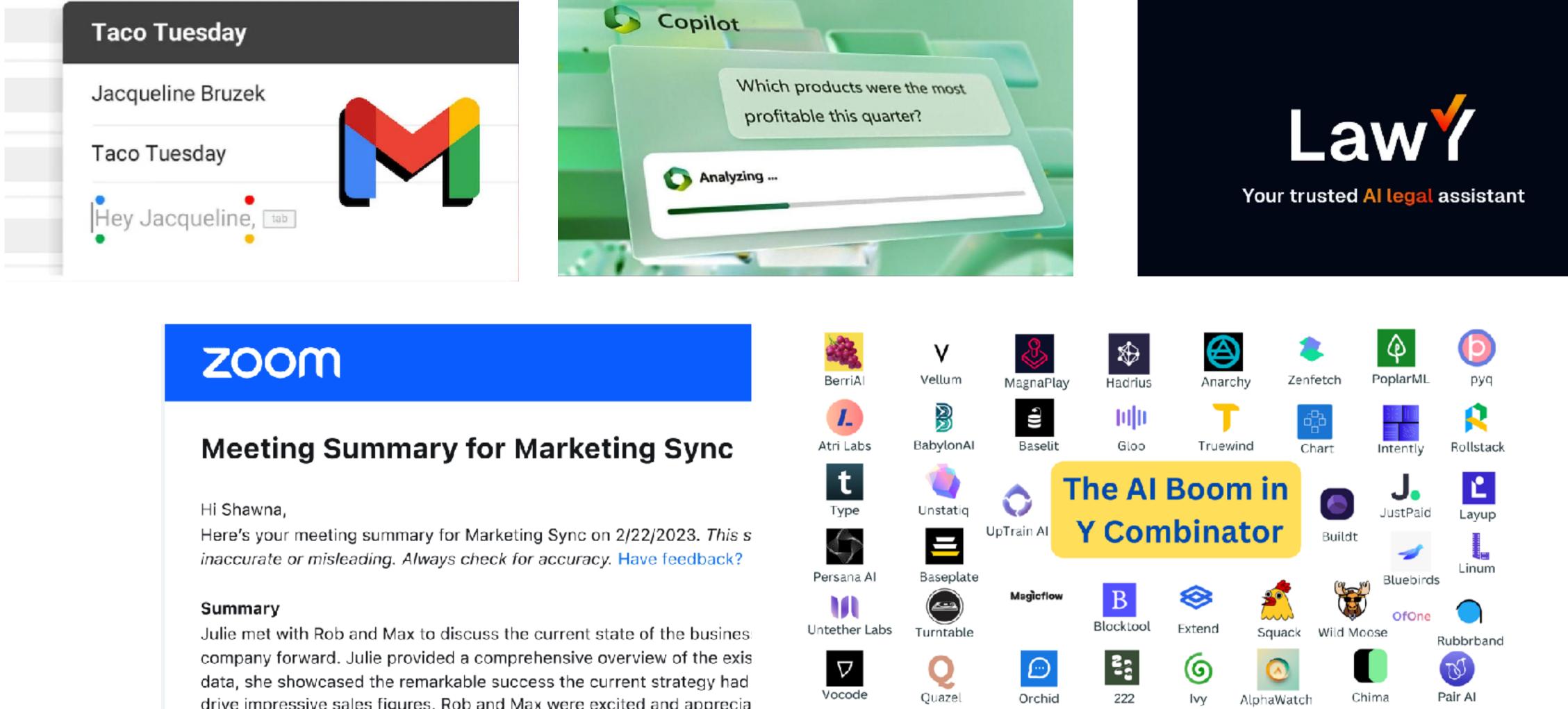
What Is Wrong with My Model? Identifying Systematic Problems with Semantic Data Slicing

Chenyang Yang, Yining Hong, Grace A. Lewis, Tongshuang Wu, Christian Kästner

Carnegie Mellon University

ML Models are Increasingly Integrated into Software



drive impressive sales figures. Rob and Max were excited and apprecia

ML Models are Increasingly Integrated into Software ... and Make Mistakes

Air Canada ordered to pay customer who was misled by airline's chatbot

Company claimed its chatbot 'was responsible for its own actions' when giving wrong information about bereavement fare

Melbourne lawyer referred to complaints body after AI generated made-up case citations in family court

Legal professional used software to generate a case citation list, but did not use documents that had undergone human verification

Researchers say an Al-powered transcription tool used in hospitals invents things no one ever said

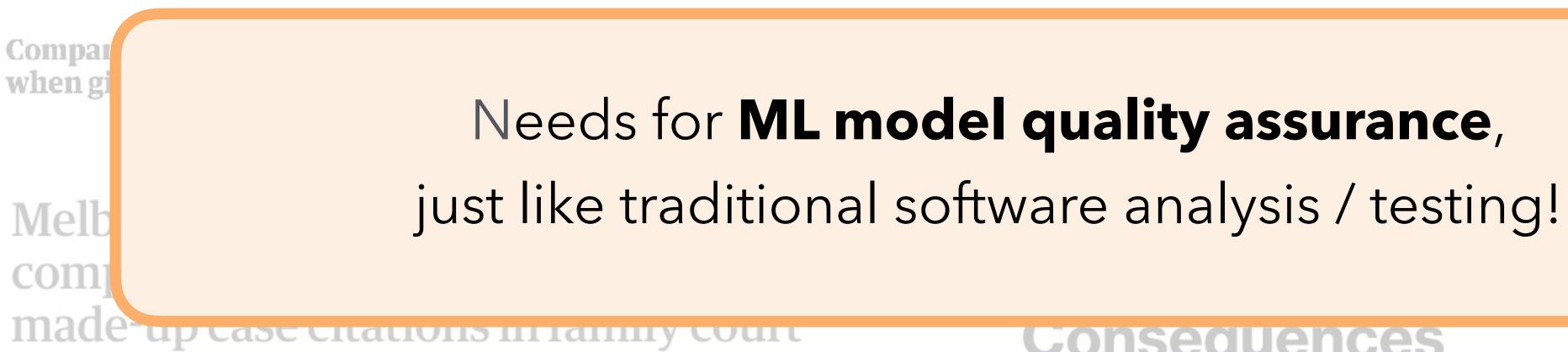
Whisper is a popular transcription tool powered by artificial intelligence, but it has a major flaw

AI Detectors Falsely Accuse Students of Cheating—With Big Consequences

About two-thirds of teachers report regularly using tools for detecting Al-generated content. At that scale, even tiny error rates can add up quickly.

ML Models are Increasingly Integrated into Software ... and Make Mistakes

Air Canada ordered to pay customer who was misled by airline's chatbot



Legal professional used software to generate a case citation list, but did not use documents that had undergone human verification

Researchers say an Al-powered transcription tool used in hospitals invents things no one ever said

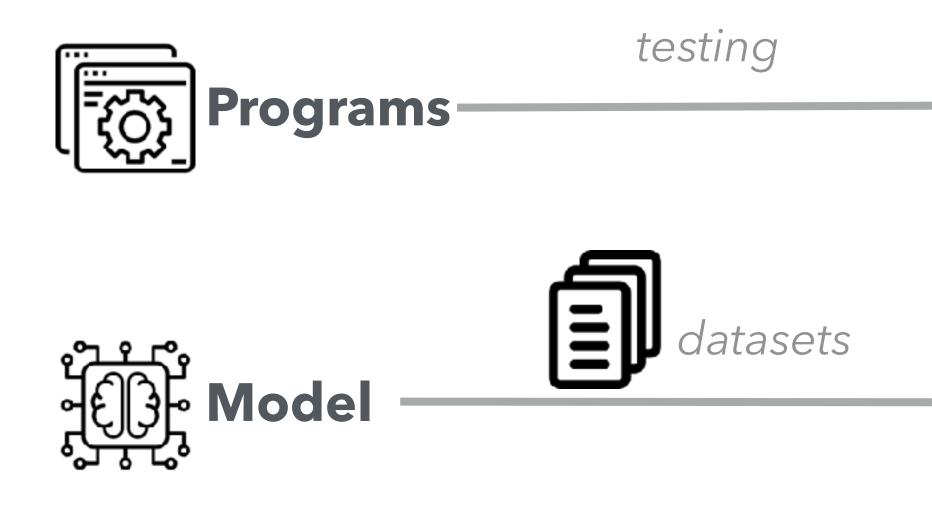
Whisper is a popular transcription tool powered by artificial intelligence, but it has a major flaw

Needs for ML model quality assurance,

Consequences

About two-thirds of teachers report regularly using tools for detecting Al-generated content. At that scale, even tiny error rates can add up quickly.

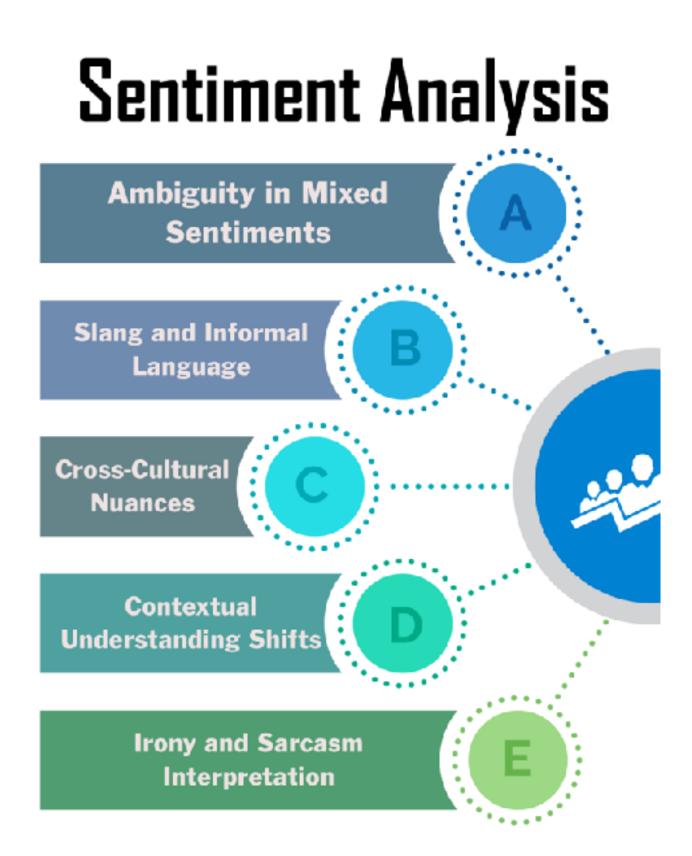
Model Quality Assurance is Different from Programs



The question is, what is the systematic problem behind individual model errors?

ML models always make mistakes – we can not fix every single of them like fixing software bugs.

Step 1: Error Analysis to Hypothesize Problems



Error analysis: Go throu *high-level patterns* **Error hypothesis**: The n *reviews on locations* But is this hypothesis tru problem in production?

Given an error hypothesis and a dataset, **how can we automatically identify all relevant examples?**

- **Error analysis:** Go through model errors and hypothesize *high-level patterns*
- **Error hypothesis**: The model is inaccurate when classifying reviews on locations
- But is this hypothesis true? If so, how prevalent is the problem in production?

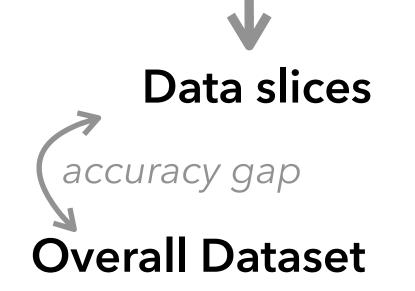
Step 2: Data Slicing to Validate Problems

Data slicing can identify a subset of examples sharing common characteristics from existing data

Sentiment Analysis

Hypothesis The model is inaccurate when classifying reviews on locations

re.search(f"location|walk|far from|close to|neighborhood|near", x) Slicing conditions



• Close to one major train station • No walkability for people with mobility issues

Usually rule-based with significant manual efforts 😩

Traditional Data Slicing is Rule-based & Struggle with Semantic Criteria

Data slicing can identify a subset of examples sharing common characteristics from existing data

Sentiment Analysis

Hypothesis The model is inaccurate when classifying texts using slangs

The model is inaccurate when classifying texts using sarcasm

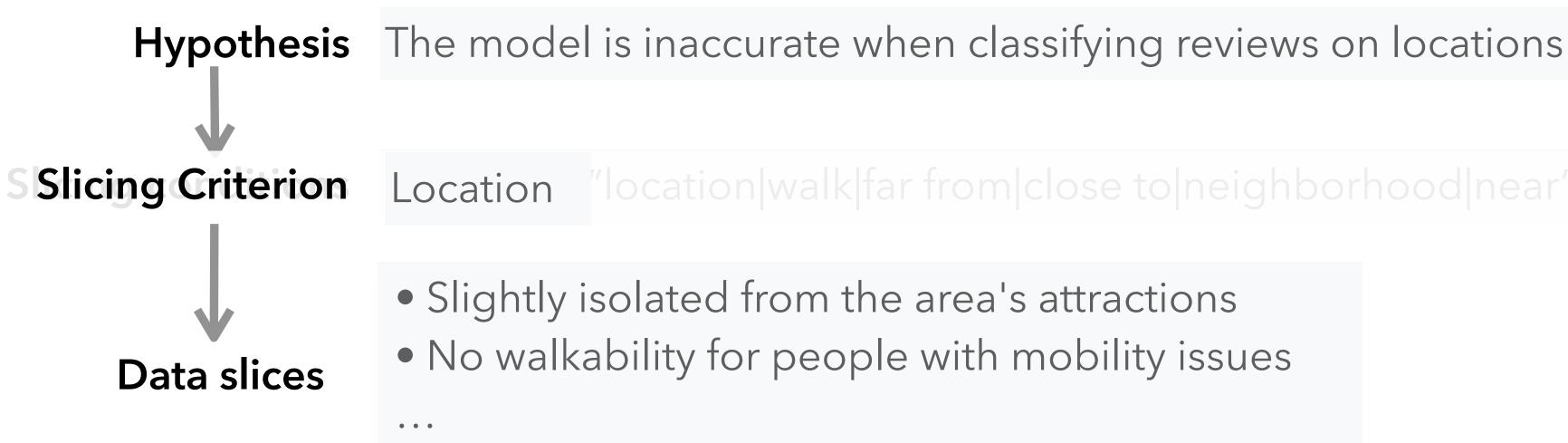
Usually rule-based with significant manual efforts 😩

Can not slice on arbitrary semantic criteria 😥

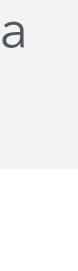
Our Work: Semantic Data Slicing

We propose the concept of **semantic data slicing** that can identify a semantically coherent data subset, from arbitrary slicing criteria and datasets

Sentiment Analysis

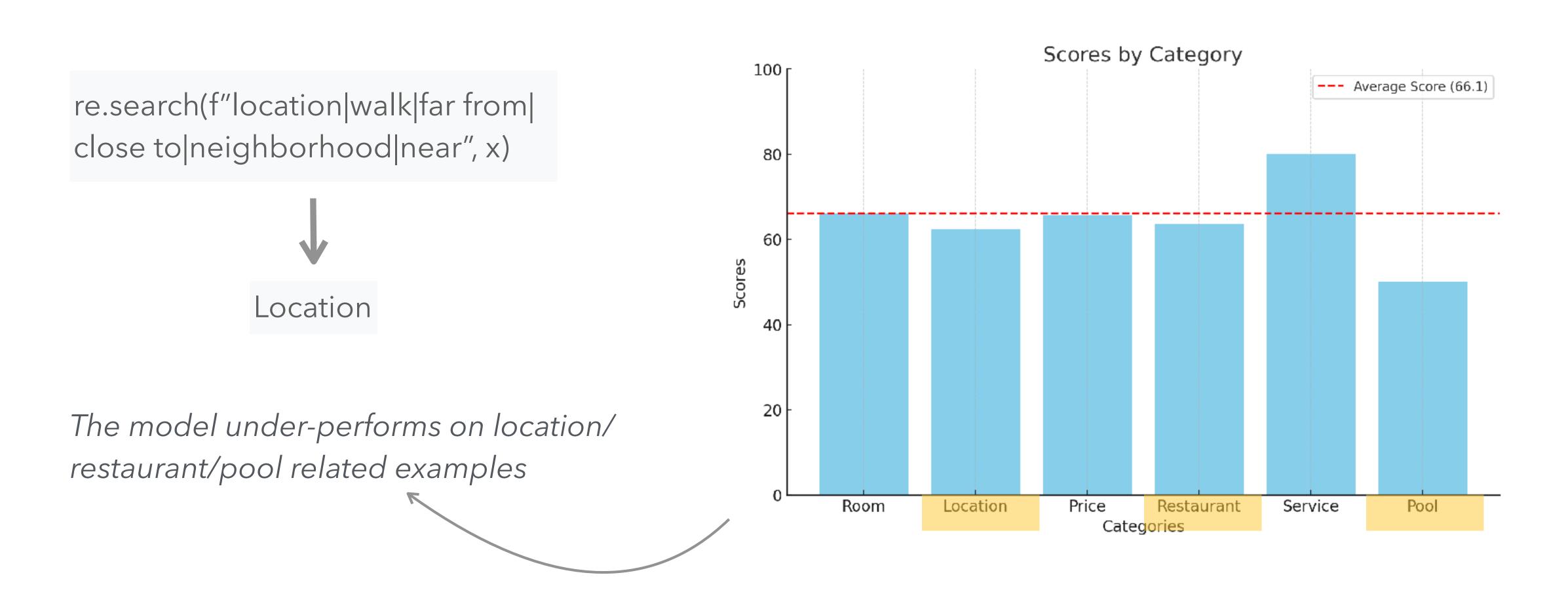


Little manual efforts V Slice on arbitrary semantic criteria 🔽



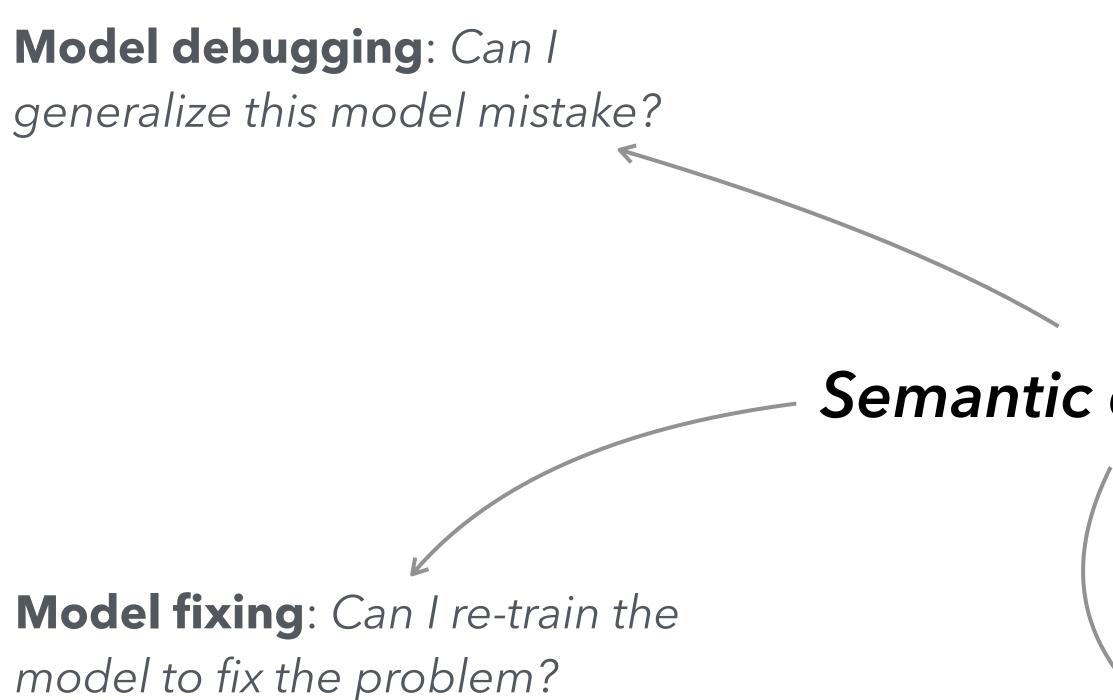
Our Work: Semantic Data Slicing

and analysis



We make semantic data slicing fast, cheap, and accurate enough for large-scale model evaluation

Applications of Semantic Data Slicing



Data curation: Can I curate more data for under-performing slices?

Model evaluation: Where does my model under-perform?

Semantic data slicing

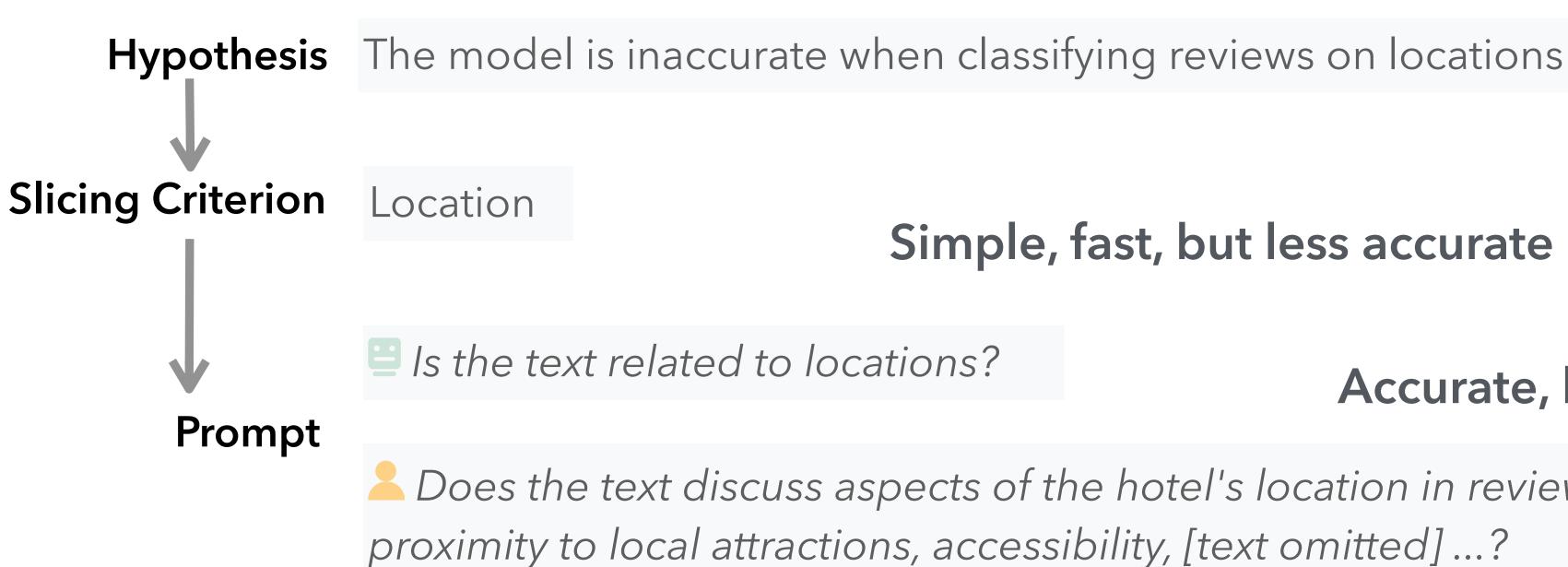
Model monitoring: Does my model regress on the slices?

Designing Semantic Data Slicing

Designing Semantic Data Slicing

Goal: Identify a semantically coherent subset, from arbitrary slicing criteria and datasets **Intuition**: LLMs can accurately classify texts given a properly designed prompt

Sentiment Analysis



Simple, fast, but less accurate

Accurate, but high human labor

Does the text discuss aspects of the hotel's location in reviews, including

Designing Semantic Data Slicing: Trade-offs

Challenge: How to construct a good prompt for arbitrary semantic slicing criteria, with no training data available, while considering different trade-offs?

How do we produce slicing instructions?

Simple templates vs. complex human-written prompts vs. LLM generated + refined

Slicing accuracy needed

Slicing latency expected

Human effort available

Computational resources available

Designing Semantic Data Slicing: Trade-offs

Challenge: How to construct a good prompt for arbitrary semantic slicing criteria, with no training data available, while considering different trade-offs?

How do we produce slicing instructions?

Simple templates vs. complex human-written prompts vs. LLM generated + refined

How many few-shot examples do we provide?

Zero-shot vs. few-shot

Which model do we use for data slicing?

Smaller model vs. larger model

 $\bullet \bullet \bullet$

Slicing accuracy needed

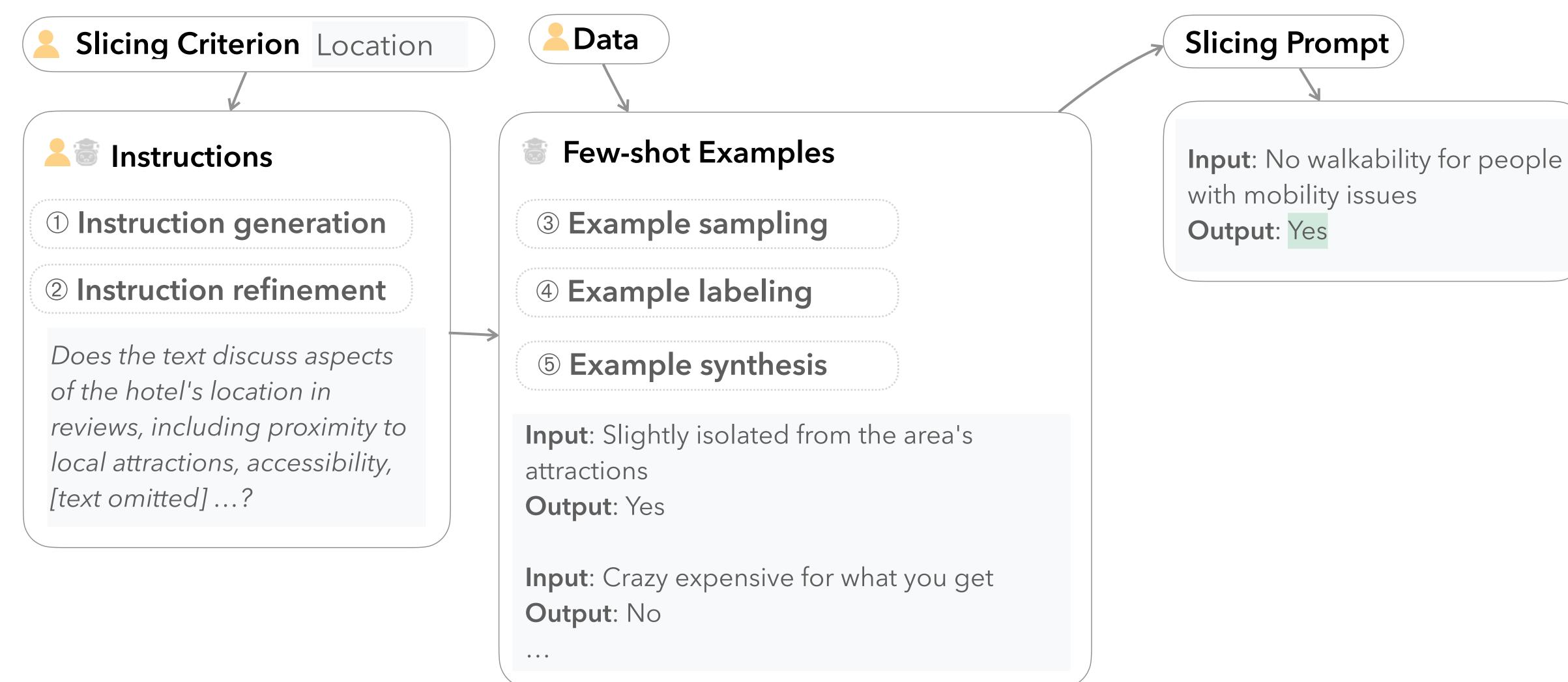
Slicing latency expected

Human effort available

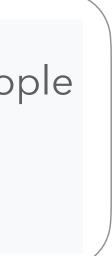
Computational resources available

Designing Semantic Data Slicing

Stage 1: Prompt Construction



Stage 2: Data Slicing



Evaluating Semantic Data Slicing

Evaluation

75.9% average F1-score with full automated workflow + human intervention

Most important steps: Few-shot examples & instruction refinement from humans

13.5 minutes to generate a slice for 6000 examples costing \$1.7

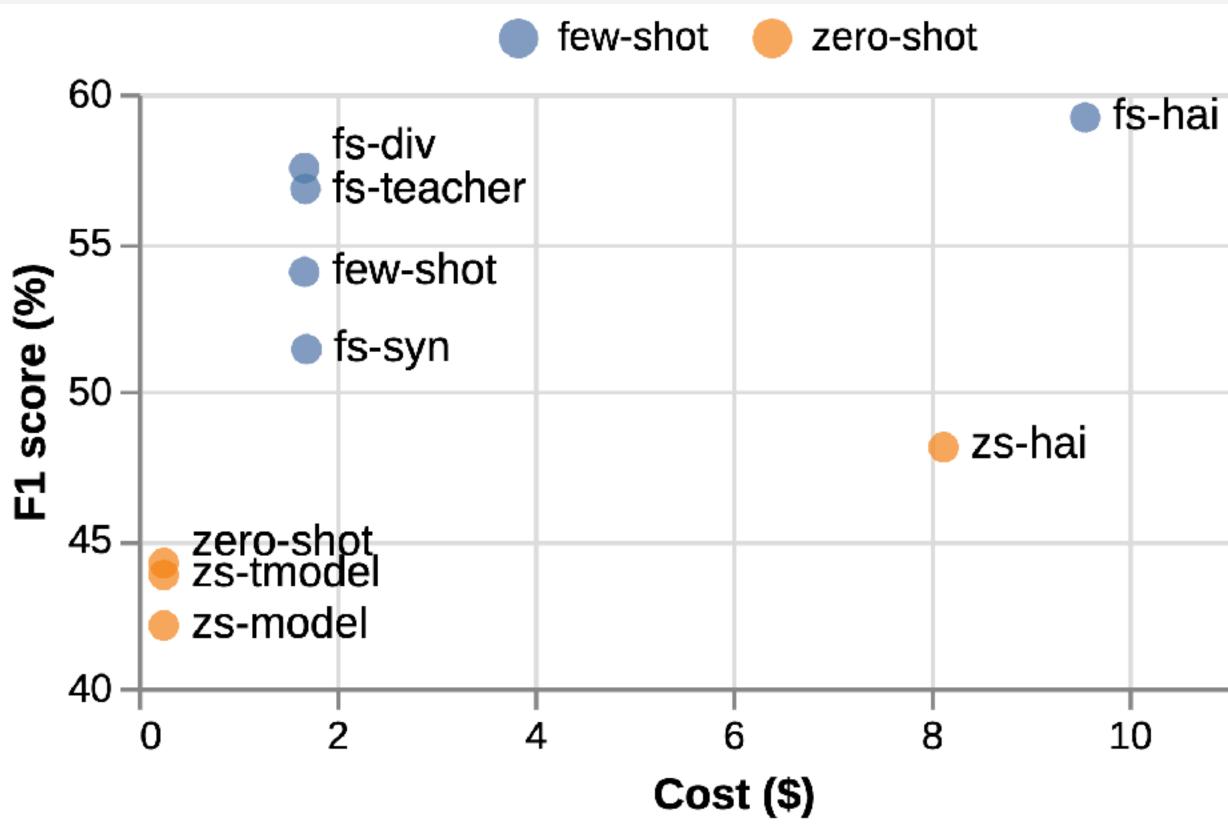
Comparing accuracy, cost, and latency of 9 configurations of our semantic slicing framework across 4 datasets

*We use 2 A6000 GPUs for local model inference and estimate the cost from cloud providers

Evaluation

Comparing accuracy, cost, and latency of 9 configurations of our semantic slicing framework across 4 datasets

Flexible trade-offs with different configurations



Evaluation: Usefulness

7 out of 7 known under-performing slices can be successfully identified

Practitioners generate additional insights for model evaluation - Task: Understand model alignment with different demographics - Insight: slice on "age-related power imbalance" aligns well with millennials but poorly with people older than 40

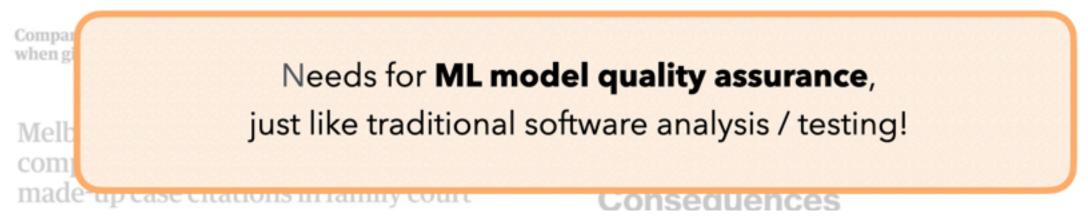
Use our semantic slicing framework to identify under-performing slices in existing datasets + Invite practitioners to use our framework to conduct model evaluation

Takeaways

ML Models are Increasingly Integrated into Software **Error Analysis + Data Slicing to Identify Systematic** ... and Make Mistakes Errors

Air Canada ordered to pay customer who was misled by airline's chatbot

Researchers say an Al-powered transcription tool used in hospitals invents things no one ever said



Semantic Data Slicing

```
from semslicer.slicer import InteractiveSlicer
data = load_training_data()
criterion = "Muslim"
slicer = InteractiveSlicer(criterion, data, config={
        'few-shot': True,
        'few-shot-size': 8,
        'instruction-source': 'template',
        'student-model': 'flan-t5-xxl',
        'teacher-model': 'gpt-4-turbo-preview'})
       https://github.com/malusamayo/SemSlicer
```


Traditional data slicing is rule-based & struggle with semantic criteria

Semantic data slicing is accurate, fast, and of low cost

75.9% F1-score with full automated workflow + human intervention

Most important steps: Few-shot examples & instruction refinement from humans

13.5 minutes to generate a slice for 6000 examples using \$1.7

7 out of 7 known under-performing slices can be successfully identified

Practitioners generate additional insights for model evaluation - "age-related power imbalance" aligns well with millennials but poorly with people older than 40

