
15-312 Foundations of Programming Languages

Recitation 2: Rule Induction

Daniel Spoonhower
spoons+@cs

September 3, 2003

1 Matching Parentheses

Recall from lecture our original definition (through inference rules) of the lan-
guage of matching parentheses.

ε M
M1

s1 M s2 M

s1 s2 M
M2

s M
(s) M

M3

Recall also our “parser” for this language, given in terms in the following judg-
ment and inference rules.

0 B ε
B1

k + 1 B s
k B (s

B2
k − 1 B s
k B)s

B3 (k > 1)

We would like to show that the languages defined by M and B are one and the
same, and we began in lecture with a proof of the following: if s M then 0 B s.

We will continue today be showing inclusion in the opposite direction. In
particular, that

Theorem 1. If 0 B s then s M .

Proof. By rule induction on the derivation of 0 B s. We consider each case in
turn.

(Rule B1) Then s = ε.

s M By M1

(Rule B2) Then s = (s′.

k + 1 B s′ Subderivation
?

1

What’s gone wrong? Normally, this is the point of the proof where we’d
cleverly apply the induction hypothesis – why can we not do so in this case?
What, according to a recent lecture, are our alternatives if we find ourselves
stuck in such a situation?

The first answer here is to generalize the induction hypothesis. To claim the
equivalence of the languages M and B, our theorem is strong enough, but it is
not strong enough for us to carry out our proof. Let’s try it again.

Theorem 1 (Revised). If k B s then (· · · (︸ ︷︷ ︸
k

s M .

Proof. By rule induction on the derivation of k B s. We consider each case in
turn.

(Rule B1) (as above)

(Rule B2) Then s = (s′.

k + 1 B s′ Subderivation
(· · · (︸ ︷︷ ︸
k+1

s′ M By i.h.

(· · · (︸ ︷︷ ︸
k

s M Since s = (s′.

(Rule B3) Then s =)s′ and k > 1.

k − 1 B s′ Subderivation
(· · · (︸ ︷︷ ︸
k−1

s′ M By i.h.

() M By M1, M3

(· · · (︸ ︷︷ ︸
k−1

()s′ M By ???

We’re so close this time! We’d like to conclude (· · · (︸ ︷︷ ︸
k−1

()s′ M (equivalently

(· · · (︸ ︷︷ ︸
k

)s′ M) , but we’re not quite there yet. Intuitively, this should work out:

we should be able to add a pair of (balanced) parentheses anywhere within a
string of whose parentheses are already matched. (Are you convinced? Try
some examples.) We’ll use another strategy from lecture: we’ll prove a lemma!
To keep the syntax under control, I’ll use l, r, and c instead of just s to stand
for strings of parentheses.

Lemma 2. If l r M and c M then l c r M .

(Before you read on, think about how we will go about proving this? By
induction? Over what?)

2

Proof. By rule induction on the derivation of l r M . We consider each case in
turn.

(Rule M1) Then l r = ε.

c M By assumption
l c r M Since l = r = ε

(Rule M2)

One might think that the derivation of l r M looks something like this:

...
l M

...
r M

l r M

Why is this not the case? Just because we have chosen to break our string
into two parts l and r doesn’t mean that they each have matching parentheses.
(Think about where we’d like to use this lemma and about a statement of the
form l B r. Must l (in particular) and r have matching parentheses?)

To complete this case, we must consider a number of subcases, one for each
way that l r might be broken down into two strings of matching parentheses.
First we take the case where l is split.

(Rule M2, Subcase 1) Let l = l1 l2.

...
l1 M

...
l2 r M

l1 l2 r M

l2 c r M By i.h.
l1 l2 c r M By M2

l c r M Since l = l1 l2

(Rule M2, Subcase 2) Let r = r1 r2.

...
l r1 M

...
r2 M

l r1 r2 M

(as above)

(What if the split really was between l and r? Do we need a separate case for
this?)

3

(Rule M3)

Again, we must consider each of the ways that l r might be split in a derivation
that ends with

...
s M

(s) M

(Rule M3, Subcase 1) Let l = (l′ and r = r′).

...
l′ r′ M

(l′ r′) M

l′ r′ M Subderivation
l′ c r′ M By i.h.
(l′ c r′)M By M3

l c r M Since l = (l′ and r = r′)

(Rule M3, Subcase 2) Let l = ε and r = (r′).

l r M By assumption
r M Since l = ε
c r M By M2

l c r M Since l = ε

(Rule M3, Subcase 3) Let l = (l′) and r = ε. (as above)

Given this lemma, we can now return to our main theorem. In fact, we now
have all the right tools to complete the proof: the last case goes through easily
using our new lemma.

1.1 Alternatives to Rule Induction?

We have focused this time on rule induction, but there are other properties of
strings that we might reason about. In many cases, we might want to carry out
some proof by reasoning inductively over the lengths of strings. (Quick: think
of a handful from 212!) Reconsider the case from our lemma where we split l
into two pieces l1 and l2. The end of the derivation looked something like this:

...
l1 M

...
l2 r M

l1 l2 r M

4

What if l1 = l2 = ε? Then l2 r is not any shorter than l1 l2 r! If we were to
reason about the lengths of the strings in this case, we could not apply the
induction hypothesis. Here (and in many proofs in this class) rule induction
will prove to be the better choice.

5

