
What Is Wrong with My Model?
Identifying Systematic Problems with Semantic Data Slicing

Chenyang Yang
Carnegie Mellon University

Yining Hong
Carnegie Mellon University

Grace A. Lewis
Carnegie Mellon Software
Engineering Institute

Tongshuang Wu
Carnegie Mellon University

Christian Kästner
Carnegie Mellon University

ABSTRACT

Machine learning models make mistakes, yet sometimes it is diffi-
cult to identify the systematic problems behind the mistakes. Practi-
tioners engage in various activities, including error analysis, testing,
auditing, and red-teaming, to form hypotheses of what can go (or
has gone) wrong with their models. To validate these hypothe-
ses, practitioners employ data slicing to identify relevant examples.
However, traditional data slicing is limited by available features and
programmatic slicing functions. In this work, we propose SemSlicer,
a framework that supports semantic data slicing, which identifies a
semantically coherent slice, without the need for existing features.
SemSlicer uses Large Language Models to annotate datasets and
generate slices from any user-defined slicing criteria. We show that
SemSlicer generates accurate slices with low cost, allows flexible
trade-offs between different design dimensions, reliably identifies
under-performing data slices, and helps practitioners identify useful
data slices that reflect systematic problems.

ACM Reference Format:

Chenyang Yang, Yining Hong, Grace A. Lewis, Tongshuang Wu, and Chris-
tian Kästner. 2024. What Is Wrong with My Model? Identifying Systematic
Problems with Semantic Data Slicing. In 39th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’24), October 27-November

1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3691620.3695033

1 INTRODUCTION

Machine learning models exhibit undesired behaviors, yet it is of-
ten hard to identify systematic problems behind individual errors.
Models have been found to perform worse on under-represented
subgroups [28], exhibit unintended biases [46], and produce harm-
ful content [55], which can cause project failures, media contro-
versies, and even lawsuits once they are integrated into software
products [17]. Academia and industry have spent significant effort
to help identify these problems, through activities such as error
analysis, testing, auditing, and red-teaming [15, 35, 36, 43]. All
these activities (Figure 1, top) curate individual errors, but more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695033

“My toxicity classifier
disproportionately
misclassified text
related to Muslims.”

Hypotheses

Hypothesize

Data

Requirements
Analysis

Model

Red-teaming

Model

Testing

Error
Analysis

Model

Auditing

Data
Generation

Data
Slicing

- “Hardline Muslims
are as conservative…”

- “just look at Turkey
over the last 8 years…”

Validate

Figure 1: MLmodel quality assurance involves two stages: (1) Hy-

pothesize and (2) Validate. Many activities focus on creating hy-

potheses, either explicitly (requirements analysis, error analysis) or

implicitly in the process (testing, auditing, red-teaming). Data slicing

helps validate the produced hypotheses by identifying additional
relevant examples, often from evaluation and production data.

importantly, also create concrete hypotheses about the underlying
systematic problem.1

As our running example, suppose an ML practitioner is conduct-
ing error analysis on their toxicity classifier [22]. The practitioner
observed that in a few examples, the model classifies non-toxic text
mentioning Muslims as toxic. From these individual errors, they
hypothesize that the systematic problem behind the errors might
be that “the classifier disproportionately misclassified text related

to Muslims.” To understand whether their hypotheses hold, the
practitioner needs to validate the hypotheses on more data points
(Figure 1, bottom).

To validate their hypotheses, developers need to (a) conduct
synthetic data generation [21] to create more data points or (b)
identify relevant data points from existing data.Data slicing [39, 56],
an example of the latter type of technique, identifies a subset of
examples sharing common characteristics from existing data. Data
slicing often assumes access to existing relevant features, which
might not always be available for users’ slicing criteria of interest.
For example, it is unlikely that the input data is readily labeled with
whether they are related to Muslims.

In practice, developers try to create additional features to aug-
ment datasets for data slicing but are limited by how they can create
such features: Existing practices mostly apply programmatic slicing
(see statistics in Table 1), often implemented as simple Python pro-
grams, to identify slices. For our example hypothesis (“the classifier
1Alternatively, the hypotheses can also be formed top-down through explicit require-
ments analysis [e.g., 5, 59], which is less common in current ML practice.

https://doi.org/10.1145/3691620.3695033
https://doi.org/10.1145/3691620.3695033
https://doi.org/10.1145/3691620.3695033

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

disproportionately misclassified text related to Muslim”), a simple im-
plementation is to use a regular expression to search for the pattern
“muslim|islam” (Figure 2, top). However, this simple implementation
leaves out many related but more nuanced examples (e.g., when
the examples mention “Saudi Arabia”, “Turkey”, as shown in Fig-
ure 2, bottom). Writing a regex-based slicing function to cover all
these different cases can be a laborious process, and it is hard to
enumerate these patterns to begin with. As we will show later in
Section 2, this is a common theme in data slicing—developers often
want to slice based on criteria that are hard to implement with
programs. Limitations of existing programmatic slicing methods
fundamentally constrain the applicability of data slicing.

In this work, we propose SemSlicer, a framework that supports
semantic data slicing using Large Language Models (LLMs). Seman-

tic data slicing identifies a semantically coherent subset of examples,
without the need for existing features as in programmatic data slic-
ing. The key insight of SemSlicer is that with appropriate prompts,
LLMs can act as slicing functions for any user-specified slicing cri-
teria. These slicing functions formed by an LLM and a prompt are
able to cover semantically coherent examples of different surface
patterns. To assist users in creating slicing prompts, we design a
highly configurable prompt construction pipeline in SemSlicer,
which allows different levels of machine and human intervention.

To use SemSlicer, a user needs to specify (a) a slicing criterion,
expressed as a keyword or phrase (e.g., “Muslim”), (b) a dataset to
slice (e.g., a test dataset or recent production data), and (c) the exact
configuration for slicing (i.e., choosing among various forms of
auto-optimization to trade off cost and accuracy, as we will explain
in Section 3). SemSlicer will then (1) generate and automatically
optimize a slicing prompt (e.g., generating few-shot examples), and
(2) annotate the entire dataset and return a relevant slice. Applying
SemSlicer to our running example (Figure 2, bottom), the slicing
criterion can be as simple as “Muslim” (line 14), from which Sem-
Slicer will produce a slicing prompt (line 23) that can be used to
obtain the corresponding slice (line 26).

Besides model debugging as in our example, semantic data slic-
ing is widely applicable to many activities in ML engineering, such
as assisted data curation, systematic model evaluation against re-
quirements, and model monitoring (as we will discuss in Section 2).
To accommodate different use cases, SemSlicer provides a rich set
of configuration options, such that users can make flexible trade-
offs: adjust the models used in different components according to
compute budgets; change whether and how to produce few-shot
examples to trade off between compute resources and accuracy;
and collaborate with LLMs in producing instructions, to provide
additional human oversight. Our evaluation shows that SemSlicer
can produce accurate slicing functions for a wide range of slicing
criteria, allows flexible trade-offs between cost and accuracy, and is
useful for model evaluation (Section 4).

In summary, our work makes the following contributions:
• A comprehensive view of the landscape of data slicing in ML
engineering.

• A highly configurable framework, SemSlicer, that supports
semantic data slicing for diverse use cases.2

2SemSlicer is available open-source at https://github.com/malusamayo/SemSlicer.

1 # Programmatic data slicing detects texts with simple
patterns but generalizes poorly.

2 import re
3 data = load_training_data ()
4 pattern = r"muslim|islam"
5

6 def regex_slicing(x: str) -> bool:
7 return bool(re.search(pattern , x, re.IGNORECASE))
8

9 m_slice = data[data['text'].map(regex_slicing)]
10 m_slice['text']. sample (2)

| '''there 's the muslim lady in jail for trying to kill
| people with a golf club in CTC
| Europe is in the process of submitting to Islam a
| bit more every year.'''

11 # Semantic data slicing detects texts with different
surface patterns.

12 from semslicer.slicer import InteractiveSlicer
13 data = load_training_data ()
14 criterion = "Muslim"
15

16 slicer = InteractiveSlicer(criterion , data , config ={
17 'few -shot': True ,
18 'few -shot -size': 8,
19 'instruction -source ': 'template ',
20 'student -model ': 'flan -t5-xxl',
21 'teacher -model ': 'gpt -4-turbo -preview '})
22

23 slicer.show_prompt ()
| '''Is the text related to muslim?
|
| Text: Hardline Muslims are as conservative ...
| Answer: yes
|
| Text: In fact , Christmas is a pagan festival ...
| Answer: no
|
| ...
|
| Text: {text}
| Answer: '''

24 llm_slicing = slicer.gen_slicing_func () # str -> bool
25 m_slice = data[data['text'].map(llm_slicing)]
26 m_slice['text']. sample (2)

| '''The solution to our problem is becoming much more
| stricter on immigration , banning those with
| religious alliances to Saudi Arabia and its
| puppet states.
| just look at Turkey over the last 8 years , the
| regression under the AKP speaks for itself.'''

Figure 2: Existing practices mostly apply programmatic data slicing
(cf. Table 1). For our running example, we can use a simple regex to

detect comments with the phrase “muslim” or “islam” (line 6). In

contrast, SemSlicer supports semantic data slicing, by using LLM

and generated prompts as slicing functions for any user-provided

criteria (line 24). The examples here are from the CivilComments

dataset [7]—they do not represent the authors’ view.

• An extensive evaluation of SemSlicer that shows it can
generate accurate slicing functions, allows flexible trade-offs,
and is useful for model evaluation.

2 DATA SLICING

Data slicing in ML engineering. ML engineering is data-centric.
ML practitioners usually start with data curation to obtain appropri-
ate training and evaluation data; with LLMs, practitioners may need
less data but still need data to develop and test their prompts [63].

https://github.com/malusamayo/SemSlicer

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Slicing Criteria Description Examples Frequency Mechanism

domain The domain of the text virology, philosophy 65 Existing annotations
task The task of the text data understanding 27 Existing annotations
language The language of the text french, tamil 20 Existing annotations
script The script of the text latin, arabic 6 Existing annotations
site The websites an agent needs to access gitlab, reddit 6 Existing annotations
string_length The length of the text (input/output/label) - 61 Simple computation
num_steps The number of steps an agent takes - 10 Simple computation
num_range The range of numerical answers - 16 Simple computation
num_of_choices The number of choices for multi-choice questions - 11 Simple computation
pred_change_after_norm Whether predictions change after normalization - 8 Simple computation
word_repetition The max number of word repetition - 3 Simple computation
output_shape The shape of model output Yes/No, Valid/Invalid 15 Regex matching
input_type The type of input instruction/question what, how 11 Regex matching
is_X_library_used Whether the input program uses library X pandas, numpy 11 Regex matching
output_value The value of model output A, B, no enough info 5 Regex matching
has_function_calls Whether the input program contains function calls - 4 Regex matching
topic The topic of the text government 3 Machine learning (topic modeling)

Table 1: We analyzed 20 most popular projects on textual datasets from ZenoHub [1], identifying 17 slicing criteria with their descriptions,

examples, frequency, and creation methods—almost all are based on existing metadata or can be implemented with simple Python programs.

With curated data, ML practitioners perform data analysis, model
training or prompt engineering, and model evaluation (with poten-
tial debugging) in multiple iterations. Afterwards, the model can
be deployed, with further model monitoring and updates based on
production data. All these activities can benefit from data slicing.

Data slicing can help model debugging, as illustrated by our
running example. After developers observe model mistakes, con-
duct error analysis, and formulate hypotheses, data slicing helps
them validate the hypotheses on additional relevant examples [10,
56]. Once the hypotheses are validated, data slices can be used for
furthermodel fixing, via data pre-processing to construct useful
features for model training, targeted data augmentation, or even as
guidance for prompting [63].

Data slicing is also useful for fine-grainedmodel evaluation,
where multiple behavioral aspects are systematically examined [9,
44], as also recognized in the software engineering community [4].
Rather than error-chasing as in model debugging, developers have
specific upfront behavioral aspects for model evaluation. The be-
havioral aspects can come from the developer’s intuition, but can
also be elicited from deliberate requirements analysis [e.g., 5, 59].
In contrast to traditional benchmarking, where practitioners only
examine model accuracy on a single static benchmark, fine-grained
model evaluation can expose nuanced model strengths and weak-
nesses and help pinpoint areas for model improvement. In our
running example of toxicity detection, the developer might want to
see if the model treats certain demographic groups systematically
unfairly (e.g., regarding race, gender, religion) and use data slicing
to identify many concrete examples for each subgroup.

This naturally extends to continuousmodelmonitoring, where
developers track model performance on multiple aspects through
data slicing [41]. Developers can build regression test suites from
data slices [32], as well as continuously analyze new production
data. From model monitoring, developers can fix degrading aspects
when needed, and potentially discover new data patterns (e.g., new
hateful slang) for slicing when there is a distribution shift.

In earlier ML engineering phases, data slicing can contribute to
data curation, as the insights and data produced from debugging,
evaluation, and monitoring can be used to inform which slices are

under-performing or under-represented and hence guide what data
to curate [5].

For all these activities, the key motivation for data slicing is to
generalize from individual data points to the underlying systematic
problems. This generalization is necessary because model evalu-
ation looks at accuracy in distributions rather than at mistakes
for individual inputs – a single model mistake is not considered a
bug [24]. This is in stark contrast to traditional software testing,
where one single error is considered a bug that can be worth fix-
ing. Parallels to data slicing, however, do exist in software testing:
Equivalence class testing [49] divides the input space into several
partitions and creates test cases for each partition, akin to how
data slicing partitions datasets into slices; strong equivalence class
testing explores interaction across these dimensions, which is also
explored for data slicing [4, 39]. Despite the parallels, data slices are
expected to come from distributions that practitioners care about,
rather than from any failing inputs as in software testing. This
key distinction from software testing is why ML engineering ben-
efits from data-centric approaches like data slicing and dedicated
innovations like SemSlicer.

Status quo and limitations. Despite being useful for many activi-
ties, (semantic) data slicing is not well-supported. Data slicing often
assumes access to a set of existing features, but relevant features are
not always available for users’ slicing criteria, limiting developers
in practice to create only “easy” slices. We found strong evidence
for this by analyzing the 20 most popular projects on ZenoHub [1],
a platform to share model evaluation results with built-in support
for slicing, where we observed that developers almost exclusively
create programmatic slicing functions (e.g., string length, question
type) that are easy to implement, as shown in Table 1.

In contrast, various activities by practitioners and researchers
suggest that developers often want to conduct semantic data slicing
that cannot be matched with simple patterns: For example, Naik
et al. [36] identified eight different error hypotheses for natural
language inference models, with half of them being hard to cover
with programmatic slicing (e.g., “contradicting sentence pairs con-
taining antonyms are hard to classify,” “sentence pairs relying on

real-world knowledge are hard to classify”). Similarly, for machine

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

translation, Karpinska and Iyyer [25] report 15 mistranslation hy-
potheses annotated by humans, most of which are hard to cover
with programmatic slicing (e.g., “translations that change factuality,”
“translations that are overly literal”). Ribeiro et al. [44] created a set
of 41 functionality tests for three different NLP tasks, with 32 of
them hard to implement using programmatic slicing (e.g., “author
sentiment is more important than that of others”).

Indeed, precisely because of the difficulty of semantic data slicing,
developers resort to synthetic data generation to obtain slices [e.g.,
36, 44] or crowdsourcing to obtain extra annotations for slicing [e.g.,
25]. To bridge this fundamental lack of support for semantic data
slicing, SemSlicer employs LLMs as powerful tools to generate
semantic slicing functions from any user criteria.

From crowdsourcing to automated semantic slicing. Recent ad-
vancements in LLMs have spurred interest in replacing crowdwork-
ers with LLMs for various tasks [57]. The NLP community has
explored using LLMs for data annotations [64], where researchers
manually engineer their prompts for specific tasks. These annota-
tions can be used as ground-truth labels for model training [20, 52],
as noisy labels for weak supervision [48, 62], or as additional clues
for model inference [34]. They have found LLMs often have similar,
and sometimes even better performance than crowdworkers [11].

SemSlicer is motivated by this trend and aims to produce se-
mantic slicing functions that traditionally can only be done by
crowdworkers at a high cost. However, unlike the existing work
that relies on manual prompt engineering for specific annotation
tasks, SemSlicer is a unifying framework that can be applied to
any slicing criteria, with a rich set of configuration options for
constructing and optimizing the slicing prompt.

3 SEMANTIC DATA SLICING

SemSlicer is a framework for semantic data slicing, allowing users
to create slicing prompts from specified slicing criteria, and use
them to generate data slices. In this section, we will describe (1)
the design dimensions of SemSlicer and (2) our system design and
implementation details.

3.1 Design Dimensions

We design SemSlicer considering four dimensions: slicing accu-
racy needed (accuracy), latency expected (latency), human effort
available (human-effort), and computational resources available
(compute).

3.1.1 Slicing accuracy needed. Intuitively, we would want higher
slicing accuracy, as it makes the observed slices more reliable.
However, as we will demonstrate in Section 4.4, moderately accu-
rate slices can also be useful for downstream use cases like model
evaluation, as long as they can reliably detect where the model
under-performs, making it possible to consider accuracy one of
the four trade-off dimensions.

3.1.2 Slicing latency expected. Our second dimension, latency,
considers how fast slicing should be. Depending on the downstream
use cases, users can trade off latency for other dimensions, or vice
versa. For example, interactive model debugging would expect a
lower latency, while systematic model evaluation or monitoring
can accept a higher latency.

Slicing Criterion

Stage 2: Data Slicing

Instructions Few-shot Examples

Slicing Prompt

Does the text discuss aspects
of the hotel's location in
reviews, including proximity to
local attractions, accessibility,
[text omitted] …?

Input: Slightly isolated
from the area's attractions

Output: Yes

Input: Crazy expensive for
what you get

Output: No

…

Input: No walkability for
people with mobility issues

Output: Yes Data Slice

Location

Stage 1: Prompt Construction
Data

➂ Example sampling

➃ Example labeling

➄ Example synthesis

Data annotations

➀ Instruction generation

➁ Instruction refinement

Teacher LLM

Student LLM

Figure 3: SemSlicer’s workflow: The user first specifies a slicing

criterion (keywords, descriptions, etc.) and provides a dataset to slice.

SemSlicer will ➀ construct and ➁ refine a classification instruction

from the slicing criterion, optionally with human in the loop. Sem-

Slicer will then ➂ sample and ➃ label few-shot examples, with ➄

synthetic examples generated if needed. Finally, SemSlicer uses the

produced prompt to annotate the dataset and create the slices.

3.1.3 Human effort available. Our third dimension considers how
much human-effort SemSlicer requires, which also depends on
the use cases. For example, for interactive model debugging, we
might want to prioritize lower latency over lower human-effort,
as users can put more effort into shaping the slicing function
(through prompting) but would expect faster interaction. In con-
trast, for model evaluation, we might prioritize human-effort over
compute such that evaluation can scale to a larger number of slices.

3.1.4 Computational resources available. Our last dimension con-
siders the practical concerns of how much compute is available for
data slicing. Low computational cost is important for scaling up
SemSlicer in practice. When resources are limited, users can accept
lower accuracy to accommodate available resources, by using a
smaller model or having a simpler prompt construction pipeline.

Design trade-off. There is no optimal design for all four dimen-
sions: We often need to make trade-offs depending on the down-
stream use cases. Our system design aims to allow users to easily
trade off along these dimensions, through using LLMs of differ-
ent sizes and capabilities (accuracy vs. compute/latency), having
a human in the prompt construction loop (accuracy/compute vs.
human-effort), or having different setups of few-shot examples
(accuracy vs. compute/latency). We will discuss these trade-offs
in more detail in Section 3.2.

3.2 System Design

System overview. At a high level, SemSlicer runs in two stages
(as depicted in Figure 3). In the first prompt construction stage,

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A user is exploring a dataset to identify a subset that matches
their goal.

Your job is to help the user craft a classification question. Answer
ONLY with the question.

Follow the following format:

User goal: {{instruction}}
Suggestion: {{suggestion}}

[examples omitted]

User goal: {instruction}

(a) Prompt for ➀ instruction generation.

I have a classification instruction that does not perform well. Can
you give me some suggestions to improve the instruction?

Follow the following format:

Instruction: {{instruction}}
Suggestion: {{suggestion}}
Revised instruction: {{instruction}}

Instruction: {instruction}

(b) Prompt for ➁ instruction refinement.

{question} Answer ONLY yes or no.

{examples}

Text: {text}
Answer:

(c) Prompt for ➃ example labeling and ➅ slice labeling.

{question} Answer ONLY yes or no.

{examples}

Write {n} examples with a '{label}' answer to the question above,
following the format below.

Text: {{text}}
Answer: {{answer}}

(d) Prompt for ➄ example synthesis

Figure 4: Prompt templates used in SemSlicer.

SemSlicer constructs a slicing prompt for a user-provided slicing
criterion. SemSlicer will first ➀ generate and ➁ refine a classifi-
cation instruction, and then ➂ sample, ➃ label, and optionally ➄

synthesize few-shot examples. Depending on the configuration,
some steps can be skipped or customized. In the second data slicing
stage, SemSlicer will annotate the dataset using the constructed
prompt and produce a corresponding slice.

Slicing function components. The final slicing function produced
by SemSlicer will consist of three components: The model (and
inference settings) used, the instructions specified, and the few-shot
examples provided (see Figure 2, bottom). All three components can
greatly impact slicing accuracy and latency and need different
levels of human-effort and compute.

• Model: Model is the most critical component as LLM capa-
bilities can greatly impact task accuracy. In SemSlicer, we
leverage LLMs in many different steps, and for each step,
we need to make trade-offs between accuracy and com-
pute/latency to choose an appropriate model.

• Instructions: Instructions state what a model should do,
often in the form of a classification question in SemSlicer
(see example instruction in Figure 3). LLMs are shown to have
strong instruction-following capabilities [38], but the quality
of responses depends on the exact instructions provided [51].
SemSlicer supports using LLMs to help generate and refine
instructions, with a human in the loop, inspired by recent
advancements in automated prompt engineering [40, 66].
Turning this option on can improve accuracy at the cost of
more human-effort or compute.

• Few-shot examples: Few-shot examples are demonstra-
tions that show how a model should respond to a task input
(see example input/output pairs in Figure 3). They also have

a strong impact on LLM performance [8, 31]. SemSlicer sup-
ports a rich set of tools to construct few-shot examples, such
as different sampling strategies, labeling strategies, and syn-
thetic input generation. Users can make trade-offs between
accuracy and compute/latency by choosing the right set
of configurations.

Next, we detail our design choices, rationale, and implementa-
tions for these three components in SemSlicer.

3.2.1 Model. We design SemSlicer such that different steps and
stages can flexibly leverage different LLMs, allowing trade-offs
between accuracy and compute/latency. The general rationale
behind our design is that a more powerful model can produce
higher-quality outputs, but would increase the compute needed,
incurring higher cost (and latency), while a less powerful model
would be cheaper yet less accurate. Users should have the agency
to decide which model fits best for their use case, according to their
specific constraints.

In SemSlicer, LLMs are used in almost every step: In ➀ instruc-

tion generation, ➁ instruction refinement, and ➄ example

synthesis, we need a model with human-like creativity and capa-
bilities to generate and refine instructions, as well as synthesize
new examples. In ➃ example labeling, we need a model with
high-quality classification capabilities for small-scale labeling. In
data slicing, we need a model with good-quality classification
capabilities for larger-scale labeling.

Implementation. In our evaluation, we use gpt-4-turbo-preview
for steps ➀➁➄ (temperature=1) and step ➃ (temperature=0),3 as
GPT-4 is known to be among the strongest LLMs available at the
3Temperature is a parameter commonly used to control LLM outputs. A higher tem-
perature makes the model more “creative,” while a lower temperature makes the model
more predictable. We use temperature=1 for creativity as recommended [37], while
temperature=0 is a common setup for classification tasks.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

time of our implementation but also incurs higher cost and latency.
These steps are all in the prompt construction stage and hence
executed less frequently per slice.

We use flan-t5-xxl for the second stage (temperature=0), as
the model has strong classification capabilities [12] and is of a
moderate size with 11B parameters, hence lower cost and latency,
which is crucial in the data slicing stage as the entire dataset is
annotated. We further use 8-bit quantization to speed up model
inference.

3.2.2 Instructions. We design SemSlicer to allow more LLM-based
automated prompt engineering (compute), with a flexible human-AI
collaboration mechanism (human-effort) to improve instruction
quality (accuracy). This is achieved through two steps: ➀ instruc-

tion generation, to produce a good initial instruction, and ➁ in-

struction refinement, to further refine the produced instruction.
The first step aims to produce an initial instruction from a user-

provided slicing criterion. Depending on what users provide, Sem-
Slicer provides options for (1) template-based construction and (2)
LLM-based generation:

(1) Template: When users provide a criterion in simple phrases,
SemSlicer can use the generic template “Is the text related to
{concept}?” to translate a criterion into an instruction. We ob-
serve this simple template works very well for many slicing
tasks (cf. Section 4).

(2) LLM-generated: When users provide more detailed descrip-
tions, SemSlicer can leverage an LLM, which offers strong
information processing capabilities, to generate an initial
instruction.

The produced instruction provides a good starting point, which
can be further refined in the second step. This can be achieved
through (1) human post-editing, (2) LLM-based refinement, or (3) a
mixture of both. For LLM-based refinement, our design is inspired
by Self-Refine [33], where we ask an LLM to provide suggestions
and revisions on a to-be-revised instruction. This refinement step
can increase accuracy at the cost of more human-effort or com-
pute.

Implementation. We prompt an LLM for both ➀ instruction

generation and ➁ instruction refinement (Figure 4).
When using the instruction in slice labeling, SemSlicer delib-

erately instructs the model to only produce a label token (Fig-
ure 4), without any intermediate reasoning steps (e.g., as in chain-
of-thought prompting [54]). This design is based on our observation
that the intermediate steps sometimes help accuracy, yet incur
high latency, which scales linearly with the number of output
tokens (accuracy vs. latency).

3.2.3 Few-shot examples. The design of SemSlicer automates the
construction of few-shot examples, which demonstrate how amodel
should label a slice. Users can make trade-offs between accuracy
and compute/latency by controlling different options, including
(1) whether they need few-shot examples at all, (2) how many
examples they need, (3) where the examples are from, and (4) how
to label the examples. The more examples they use in the slicing
prompt, the higher compute cost and latency.

As a first step to construct few-shot examples, SemSlicer needs
to curate a set of example inputs. Assuming access to user-provided

data, SemSlicer provides different ➂ sampling strategies: (1) ran-
dom sampling and (2) diversity sampling. We support diversity
sampling as we observe that random sampling can miss examples
from smaller slices, which biases the second stage of data slicing.

With the sampled example inputs, SemSlicer next labels the
examples with the generated slicing instruction. In this step, we
need to bootstrap from zero-shot labeling (i.e., without any ex-
amples), as there are usually no existing labels on a user’s slicing
criteria, which can be arbitrary. SemSlicer supports different ➃

labeling strategies, (1) student-label and (2) teacher-label, to ac-
commodate different trade-off decisions (accuracy vs. compute).
A teacher model is a stronger LLM (e.g., GPT-4), whose labels are
usually more accurate but also more expensive, while a student
model is a smaller LLM that is less accurate but also cheaper. Using
teacher-labeled examples can effectively distill a teacher model’s
knowledge about some particular slicing criterion to a student
model.

In the last step, SemSlicer creates ➄ optional synthetic exam-

ples to balance the in-slice and out-of-slice examples, as sometimes
sampled examples can be extremely imbalanced for small slices,
leaving no in-slice demonstrations for data slicing. To create syn-
thetic examples that look similar to the real dataset, SemSlicer
queries an LLM to write extra examples of the underrepresented
label, given sampled examples. The given examples can condition
the LLM on what inputs (style, content, etc.) it should generate.

Implementation. We implement diversity sampling by (1) vec-
torizing user-provided data using SentenceTransformer embed-
dings [42] and (2) clustering the data into 𝑁 clusters with KMeans
and selecting one example from each cluster. This strategy produces
semantically different clusters and hence diverse examples.

In our evaluation, we set the number of few-shot examples to
8, following existing work [12]. For ➃ example labeling, we exper-
iment with both a teacher model (gpt-4-turbo-preview) and a
student model (flan-t5-xxl). For ➄ example synthesis, we use
gpt-4-turbo-preview (Figure 4).

3.2.4 Data slicing. With the slicing prompt constructed, the final
data slicing step applies the prompt using a student model—we use
flan-t5-xxl in our evaluation. This step produces slicing annota-
tions for the entire dataset.

3.3 System Interface

SemSlicer is packaged as a Python library. As shown in Figure 2, a
user first provides a dataset to slice (line 13) and a slicing criterion
(line 14). Next, the user specifies what slicing function they want
to generate with the desired configurations (line 16), with fine-
grained control on each component of SemSlicer. SemSlicer will
generate a slicing prompt, following the workflow summarized in
Figure 3, and produce a slicing function (line 24), which can be
further applied on any datasets (line 26). The entire process can be
easily batched and extended to multiple slices.

The above example demonstrates how SemSlicer can support
workflows with minimal human-effort. However, as we have dis-
cussed, humans can easily provide more guidance by (1) provid-
ing more detailed slicing instructions instead of simple keywords

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Method Configurations Cost/Slice

Few-shot (fs) Examples Instructions

Input source Input sampler Output labeler Source Refinement

Mzero-shot - (zero-shot, zs) - - template - $0.26
Mfew-shot provided random student template - $1.68
Mfs-div provided diversity (div) student template - $1.68
Mfs-teacher provided diversity teacher template - $1.69
Mfs-syn provided + synthesized (syn) diversity + balanced teacher template - $1.70
Mzs-model - - - model - $0.26
Mzs-tmodel - - - template (t) model $0.26
Mzs-hai - - - human + template human + model (hai) $8.13
Mfs-hai provided diversity teacher human + template human + model (hai) $9.56
Crowdworker - - - human - $432.00

Table 2: Experiment configurations: We selected 9 representative configurations of SemSlicer, following a fractional factorial design [3]. We

estimate that SemSlicer costs from $0.26 to $9.56 to generate one slice from a dataset of 6k examples (CivilComments). In contrast, using

crowdworkers for the same task would cost $432.00, which is 44x to 1661x more than SemSlicer (see the appendix for how we estimate cost).

(line 14), (2) post-editing the generated prompt (line 23), or (3)
iterating the entire process for a few rounds.

4 EVALUATION

First, to demonstrate feasibility and practicality, we evaluate our
method’s ability to produce accurate slices and its associated cost
across different system configurations:

• RQ1: How accurate are SemSlicer’s predicted slices across
different configurations?

• RQ2: How much cost/latency does it take to produce the
slices across different configurations?

Next, to demonstrate usefulness for downstream usage, we eval-
uate our method’s ability to assist model evaluation:

• RQ3: How useful is SemSlicer for model evaluation?

4.1 Experiment Setup

Datasets. To evaluate our method, we collect existing datasets
with ground truth slices, as there are no existing benchmarks on
semantic data slicing. We look at three different strategies to collect
suitable datasets:

• Human annotations. Sometimes dataset curators ask humans
(usually crowdworkers) to annotate existing datasets with
additional attributes of input texts (e.g., ethnicity groups
referenced in texts). These attributes make plausible slices
that are hard to obtain without human annotations. These
slices are the most realistic (though potentially noisy due
to crowdworker mistakes and subjectivity [2]), but they are
challenging to find due to the high cost of human annotation.
We use the existing CivilComments [7] dataset—the task is
toxicity detection, but in addition to the toxicity label, the
dataset has been annotated by crowdworkers with additional
attributes regarding referenced demographic groups on five
categories (gender, sexual orientation, religion, race, and
disability) with 23 concrete attributes (e.g., Black, Christian).
We derive slices from these additional attributes. To reduce
experiment cost, we randomly sampled 6000 examples and
used the 8 largest slices.

• Synthetic data. For model testing and evaluation [44], devel-
opers often create synthetic test data for different subgroups
of the target population. We can treat data from each sub-
group as a slice. These slices are accurate by construction,
as they are created specifically for each subgroup, but can
be less realistic due to their synthetic nature.
We use two datasets createdwith this strategy, HateCheck [45]
and AdaTest [43]. The first is a hate speech test suite (n=3728)
with comments for 7 different subgroups (e.g., women, trans).
The second is a sentiment analysis test suite (n=196) with
data for 6 aspects (e.g., price, location) of a hotel review.

• Metadata. Many datasets come with metadata produced as
part of data collection, such as tags on QA websites from
which data was scraped. We can create slices from such
metadata, but these slices may be less accurate as different
categories (e.g., clothes vs. sports) might overlap semanti-
cally, leaving some examples missing from the slices.
We use the existing Amazon [6] sentiment analysis dataset,
which in addition to the sentiment label, contains metadata
about what product category was reviewed (e.g., books, elec-
tronics). To reduce experiment cost, we randomly sampled
6000 examples and used the 5 largest slices.

To summarize, we selected four datasets with 26 ground-truth
slices—see Table 3 for their names and proportions. These datasets
cover different uses of slicing: slicing on sensitive attributes for
fairness (HateCheck and CivilComments) and slicing on topics/do-
mains for fine-grained model evaluation (AdaTest and Amazon).
We collected all slicing criteria (the inputs to SemSlicer) directly
from the datasets, or from the descriptions in the associated papers.

Configurations. To understand how different configuration op-
tions impact the accuracy and cost of SemSlicer, we selected and
analyzed 9 representative configurations of SemSlicer, following a
fractional factorial design [3] to cover all values in each dimension
(as shown in Table 2). These configurations cover whether to use
few-shot examples (zero-shot vs. few-shot), how few-shot inputs
are collected (provided vs. synthetic), sampled (random vs. diver-
sity), and labeled (student vs. teacher), as well as how instructions

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

Dataset Slice Frac. (%) Slicing F1 score (%) Task perf. (%)

Mzero-shot Mfew-shot Mfs-div Mfs-teacher Mfs-syn Mzs-model Mzs-tmodel Mzs-hai Mfs-hai gold pred.

HateCheck

women 13.7 90.7 92.7 92.6 92.8 91.7 92.3 89.5 90.5 94.6 79.4 82.6
trans 12.4 83.6 79.5 78.3 95.1 94.7 95.1 75.7 90.3 96.5 53.3** 52.7**
gay 14.8 68.3 69.0 69.5 69.7 68.8 85.0 69.2 88.4 71.7 70.6 63.8**
black 12.9 95.2 95.4 95.1 95.1 95.7 95.2 86.3 94.9 95.1 70.7 71.6
disabled 13.0 68.1 77.9 67.3 67.4 81.6 71.4 69.2 89.4 73.3 47.3** 48.7**
muslim 13.0 97.7 97.1 95.8 95.4 93.9 97.1 95.8 97.2 95.4 78.3 79.9
immigrant 12.4 80.0 77.2 66.8 82.2 68.5 94.5 21.9 94.9 93.5 71.5 74.3
avg - 83.4 84.1 80.8 85.4 85.0 90.1 72.5 92.2 88.6 69.4 69.4

AdaTest

room 24.9 59.3 84.9 88.2 89.6 87.4 15.4 70.9 84.7 88.6 66.0 65.3
location 16.9 49.1 74.1 73.6 82.7 80.5 28.6 48.5 82.4 87.9 62.5 58.1
price 18.5 95.9 95.8 95.8 94.3 94.3 95.8 24.4 97.2 95.8 65.7 62.9
restaurant 17.5 57.1 76.5 65.1 78.1 62.4 59.2 58.3 78.6 93.8 63.6 74.2
service 15.9 37.3 49.2 49.6 54.1 48.8 45.8 43.3 59.4 55.0 80.0 76.5
pool 6.3 85.7 90.9 90.9 73.7 90.9 80.0 73.7 90.9 90.9 50.0 57.1
avg - 64.1 78.6 77.2 78.7 77.4 54.1 53.2 82.2 85.3 66.1 66.1

Amazon

book 61.4 95.9 96.5 96.3 97.0 96.7 95.9 96.6 94.7 95.1 68.7 68.7
movie 7.0 53.1 55.7 55.9 59.1 56.3 58.1 55.0 56.0 81.1 69.6 66.5
home&kitchen 6.3 52.1 47.2 48.5 48.3 45.8 50.3 59.9 59.7 48.1 73.3 69.1
electronics 5.8 52.1 54.3 57.8 60.0 56.6 52.1 62.8 61.7 64.9 74.7 72.4
clothing 5.4 63.8 72.0 65.9 72.8 66.3 66.1 75.1 74.8 79.1 71.8 72.5
avg - 63.4 65.2 64.9 67.4 64.3 64.5 69.9 69.4 73.7 69.8 69.8

CivilComments

male 2.5 12.3 30.6 32.3 29.8 5.1 10.6 25.3 9.3 10.9 89.3 90.7
female 2.9 30.1 40.9 40.9 42.5 17.3 30.9 33.2 31.5 36.3 87.3** 89.4*
homosexual 0.5 31.3 38.8 43.5 40.9 40.6 35.2 25.3 41.8 50.6 82.8* 87.8*
christian 2.3 53.1 59.2 56.1 51.0 55.3 54.3 57.0 51.3 51.5 91.9 93.8
jewish 0.5 50.0 55.0 69.7 69.1 62.3 50.0 48.4 49.5 85.7 92.6 96.4
muslim 1.2 60.9 71.3 69.3 73.1 79.2 70.7 71.1 78.2 82.0 87.3* 88.5*
black 0.8 43.2 54.3 64.5 69.1 66.1 31.0 44.4 44.7 71.0 75.0** 79.0**
white 1.4 73.0 81.5 83.6 78.7 85.5 67.5 32.5 78.1 85.2 81.4** 78.1**
avg - 44.2 54.0 57.5 56.8 51.4 43.8 42.1 48.1 59.2 93.5 93.5

- avg - 63.0 69.9 69.7 71.6 68.9 62.6 58.2 71.9 75.9 - -
best good poor ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

Table 3: We collected 4 datasets and 26 slices for our evaluation. These slices represent a 0.5% to 61.4% fraction of the entire dataset. We

found that SemSlicer achieves an average F1 score of up to 75.9% (achieved by M
fs-hai

), with significant improvement from few-shot examples

(+4.0% vs. M
zs-hai

) and human interventions (+4.3% vs. M
fs-teacher

) (RQ1). We also found that SemSlicer can recover 7 out of 7 slices that have

significantly lower downstream task performance, with only one false positive (RQ3).

are generated (template vs. model vs. human+template) and refined
(model vs. human+model).

For the configurations with human interventions (Mzs-hai and
Mfs-hai), we have one of the authors (1) write down slicing descrip-
tions for the model and (2) post-edit the model-refined instructions.

Note that here we deliberately compare different configurations
of SemSlicer, instead of comparing it to a baseline using regular ex-
pression. This is because programmatic slicing performs too poorly
tomake ameaningful baseline: For example, our analysis shows that
direct keyword matching on the literal keyword “location” yields
low recall (0.059), and a refined regex approach (r“location|walk|far
from|close to|neighborhood|near”) only improves recall to 0.65.
Even such a mediocre performance already requires extensive user
labor—we crafted the regex after carefully inspecting 30% of ex-
amples from the ground-truth “location” slice, which results in
overfitting and demonstrates the limitations of rule-based systems.
Including such an obviously poor baseline would not have added
meaningful value to the evaluation.

Threats to Validity. Despite best efforts, the datasets we used are
not perfect, with noisy labels or less realistic inputs as explained
above. The human-in-the-loop configurations are also limited by
the authors’ prompt writing expertise. As is common in these kinds
of studies in real-world settings, our human-subject case study

trades off lower internal validity for higher external validity, in a
context with limited control over the setting and limited ability
to perform repeated independent observations. Generalizations
beyond our evaluation results should be done with care.

SemSlicer uses LLMs at multiple steps. While LLMs can be non-
deterministic and make the results less reliable, we deliberately
used temperature=0 setting for the data slicing step. That is, re-
peatedly sending the same prompt to the same LLM will produce
the same answer. We also used an open-source LLM, making this
step fully reproducible. For instructions and synthetic examples in
prompt construction, the variances from LLM non-determinism are
smoothed over as we average results from 26 slices. 4

4.2 RQ1: Slicing Accuracy

Setup. We measure slicing accuracy for each slice, that is, how
well the slices generated by SemSlicer correspond to the ground-
truth slices in the dataset. We measure slicing accuracy using F1-
score, an established metric for imbalanced datasets, as slices often
represent a small fraction of the entire dataset (ranging from 0.5%
4To better understand the evaluation variance for individual slices, we ran Mzs-model
five times on seven HateCheck slices. We observed that the standard deviation ranges
from 0.0017 to 0.061, with maximal F1 differences up to 14%. After averaging, the
standard deviation is 0.013, and the maximal F1 difference is only 3.5%, supporting our
point that the averaged results reduce evaluation variances.

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Dataset Annotations/sec. Tokens/annotation

zero-shot few-shot zero-shot few-shot

HateCheck 12.25 10.99 32.12 178.73
AdaTest 14.56 10.84 27.45 111.79
Amazon 14.79 6.01 131.40 648.90
CivilComments 14.46 6.45 93.17 626.54

Average 14.07 7.40 92.47 523.79

Table 4: SemSlicer can produce slices at a fast speed: Depending on

the exact setup (zero-shot vs. few-shot) and dataset characteristics

(tokens per annotation), SemSlicer can annotate from 6 to 14 ex-

amples per second. As an example, annotating the CivilComments

dataset (n=6k) takes around 15.5 minutes, using 2 A6000 GPUs.

to 61.4% in our evaluation, see Table 3). We additionally compute
the average F1-score across all slices from each dataset, as well as
average F1-score overall.

Result: SemSlicer produces accurate annotations with 75.9% av-

erage F1-score across all slices in the best configuration. SemSlicer
produced the most accurate slices with 75.6% average F1-score in
configuration Mfs-hai with few-shot examples and human+model
refinement, as shown in Table 3. For the configurations without
human intervention, we found Mfs-teacher has the highest average
F1-score of 71.6%. As discussed earlier, SemSlicer does not need
perfect accuracy to generate useful slices—our results for RQ3 will
show that the current level of accuracy can already reliably detect
under-performing slices.

Result: Few-shot prompting improves accuracy by 7% on average.

Comparing few-shot configurations with zero-shot, we found few-
shot prompting improves performance by 7% on average (Table 3).
Among different few-shot setups, we found teacher labeling im-
proves performance by 1.9% (Mfs-teacher vs. Mfs-div), but observed a
limited impact from sampling methods (Mfew-shot vs. Mfs-div) and
a negative impact from synthetic examples (Mfs-teacher vs. Mfs-syn).
We hypothesize that this is because the generated synthetic exam-
ples are still too unrealistic to help later slice labeling.

Result: Human intervention significantly improves accuracy. We
observe that LLM-based instruction generation and refinement
have an unstable impact compared to simple templates: They some-
times generate good instructions that improve accuracy a lot (e.g.,
Mzs-model for HateCheck) but can also generate bad instructions
that hurt accuracy (e.g., Mzs-tmodel for HateCheck). However, with
human interventions, generated instructions significantly improve
accuracy, with an 8.9% increase for zero-shot (Mzero-shot vs. Mzs-hai),
and a 4.3% increase for few-shot (Mfs-teacher vs. Mfs-hai). This shows
that human feedback is particularly useful to guide instruction
optimization in the right direction.

Discussion. Because we noticed that SemSlicer performs poorly
on some slices of the CivilComments dataset, especially due to low
precision, we investigated the reasons for this behavior.We sampled
40 false positive examples from four slices with low precision scores
(male, female, homosexual, christian) under the Mfs-teacher setting
and manually inspected the examples: Surprisingly, we found that
24 out of 40 examples actually cover nuanced patterns that (we
argue) should be in the slices, yet were missed by human annotators.
These patterns are often related to the slicing criterion in a less

0 2 4 6 8 10 12
Cost ($)

40

45

50

55

60

F1
 s

co
re

 (%
) few-shot

fs-syn

zero-shot

few-shot zero-shot

zs-model
, p xp

fs-div
fs-teacher

fs-hai

zs-hai

zs-tmodel

Figure 5: We visualize F1 score and cost of each configuration (for

CivilComments, n=6k), which shows a clear trend of two trade-offs:

whether to use few-shot examples (higher accuracy with higher

compute), and whether to have human in the loop (higher accuracy
with more human-effort).

direct way (e.g., “Pride” for homosexual; “scripture”, “church” for
christian). This shows that SemSlicer is not only comparable to
human annotations but sometimes can even surpass them, echoing
the findings from some existing work that LLM annotations can
have higher quality than human annotations [20].

4.3 RQ2: Cost and Latency

Setup. In our experiments, we use a local machine with 2 A6000
GPUs for running flan-t5-xxl and use OpenAI’s APIs to query
gpt-4-turbo-preview. We collected the end-to-end slicing latency
and calculated the number of annotations per second as the normal-
ized latency. To measure cost, we collected the number of input/out-
put tokens for each LLM query and estimated the cost (in USD)
based on charges from LLM providers. We estimated the human
cost based on the average pay for crowdworkers and data scientists.
The calculation details can be found in the appendix.5

Result: SemSlicer can slice a dataset with 6,000 rows in 13.5 min-

utes with a cost of $1.70 per slice in the most accurate automated

configuration. We found SemSlicer can annotate 6 to 14 examples
per second (Table 4). This translates into using 7.1 minutes (zero-
shot) to 13.5 minutes (few-shot) for annotating one slice in a dataset
of size of 6k (CivilComments). We estimate that the associated cost
is about $0.26 (zero-shot) to $1.70 (few-shot) per slice for automated
configurations, and up to $9.56 (Mfs-hai) for human-in-the-loop
configurations (Table 2). In contrast, using crowdworkers for the
same task would cost $432.00, which is 44x to 1661x more than
SemSlicer but not necessarily more accurate.

Result: SemSlicer allows flexible trade-offs between design dimen-

sions through different configurations. Comparing different configu-
rations, we observed there are clear trade-offs between design di-
mensions among different configurations (Figure 5). Using few-shot
examples can increase the cost by around $1.40 per slice and takes
91% more time (Table 4), with significant accuracy improvement
by 7% on average (accuracy vs. compute/latency). Human inter-
ventions can increase the cost a lot ($7.87 per slice), but also come
with significant accuracy improvement by 4.3% to 8.9% (accuracy
vs. human-effort).

5https://github.com/malusamayo/SemSlicer/blob/main/appendix.md

https://github.com/malusamayo/SemSlicer/blob/main/appendix.md

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

Discussion. As shown in Figure 5 , there are trade-offs to make
between different design dimensions. In production, the best config-
uration will depend on the dataset and the slicing criterion difficulty.
For easier criteria, a simple zero-shot configuration would already
work pretty well (e.g., the “price” slice in Table 3 has a 95.9% F1-
score with Mzero-shot). For more difficult criteria, we recommend
users to select configurations based on the following two principles:

• If there is more compute budget, always try few-shot ex-
amples. Use a teacher model to generate example labels if
available.

• If there is more human-effort budget, allocate it to instruc-
tion refinement.

4.4 RQ3: Usefulness

We approach usefulness from two perspectives, by understanding
(1) whether SemSlicer can help identify known under-performing
slices and (2) whether SemSlicer can help practitioners conduct
model evaluation and generate additional insights.

For the first part, we demonstrate usefulness if SemSlicer can
reliably detect under-performing slices, a common use of data slic-
ing (cf. Section 2). For the second part, we conduct a human-subject
case study to triangulate the automated experiments, by showing
that practitioners found SemSlicer useful in their real-world cases.

4.4.1 Can SemSlicer help identify under-performing slices?

Setup. A common use of slicing is to identify parts of the in-
put space where the model under-performs. That is, we want to
identify the slices in which their downstream task performance

(i.e., the accuracy of the original task, such as toxicity detection) is
statistically significantly worse than the average, even if the slicing
accuracy is not perfect. Specifically, we want to evaluate whether
our slicing accuracy is good enough to detect those same slices as
under-performing that we would have detected with perfect slicing
accuracy from the ground-truth attributes in our datasets.

To understandwhether SemSlicer can identify under-performing
slices, we measure task performance for each dataset or slice. For
AdaTest, we reuse the reported predictions from their commercial
sentiment analysis model and compare them against the labels in
the dataset. For HateCheck, Amazon, CivilComments, we use popu-
lar models (listed in the appendix) from Hugging Face and compare
their predictions against the labels in the dataset. For all datasets,
we report task performance with the standard accuracy metric.

For our analysis, we determine whether a slice (ground truth
or computed with SemSlicer) under-performs by comparing the
slice’s task performance against the overall task performance on
the entire dataset, using Fisher’s exact test to test whether the differ-
ence is statistically significant (p-value ≤ 0.05). We then compare
under-performing slices detected through SemSlicer with those
detected on ground-truth slices. For this experiment, we use the
most accurate automated configuration, Mfs-teacher.

Result: SemSlicer identifies all 7 under-performing slices. We
found that 7 out of 26 slices are statistically significantly under-
performing and SemSlicer is able to identify all of them (Table 3). In
addition, SemSlicer identifies only one slice as under-performing
that is not under-performing according to the ground-truth slice
(slice “gay” in HateCheck; false positive). This demonstrates that

SemSlicer’s slicing accuracy is sufficient for the practical applica-
tion of identifying under-performing slices.

4.4.2 Can SemSlicer help practitioners conduct model evaluation?

Setup. We approached researchers in our contact network to
identify ML-related projects and selected one participant. The par-
ticipant worked on a project to understand how LLM annotations
align differently with different demographic groups. More specif-
ically, the participant had annotators annotate the Social Accept-
ability [16] dataset and computed the correlations between model
and human annotations on various slices of annotator attributes.
The participant observed that LLMs (e.g., GPT-4) aligned better
with Western, White, college-educated, and younger populations
and was interested in using SemSlicer to tie correlations back to
specific slices on input text, which they could not have done without
support from semantic data slicing.

Before the study, we first discussed with the participant about
what kinds of input text slices they would be interested to see for
their dataset. The participant mentioned that slices concerning
different demographics in the input text would be interesting—
following this, we collected 6 slicing criteria for our case study
(“gender”, “age”, “nationality”, “education”, “religion”, “ethnicity”).
We then used SemSlicer to generate the slices, using the most
accurate automated setup of Mfs-teacher. Finally, we invited the
participant for a one-hour study session, where the participant
inspected the generated slices (visualized in Zeno [9]) and their
model-human correlation scores in think-aloud mode. We collected
their verbalized thoughts and feedback on the slices generated by
SemSlicer in the process.

Result: SemSlicer supports new opportunities in model evaluation

and helps generate additional insights. Looking at the slices, the
participant quickly realized there was a gap between what they
expected and what the slices showed. When inspecting the slice on
gender, the participant found many examples are only superficially
related to gender by mentioning gendered pronouns (which is the
expected behavior of SemSlicer) but what they really cared about
are the examples showing gender-related power imbalance. With
this realization, the participant suggested that we can instead slice
on “power imbalance” as slicing criteria, and its gender-related or
age-related subsets. This anecdote reflects on a larger theme of how
users often need to iterate on their slicing criteria, after realizations
of their hidden requirements.

We reran SemSlicer to produce three slices (took 7 minutes end-
to-end) and reached back to the participant. The participant found
that, this time, they can agree withmost of the examples in the slices.
In a few cases, SemSlicer even nudged the participant to understand
the nuances: “[now] I could see it, especially the mother-in-law thing.”

Further, the participant was able to generate additional insights that
they could not have done in their original analysis. For example,
the participant found that for text related to age-related power
imbalance, the model aligns best with millennials, with a stark
correlation drop for age groups above 40, which they did not observe
in the overall dataset. Overall, the participant found SemSlicer
useful to help them develop a more fine-grained understanding of
their original results.

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

5 RELATEDWORK

In Section 2, we already discussed the most closely related work
on data slicing. Here, we additionally discuss related work on auto-

mated prompt engineering relevant to how we implemented Sem-
Slicer, as well as how slice discovery can augment semantic slicing.

5.1 Automated Prompt Engineering

Instructions. Automated improvement of prompt instructions is
an emerging direction that has attracted lots of attention. Zhou
et al. [66] generate and paraphrase instruction candidates using
LLMs and select instructions based on scores on labeled evaluation
data. Pryzant et al. [40] improve instructions iteratively with erro-
neous examples. Both studies assume access to a labeled dataset.
In contrast, SemSlicer’s instruction generation and refinement are
designed for a zero-label setting.

Few-shot examples. Few-shot examples are known to have a
large impact on prompt performance [65], and few-shot example
selection has been an active field of research. Liu et al. [30] propose
to retrieve examples that are semantically similar to a test sample.
Other work found the retrieved examples are often redundant and
proposed to find diverse examples with high coverage [19, 61].

Most of the existing work assumes access to a labeled training
dataset, while SemSlicer requires few-shot example selection with-
out labels. Even though we cannot use these methods directly, they
still inspired our design of the input sampler, where we provide the
option to retrieve diverse inputs.

Closest to our work is universal self-adaptive prompting [53],
where they select high-confidence examples (based on the self-
predictions) as few-shot examples. Our early experimentation did
not observe consistent improvement from this method and hence
we did not report it in our evaluation. However, it is still available
as an option for input sampling.

DSPy [26] is a framework that can automatically generate and
optimize prompts for generic LLM pipelines. SemSlicer is designed
specifically for data slicing as a standalone framework, but can
potentially be implemented using existing frameworks like DSPy.

Prompt selection. Another line of work on zero-label prompt
selection [60] aims to select a good prompt from multiple candi-
dates. Existing work has explored selection using pseudo labels
from prompt ensembles [29], perplexity scores [18], and mutual
information [50]. Our early experimentation suggested limited im-
provement from these methods, and hence we did not use them in
the final design.

5.2 Automated Slice Discovery

Automated slice discovery [13, 14] is an error analysis approach
based on the idea of automatically identifying under-performing
areas in the input space, often using clustering or dimensionality
reduction techniques. These areas can be interpreted as slices and
this line of work explores ways to identify meaningful names for
those areas, which could then be considered as slicing criteria.
However, these methods are designed to discover under-performing

areas, without considering whether these are complete according to
some human-interpretable abstraction. As pointed out by Johnson
et al. [23], their produced slices can be misleading, in that models

that under-perform on the found slice often do not under-perform
on what would be a complete slice for that concept. In contrast,
SemSlicer aims to identify all relevant examples for a given slicing
criteria. Overall automated slice discovery is complementary to our
approach as an error analysis technique to generate hypotheses (cf.
Fig. 1), whereas we focus on creating slices to validate hypotheses.

6 CONCLUSION

In this work, we present SemSlicer, a framework that supports se-
mantic data slicing. We provide a comprehensive view of how data
slicing is broadly applicable in ML engineering and demonstrate
how SemSlicer provides new opportunities missed by existing pro-
grammatic slicing methods. Our evaluation found SemSlicer can
produce accurate slices at a low cost, with flexible trade-offs among
different design dimensions, and is useful for model evaluation.

Insights from our work provide new research opportunities:
Semantic slicing at a reduced cost. In its current design, SemSlicer

costs $0.26 to $1.70 to automatically produce slices from a dataset
of 553k tokens. This is much cheaper than recruiting crowdworkers
but can still incur substantial cost for bigger datasets, longer inputs,
or more slices. One promising direction is to explore retrieval-based
methods [27] to filter out irrelevant data points and reduce the
annotations needed. Another is to train small customized models
specifically for the task of data slicing.

Semantic slicing with higher accuracy. SemSlicer has implemented
a wide range of configuration options. However, the field of auto-
mated prompt engineering is evolving quickly. Future work can
incorporate additional emerging research findings and test their
combinations. For example, one direction is to build an agentic
framework [58] for semantic slicing, where the slicing agent ac-
tively refines instructions and few-show examples, based on auto-
mated or LLM-generated feedback.

Interactive semantic slicing. The current design of SemSlicer
allows human intervention through editing slicing conditions and
post-editing instructions. Future work can integrate SemSlicer in
an interactive interface (e.g., Zeno [9]), and explore different interac-
tion designs. For example, humans can annotate few-shot examples
in an active learning loop [47], or provide verbalized feedback for
instruction refinement. This way, humans have more agency in
prompt construction, potentially leading to faster iterations.

ACKNOWLEDGMENTS

We thank Claire Le Goues, Graham Neubig, Alex Cabrera, Xinran
Zhao, Jenny Liang, Vijay Viswanathan, Manisha Mukherjee, and
others for their feedback on this work. Kaestner and Yang’s work
was, in part, supported by NSF 2106853, 2131477, and 2206859.
Yining’s work was supported by the Top Open Program at Tsinghua
University as an REU student at Carnegie Mellon. Lewis’ work
was funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally
funded research and development center (DM24-1142). The work
was also supported by gift funds from Amazon, Google Research,
and Adobe Research.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yang, et al.

REFERENCES

[1] [n. d.]. Zeno AI Evaluation Platform. https://hub.zenoml.com/home
[2] Lora Aroyo and Chris Welty. 2015. Truth Is a Lie: Crowd Truth and the

Seven Myths of Human Annotation. AI Mag. 36 (2015), 15–24. https://api.
semanticscholar.org/CorpusID:6134326

[3] Rosemary A Bailey. 2008. Design of comparative experiments. Vol. 25. Cambridge
University Press.

[4] Guy Barash, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and
Marcel Zalmanovici. 2019. Bridging the gap between ML solutions and their
business requirements using feature interactions. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 1048–1058. https:
//doi.org/10.1145/3338906.3340442

[5] Hamed Barzamini, Mona Rahimi, Murteza Shahzad, and Hamed Alhoori. 2022. Im-
proving Generalizability of ML-Enabled Software through Domain Specification.
In Proceedings of the 1st International Conference on AI Engineering: Software Engi-

neering for AI (Pittsburgh, Pennsylvania) (CAIN ’22). Association for Computing
Machinery, New York, NY, USA, 181–192.

[6] John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In
Proceedings of the 45th Annual Meeting of the Association of Computational Linguis-

tics, Annie Zaenen and Antal van den Bosch (Eds.). Association for Computational
Linguistics, Prague, Czech Republic, 440–447. https://aclanthology.org/P07-1056

[7] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasser-
man. 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for
Text Classification. In Companion Proceedings of The 2019 World Wide Web Con-

ference (San Francisco, USA) (WWW ’19). Association for Computing Machinery,
New York, NY, USA, 491–500. https://doi.org/10.1145/3308560.3317593

[8] Tom Brown, Benjamin Mann, et al. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet
Talwalkar, Jason I. Hong, and Adam Perer. 2023. Zeno: An Interactive Framework
for Behavioral Evaluation of Machine Learning. In Proceedings of the 2023 CHI

Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 419,
14 pages. https://doi.org/10.1145/3544548.3581268

[10] Ángel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Robert Deline,
Adam Perer, and Steven M. Drucker. 2023. What Did My AI Learn? How Data
Scientists Make Sense of Model Behavior. ACM Trans. Comput.-Hum. Interact. 30,
1, Article 1 (mar 2023), 27 pages. https://doi.org/10.1145/3542921

[11] Jan Cegin, Jakub Simko, and Peter Brusilovsky. 2023. ChatGPT to Replace Crowd-
sourcing of Paraphrases for Intent Classification: Higher Diversity and Com-
parable Model Robustness. In Proceedings of the 2023 Conference on Empirical

Methods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 1889–1905.
https://doi.org/10.18653/v1/2023.emnlp-main.117

[12] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha
Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts,
Denny Zhou, Quoc V. Le, and Jason Wei. 2022. Scaling Instruction-Finetuned
Language Models. arXiv:2210.11416 [cs.LG]

[13] Greg d’Eon, Jason d’Eon, J. R. Wright, and Kevin Leyton-Brown. 2021. The
Spotlight: A General Method for Discovering Systematic Errors in Deep Learning
Models. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and

Transparency (2021). https://api.semanticscholar.org/CorpusID:235727396
[14] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher

Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. 2022. Domino:
Discovering systematic errors with cross-modal embeddings. arXiv preprint

arXiv:2203.14960 (2022).
[15] Michael Feffer, Anusha Sinha, Zachary C Lipton, and Hoda Heidari. 2024. Red-

Teaming for Generative AI: Silver Bullet or Security Theater? arXiv preprint

arXiv:2401.15897 (2024).
[16] Maxwell Forbes, Jena D. Hwang, Vered Shwartz, Maarten Sap, and Yejin Choi.

2020. Social Chemistry 101: Learning to Reason about Social and Moral Norms.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, Online, 653–670. https://doi.org/10.
18653/v1/2020.emnlp-main.48

[17] Gartner. 2023. Gartner Identifies the Top Strategic Technology Trends for 2024.
(2023).

[18] Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and Luke Zettlemoyer. 2023.
Demystifying Prompts in Language Models via Perplexity Estimation. In Findings

of the Association for Computational Linguistics: EMNLP 2023, Houda Bouamor,
Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
Singapore, 10136–10148. https://doi.org/10.18653/v1/2023.findings-emnlp.679

[19] Shivanshu Gupta, Matt Gardner, and Sameer Singh. 2023. Coverage-based
Example Selection for In-Context Learning. In Findings of the Association for

Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 13924–13950.
https://doi.org/10.18653/v1/2023.findings-emnlp.930

[20] Xingwei He, Zheng-Wen Lin, Yeyun Gong, Alex Jin, Hang Zhang, Chen Lin, Jian
Jiao, Siu Ming Yiu, Nan Duan, and Weizhu Chen. 2023. AnnoLLM: Making Large
Language Models to Be Better Crowdsourced Annotators. ArXiv abs/2303.16854
(2023). https://api.semanticscholar.org/CorpusID:257805087

[21] Zexue He, Marco Tulio Ribeiro, and Fereshte Khani. 2023. Targeted Data Gen-
eration: Finding and Fixing Model Weaknesses. In Proceedings of the 61st An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Asso-
ciation for Computational Linguistics, Toronto, Canada, 8506–8520. https:
//doi.org/10.18653/v1/2023.acl-long.474

[22] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.
Deceiving google’s perspective api built for detecting toxic comments. arXiv
preprint arXiv:1702.08138 (2017).

[23] Nari Johnson, Ángel Alexander Cabrera, Gregory Plumb, and Ameet Talwalkar.
2023. Where Does My Model Underperform? A Human Evaluation of Slice
Discovery Algorithms. ArXiv abs/2306.08167 (2023). https://api.semanticscholar.
org/CorpusID:259165223

[24] Christian Kaestner. 2020. Machine Learning is Requirements Engineering — On
the Role of Bugs, Verification, and Validation in Machine Learning. Blog.

[25] Marzena Karpinska and Mohit Iyyer. 2023. Large Language Models Effec-
tively Leverage Document-level Context for Literary Translation, but Criti-
cal Errors Persist. In Proceedings of the Eighth Conference on Machine Trans-

lation. Association for Computational Linguistics, Singapore, 419–451. https:
//doi.org/10.18653/v1/2023.wmt-1.41

[26] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi,
Hanna Moazam, et al. 2023. Dspy: Compiling declarative language model calls
into self-improving pipelines. arXiv preprint arXiv:2310.03714 (2023).

[27] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd

International ACM SIGIR conference on research and development in Information

Retrieval. 39–48.
[28] Pang Wei Koh et al. 2021. WILDS: A Benchmark of in-the-Wild Distribution

Shifts. In Proceedings of the 38th International Conference on Machine Learning

(Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong
Zhang (Eds.). PMLR, 5637–5664.

[29] Chonghua Liao, Yanan Zheng, and Zhilin Yang. 2022. Zero-Label Prompt Selec-
tion. arXiv:2211.04668 [cs.CL]

[30] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3?. In
Workshop on Knowledge Extraction and Integration for Deep Learning Architectures;

Deep Learning Inside Out. https://api.semanticscholar.org/CorpusID:231632658
[31] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.

2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 8086–8098.

[32] Wanqin Ma, Chenyang Yang, and Christian Kästner. 2024. (Why) Is My Prompt
Getting Worse? Rethinking Regression Testing for Evolving LLM APIs. In Pro-

ceedings of the International Conference on AI Engineering - Software Engineering

for AI (CAIN) (Lisbon).
[33] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah

Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural

Information Processing Systems 36 (2024).
[34] Sachit Menon and Carl Vondrick. 2022. Visual Classification via Description from

Large Language Models. In The Eleventh International Conference on Learning

Representations.
[35] Danaë Metaxa, Joon Sung Park, Ronald E. Robertson, Karrie Karahalios, Christo

Wilson, Jeff Hancock, and Christian Sandvig. 2021. Auditing Algorithms: Under-
standing Algorithmic Systems from the Outside In. Found. Trends Hum.-Comput.

Interact. 14, 4 (nov 2021), 272–344. https://doi.org/10.1561/1100000083
[36] Aakanksha Naik, Abhilasha Ravichander, Norman M. Sadeh, Carolyn Penstein

Rosé, and Graham Neubig. 2018. Stress Test Evaluation for Natural Language In-
ference. ArXiv abs/1806.00692 (2018). https://api.semanticscholar.org/CorpusID:
46932607

https://hub.zenoml.com/home
https://api.semanticscholar.org/CorpusID:6134326
https://api.semanticscholar.org/CorpusID:6134326
https://doi.org/10.1145/3338906.3340442
https://doi.org/10.1145/3338906.3340442
https://aclanthology.org/P07-1056
https://doi.org/10.1145/3308560.3317593
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3544548.3581268
https://doi.org/10.1145/3542921
https://doi.org/10.18653/v1/2023.emnlp-main.117
https://arxiv.org/abs/2210.11416
https://api.semanticscholar.org/CorpusID:235727396
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.930
https://api.semanticscholar.org/CorpusID:257805087
https://doi.org/10.18653/v1/2023.acl-long.474
https://doi.org/10.18653/v1/2023.acl-long.474
https://api.semanticscholar.org/CorpusID:259165223
https://api.semanticscholar.org/CorpusID:259165223
https://doi.org/10.18653/v1/2023.wmt-1.41
https://doi.org/10.18653/v1/2023.wmt-1.41
https://arxiv.org/abs/2211.04668
https://api.semanticscholar.org/CorpusID:231632658
https://doi.org/10.1561/1100000083
https://api.semanticscholar.org/CorpusID:46932607
https://api.semanticscholar.org/CorpusID:46932607

Identifying Systematic Problems with Semantic Data Slicing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[37] OpenAI. 2024. Text generation - OpenAI API. Retrieved from. https://platform.
openai.com/docs/guides/text-generation

[38] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language
models to follow instructions with human feedback. arXiv:2203.02155 [cs.CL]

[39] Neoklis Polyzotis, Steven Whang, Tim Klas Kraska, and Yeounoh Chung. 2019.
Slice Finder: Automated Data Slicing for Model Validation. In Proceedings of the

IEEE Int’ Conf. on Data Engineering (ICDE), 2019. https://arxiv.org/pdf/1807.06068.
pdf

[40] Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng.
2023. Automatic Prompt Optimization with “Gradient Descent” and Beam Search.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 7957–7968. https://doi.org/10.18653/v1/
2023.emnlp-main.494

[41] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. 2019.
Overton: A data system for monitoring and improving machine-learned products.
arXiv preprint arXiv:1909.05372 (2019).

[42] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-

pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[43] Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 3253–3267. https://doi.org/10.18653/v1/2022.acl-long.230

[44] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In Proceed-

ings of the 58th Annual Meeting of the Association for Computational Linguistics,
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association
for Computational Linguistics, Online, 4902–4912. https://doi.org/10.18653/v1/
2020.acl-main.442

[45] Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak Waseem, Helen Margetts,
and Janet Pierrehumbert. 2021. HateCheck: Functional Tests for Hate Speech
Detection Models. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (Eds.). Association for Computational Linguistics, Online,
41–58. https://doi.org/10.18653/v1/2021.acl-long.4

[46] Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. 2019.
The Risk of Racial Bias in Hate Speech Detection. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Anna Korhonen, David
Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics,
Florence, Italy, 1668–1678. https://doi.org/10.18653/v1/P19-1163

[47] Burr Settles. 2009. Active learning literature survey. (2009).
[48] Ryan Smith, Jason Alan Fries, Braden Hancock, and Stephen H. Bach. 2022. Lan-

guageModels in the Loop: Incorporating Prompting intoWeak Supervision. ArXiv
abs/2205.02318 (2022). https://api.semanticscholar.org/CorpusID:248524894

[49] Ian Sommerville. 2015. Software Engineering (10th ed.). Pearson.
[50] Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle

Rogers, Alexia Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. 2022.
An Information-theoretic Approach to Prompt Engineering Without Ground
Truth Labels. In Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 819–862. https://doi.org/10.18653/v1/2022.acl-long.60

[51] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb,
Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615
(2022).

[52] Zhen Tan, Alimohammad Beigi, Song Wang, Ruocheng Guo, Amrita Bhattachar-
jee, Bohan Jiang, Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. 2024.
Large Language Models for Data Annotation: A Survey. arXiv:2402.13446 [cs.CL]

[53] Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Eisenschlos,
Sercan Arik, and Tomas Pfister. 2023. Universal Self-Adaptive Prompting. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 7437–7462. https://doi.org/10.18653/v1/
2023.emnlp-main.461

[54] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).

[55] Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato,
Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac

Kenton, Sasha Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba
Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks, William Isaac, Sean
Legassick, Geoffrey Irving, and Iason Gabriel. 2021. Ethical and social risks of
harm from Language Models. arXiv:2112.04359 [cs.CL]

[56] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Weld Daniel S. 2019.
Errudite: Scalable, Reproducible, and Testable Error Analysis. In the 57th Annual

Meeting of the Association for Computational Linguistics (ACL 2019). https:
//www.aclweb.org/anthology/P19-1073.pdf

[57] Tongshuang Sherry Wu, Haiyi Zhu, Maya Albayrak, Alexis Axon, Amanda
Bertsch, Wenxing Deng, Ziqi Ding, Bill Boyuan Guo, Sireesh Gururaja, Tzu-
Sheng Kuo, Jenny T Liang, Ryan Liu, Ihita Mandal, Jeremiah Milbauer, Xiaolin Ni,
N. Padmanabhan, Subhashini Ramkumar, Alexis Sudjianto, Jordan Taylor, Ying-
Jui Tseng, Patricia Vaidos, Zhijin Wu, Wei Wu, and Chenyang Yang. 2023. LLMs
as Workers in Human-Computational Algorithms? Replicating Crowdsourcing
Pipelines with LLMs. ArXiv abs/2307.10168 (2023). https://api.semanticscholar.
org/CorpusID:259982473

[58] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming
Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2023. The rise and potential
of large language model based agents: A survey. arXiv preprint arXiv:2309.07864
(2023).

[59] Chenyang Yang, Rishabh Rustogi, Rachel Brower-Sinning, Grace Lewis, Christian
Kaestner, and Tongshuang Wu. 2023. Beyond Testers’ Biases: Guiding Model
Testing with Knowledge Bases using LLMs. In Findings of the Association for

Computational Linguistics: EMNLP 2023. 13504–13519.
[60] Sohee Yang, Jonghyeon Kim, Joel Jang, Seonghyeon Ye, Hyunji Lee, and Min-

joon Seo. 2024. Improving Probability-based Prompt Selection Through Unified
Evaluation and Analysis. arXiv:2305.14877 [cs.CL]

[61] Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and
Ramakanth Pasunuru. 2023. Complementary Explanations for Effective In-
Context Learning. In Findings of the Association for Computational Linguistics:

ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). As-
sociation for Computational Linguistics, Toronto, Canada, 4469–4484. https:
//doi.org/10.18653/v1/2023.findings-acl.273

[62] Peilin Yu and Stephen H. Bach. 2023. Alfred: A System for Prompted Weak
Supervision. In Annual Meeting of the Association for Computational Linguistics.
https://api.semanticscholar.org/CorpusID:258967373

[63] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in

Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, Article 437, 21 pages.

[64] Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou, and Lei Zou. 2023. LL-
MaAA: Making Large Language Models as Active Annotators. In Findings of the

Association for Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan
Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
13088–13103. https://doi.org/10.18653/v1/2023.findings-emnlp.872

[65] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
Before Use: Improving Few-shot Performance of Language Models. In Proceedings
of the 38th International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12697–
12706.

[66] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2023. Large Language Models Are Human-Level
Prompt Engineers. arXiv:2211.01910 [cs.LG]

https://platform.openai.com/docs/guides/text-generation
https://platform.openai.com/docs/guides/text-generation
https://arxiv.org/abs/2203.02155
https://arxiv.org/pdf/1807.06068.pdf
https://arxiv.org/pdf/1807.06068.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/P19-1163
https://api.semanticscholar.org/CorpusID:248524894
https://doi.org/10.18653/v1/2022.acl-long.60
https://arxiv.org/abs/2402.13446
https://doi.org/10.18653/v1/2023.emnlp-main.461
https://doi.org/10.18653/v1/2023.emnlp-main.461
https://arxiv.org/abs/2112.04359
https://www.aclweb.org/anthology/P19-1073.pdf
https://www.aclweb.org/anthology/P19-1073.pdf
https://api.semanticscholar.org/CorpusID:259982473
https://api.semanticscholar.org/CorpusID:259982473
https://arxiv.org/abs/2305.14877
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://api.semanticscholar.org/CorpusID:258967373
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://arxiv.org/abs/2211.01910

	Abstract
	1 Introduction
	2 Data Slicing
	3 Semantic Data Slicing
	3.1 Design Dimensions
	3.2 System Design
	3.3 System Interface

	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ1: Slicing Accuracy
	4.3 RQ2: Cost and Latency
	4.4 RQ3: Usefulness

	5 Related Work
	5.1 Automated Prompt Engineering
	5.2 Automated Slice Discovery

	6 Conclusion
	Acknowledgments
	References

