector is to determine which lo-
cations are unnecessary for computation to complete. These are deemed
garbage, and are reclaimed so as to conserve memory. But when is a loca-
tion unnecessary for a computation to complete? Consider the A-machine
state (H,k,e). A location [€ dom(H) is unnecessary, or irrelevant, for this
machine state iff execution can be completed without referring to the con-
tents of I. Thatis, | € dom H is unnecessary iff (H, k,e) —, (H', o, v) iff
(Hj, k,e) —a (H"”, e,v), where H is H with the binding for [removed, and
H" is some heap.

Unfortunately, a machine cannot decide whether a location is unneces-
sary!

Theorem 106
It is mechanically undecidable whether or not a location [is unnecessary
for a given state of the A-machine.

Intuitively, we cannot decide whether [is necessary without actually run-
ning the program. It is not hard to formulate a reduction from the halting
problem to prove this theorem: simply arrange that [is used to complete a
computation iff some given Turing machine diverges on blank input.

Given this fundamental limitation, practical garbage collectors must
employ a conservative approximation to determine which locations are un-
necessary in a given machine state. The most popular criterion is based

WORKING DRAFT DECEMBER 5, 2002

304 Storage Management

on reachability. A location [, is unreachable, or inaccessible, iff there is no
sequence of locations I, ..., [, such that /; occurs in either the current ex-
pression or on the control stack, and /; occurs in l;41 for each 1 < i < n.

Theorem 107
If a location [is unreachable in a state (H, k, e), then it is also unnecessary
for that state.

Each transition depends only on the locations occurring on the control stack
or in the current expression. Some steps move values from the heap onto
the stack or current expression. Therefore in a multi-step sequence, execu-
tion can depend only on reachable locations in the sense of the definition
above.

The set of unreachable locations in a state may be determined by tracing.
This is easily achieved by an iterative process that maintains a finite set of
of locations, called the roots, containing the locations that have been found
to be reachable up to that point in the trace. The root set is initialized to
the locations occurring in the expression and control stack. The tracing
process completes when no more locations can be added. Having found the
reachable locations for a given state, we then deem all other heap locations
to be unreachable, and hence unnecessary for computation to proceed. For
this reason the reachable locations are said to be live, and the unreachable
are said to be dead.

Essentially all garbage collectors used in practice work by tracing. But
since reachability is only a conservative approximation of necessity, all prac-
tical collectors are conservative! So-called conservative collectors are, in fact,
incorrect collectors that may deem as garbage storage that is actually nec-
essary for the computation to proceed. Calling such a collector “conserva-
tive” is misleading (actually, wrong), but it is nevertheless common practice
in the literature.

The job of a garbage collector is to dispose of the unreachable loca-
tions in the heap, freeing up memory for later use. In an abstract setting
where we allow for heaps of unbounded size, it is never necessary to col-
lect garbage, but of course in practical situations we cannot afford to waste
unlimited amounts of storage. We will present an abstract model of a par-
ticular form of garbage collection, called copying collection, that is widely
used in practice. The goal is to present the main ideas of copying collec-
tion, and to prove that garbage collection is semantically “invisible” in the
sense that it does not change the outcome of execution.

WORKING DRAFT DECEMBER 5, 2002

31.2 Garbage Collection 305

The main idea of copying collection is to simultaneously determine
which locations are reachable, and to arrange that the contents of all reach-
able locations are preserved. The rest are deemed garbage, and are re-
claimed. In a copying collector this is achieved by partitioning storage into
two parts, called semi-spaces. During normal execution allocation occurs in
one of the two semi-spaces until it is completely filled, at which point the
collector is invoked. The collector proceeds by copying all reachable stor-
age from the current, filled semi-space, called the from space, to the other
semi-space, called the to space. Once this is accomplished, execution con-
tinues using the “to space” as the new heap, and the old “from space” is
reclaimed in bulk. This exchange of roles is called a flip.

By copying all and only the reachable locations the collector ensures
that unreachable locations are reclaimed, and that no reachable locations
are lost. Since reachability is a conservative criterion, the collector may pre-
serve more storage than is strictly necessary, but, in view of the fundamen-
tal undecidability of necessity, this is the price we pay for mechanical col-
lection. Another important property of copying collectors is that their exe-
cution time is proportion to the size of the live data; no work is expended
manipulating reclaimable storage. This is the fundamental motivation for
using semi-spaces: once the reachable locations have been copied, the un-
reachable ones are eliminated by the simple measure of “flipping” the roles
of the spaces. Since the amount of work performed is proportional to the
live data, we can amortize the cost of collection across the allocation of the
live storage, so that garbage collection is (asymptotically) “free”. However,
this benefit comes at the cost of using only half of available memory at any
time, thereby doubling the overall storage required.

Copying garbage collection may be formalized as an abstract machine
with states of the form (Hy, S, H;), where Hy is the “ from” space, H; is
the “to” space, and S is the scan set, the set of reachable locations. The
initial state of the collector is (H, S,), where H is the “current” heap and
0 # S C dom(Hy) is the set of locations occurring in the program or control
stack. The final state of the collector is (Hy, (), H;), with an empty scan set.

The collector is invoked by adding the following instruction to the A-
machine:

(H,FL(k) UFL(e),0) =G (H",0,H")
(H,k,e) —na (H' k,e) (31.23)

The scan set is initialized to the set of free locations occurring in either
the current stack or the current expression. These are the locations that are
immediately reachable in that state; the collector will determine those that

WORKING DRAFT DECEMBER 5, 2002

306 Storage Management

are transitively reachable, and preserve their bindings. Once the collector
has finished, the “to” space is installed as the new heap.

Note that a garbage collection can be performed at any time! This cor-
rectly models the unpredictability of collection in an implementation, but
avoids specifying the exact criteria under which the collector is invoked. As
mentioned earlier, this is typically because the current heap is exhausted,
but in an abstract setting we impose no fixed limit on heap sizes, preferring
instead to simply allow collection to be performed spontaneously accord-
ing to unspecified criteria.

The collection machine is defined by the following two rules:

(Hll = o], SU{1}, Hy) —¢ (Hy, S UFL(v), Hy[l = v)) (31.24)

(Hp, SU{1}, Hyll = v]) ¢ (Hy, S, Hy[l = v]) (31.25)

The first rule copies a reachable binding in the “from” space to the “to”
space, and extends the scan set to include those locations occurring in the
copied value. This ensures that we will correctly preserve those locations
that occur in a reachable location. The second rule throws away any lo-
cation in the scan set that has already been copied. This rule is necessary
because when the scan set is updated by the free locations of a heap value,
we may add locations that have already been copied, and we do not want
to copy them twice!

The collector is governed by a number of important invariants.

1. The scan set contains only “valid” locations: S C dom Hy U dom Hy;
2. The “from” and “to” space are disjoint: dom H; N dom H; = (;

3. Every location in “to” space is either in “to” space, or in the scan set:
FL(H;) € SUdom Hy;

4. Every location in “from” space is either in “from” or “to” space: FL(H) C
dom Hy U dom H;.

The first two invariants are minimal “sanity” conditions; the second two
are crucial to the operation of the collector. The third states that the “to”
space contains only locations that are either already copied into “to” space,
or will eventually be copied, because they are in the scan set, and hence in
“from” space (by disjointness). The fourth states that locations in “from”
space contain only locations that either have already been copied or are yet
to be copied.

WORKING DRAFT DECEMBER 5, 2002

31.2 Garbage Collection 307

These invariants are easily seen to hold of the initial state of the col-
lector, since the “to” space is empty, and the “from” space is assumed to
be self-contained. Moreover, if these invariants hold of a final state, then
FL(H;) C dom Hy, since S = () in that case. Thus the heap remains self-
contained after collection.

Theorem 108 (Preservation of Invariants)
If the collector invariants hold of (Hy, S, Hy) and (Hy, S, Hy) ¢ (H}, S', Hy),
then the same invariants hold of (H}, S', Hj).

The correctness of the collector follows from the following lemma.

Lemma 109
If (Hy, S, Hy) —¢ (H},S’,Ht’), then Hy U H; = H} U H, and S U dom H; C
S’ Udom Hj.

The first property states that the union of the semi-spaces never changes;
bindings are only copied from one to the other. The second property states
that the domain of the “to” space together with the scan set does not change.

From this lemma we obtain the following crucial facts about the collec-
tor. Let S = FL(k) UFL(e), and suppose that

(H,5,0) —¢ (H", 0, H').
Then we have the following properties:

1. The reachable locations are bound in H': FL(k) U FL(e) € dom H'.
This follows from the lemma, since the inital “to” space and the final
scan set are empty.

2. The reachable data is correctly copied: H' C H. This follows from the
lemma, which yields H = H” U H'.

WORKING DRAFT DECEMBER 5, 2002

