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1 Introduction

Approximate computing is a method of computation that sacrifices accuracy to save computation time and
energy. For certain problems, full exactness may not be necessary, and the savings gained in battery life,
execution time, or power costs may be worth more than the loss in accuracy. In particular, we are inspired by
code for the RoboCup Small-Size League, where speed in decision-making trades off with the optimality of
the final decision: a team’s AI must be ready to send out commands regularly at 60 frames per second, and
it is important to make some decision at all, even if a robot is positioned at a slightly suboptimal location.
Approximate compilation is a promising way of implementing approximate computation because it can be
done on current machines.

In this project, we take C functions of a particular signature and compile them into various approximators
(also C functions, with the same function signature). We then analyze them to determine the speedup and
how well they approximate the original.

2 Related Work

In tandem with the renewed focus on parallel computing, interest in general-purpose approximate com-
puting has increased recently in response to decelerating efficiency gains for traditional scalar microproces-
sors. Techniques in approximate compilation automatically produce inexact yet more efficient versions of
programmer-specified “approximable” code regions or data structures. An approximating compiler is thus
responsible for encapsulating the low-level implementation of approximated code derived from the original
source code. Programmers’ input over how the approximation is implemented may only be binary (e.g.,
annotating some functions as “approximable”, as in [1]), or they may be given finer-grained control over
the trade-off between accuracy and speedup of the approximation, as in the quality programmable machine
instructions from [2].

[3] introduces the SpeedPress compiler and SpeedGuard runtime which make use of an approximate
compilation strategy that they term “code perforation”. This strategy selectively drops iterations from long-
lasting loops based on the current value of a user-defined quality metric. It has the advantage of allowing a
computation to be dynamically retargeted for either realtime performance or accuracy, a useful property for
time-critical systems.

Although our project is restricted to software approximation schemes, our primary motivation comes
from [1], which presents a framework for offloading C++ function calls suitable for approximation to a
programmable neural processing unit (NPU). Akin to graphics processing units (GPUs), which are used
for accelerating raster graphic operations, the NPU is a computational accelerator designed to simulate
neural network computations using decreased power and faster execution than is possible using a general-
purpose CPU. [4] builds on this approach with additional insights on compiling for analog circuit NPUs. The
compiler is given a model of the restrictions of analog network computations (limited precision, non-ideal
activation functions, and restrictions on network topologies) and generates function-approximating networks
accordingly.



An alternative to marking specific code sections or functions as “approximable” is to instead label data
items as either precise or approximate, as in the “EnerJ” extension to Java from [5]. Users of EnerJ may set
annotations for approximate data in a manner similar to constant data qualifiers. The compiler statically
enforces restrictions on data flow from approximate to precise containers unless the user explicitly permits
it.

3 Method

We focused on a particular class of functions to approximate: those which take a list of doubles and generate
a two-dimensional array of doubles as output. That corresponds to the following C signature, to which the
target functions must conform:

void f(int n_inst, double* input, int inputlen,
double* output, int outputRows, int outputCols)

where:
e n_inst is the number of input vectors to read and output grids to write;
e input is a pointer to the input values;
e inputLen is the number of features within each input vector;
e output is a pointer to the output matrix, which the function will fill with values; and
e outputRows and outputCols specify the dimension of the output grids.

The reason for focusing on grid-structured outputs, rather than general lists of doubles, was the idea
that we would be able to exploit properties such as continuity of the target function to improve the quality
of approximations. Due to time constraints, we did not implement any such measures in our approximators,
though we did rely on it for a gradient-based measure of closeness of fit.

We implemented a compilation framework in Python. The main program is given a target C file and
function and a means of generating inputs for it. It then takes a set of generated inputs, along with the
corresponding outputs from the function, and passes them to the various approximators. Each approximator
uses some machine learning model to learn parameters mapping from the given inputs to the given outputs.
It then generates a new C file containing a function with the same signature as the original, but whose body
uses the learned parameters to execute the machine learning model. A diagram of this system is given in
figure 1.

3.1 Approximators
3.1.1 Linear regression

This approximates the original function by assuming the function’s value at each grid location to be a
linear combination of all the input features. The weights defining the combinations are independent across
locations. The approximation is learned using scikit-learn’s linear model package, and the approximator
outputs the weights and the simple code that evaluates the linear function using those weights to a file.

3.1.2 Neural networks

Similar to [1], we used a neural network to approximate functions. Neural networks are often used for function
approximation; their nonlinear nature means that with enough nodes and training data, any function can
be approximated to arbitrary precision.

We used FANN (the Fast Artificial Neural Network library) to learn the networks; in particular, we used
its cascading mode, which uses the Cascade2 algorithm [6] to build up the structure of the output neural net
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Figure 1: System diagram: Our approximation compiler evaluates functions on various inputs and uses the
results to train approximators. It then implements these approximators as C functions.

one node at a time, rather than having to specify a topology at the beginning. The algorithm also chooses
an individual activation function and parameters for each node. This results in a much smaller final network
than we could achieved with a fixed topology, which considerably reduces the time needed for evaluation,
though it does increase the time needed for training.

The cascade method generates a network in which each hidden node has a connection from all input
nodes and to all later-added hidden nodes, as well as all output nodes. This multi-layered structure allows
for a rich connection structure with relatively few nodes, which gives the network expressivity without a
high evaluation cost.

3.1.3 SVM

Support vector machines (SVMs), though usually used for classification, can be used for regression (in which
case the technique is often referred to as “support vector regression” (SVR)). With nonlinear kernels, SVMs
are capable of replicating a wide variety of functions. For the kernel function, we chose Gaussian radial basis
functions, which are commonly used due to their versatility and small number of hyperparameters. Since
SVMs have a one-dimensional output, we trained an independent SVM for each grid location. We used
libsvm for training and evaluation.

Due to the importance of the C' and 7 hyperparameters for good performance, we also performed cross-
validation for those parameters. We designated a set of values for C' and for «y; then for each training set,
we used a subset of the data to train a separate grid of SVMs for each possible pair of values, tested each
grid on the remaining training data, and chose the one with the best score as the final trained regressor.

4 Evaluation

4.1 Input Functions

Our project was originally intended to be tested against inputs from a RoboCup planner agent, which would
involve evaluating the utility of passing the ball to certain locations on the play field given the current state
of the world (the locations and velocities of the robots and ball). However, it became apparent that it would
be difficult to support the complex C++ function calls used in that code base; in addition, isolating an



interesting problem that could be expressed independently of the main RoboCup code would be a challenge
as well.

Instead, we evaluated several other problem domains which stand in for typical problems that face a
robotic agent. Each of the problems accepts a vector of input values and outputs a two-dimensional grid of
values. The size of the input vector and output grid must be fixed when generating an approximator.

e Linear (LIN) A basic problem type where each output grid value is a linear combination of the its
grid coordinates. That is, the output value at grid location (x,y) is v = ax + By, where the linear
coeflicients « and (8 are constant over the whole grid and are used as the features for the approximators.

e Sum of Gaussians (SOG) The output of a function of this type is the sum of one or more Gaussian
basis functions placed randomly on the grid. While calculating this function is quite rapid even without
approximation, the terrain that it generates presents good challenges for approximators, as it is non-
linear in the function inputs.

e Markov decision process (MDP) The output of problems of this type is the solution to value
iteration for a Markov decision process problem instance defined over a square grid, emulating the
planning of a robotic agent. The agent’s state is a grid position (z,y) and it may move deterministically
in the four cardinal directions. One or more states are assigned a randomized reward value in the range
[0,1]. The computation cost of value iteration increases quickly for discount factors near unity and
large grid state spaces, but it permits some imprecision in the computed values per state, as long
as topological features of the output are preserved. This makes it a prime candidate domain for
approximation.

e Median filter (MED) A median filter is used in imaging processing applications to remove noisy
pixels; however, performance degrades quickly for large filter window sizes. This function applies a
median filter to a 2D input image with a filter window size of 7 x 7 pixels. While [1] tested image
filter approximations only at the per-pixel level, our approximators operate on pairs of two-dimensional
input and output image patches (in order to keep the dimensionality of the approximation tractable,
we limit the input and output images 20 x 20 pixels).

Note that we also considered the possibility of implementing an approximator scheme based on lookup
tables. However, we eliminated them as a viable option for our purposes, as their memory cost is intractable
for the high dimensionality of our function inputs and outputs.

4.2 Metrics
4.2.1 Error Metrics

We use two metrics to evaluate the quality of each approximator: the absolute and gradient root-mean-square
errors (RMSE).

The absolute RMSE metric simply measures the element-wise error for each output grid entry relative
to the original function output, averaged over all test cases. This is a reasonable metric for general accuracy
but doesn’t impose any cost for approximators that fail to preserve topological features of the original output
grids.

The gradient RMSE measures errors in the finite-difference gradient in the vertical and horizontal direc-
tions on the output grid, averaged over all test cases. Maintaining the gradient of the original function is
desirable in order to preserve the local topology of the original function output.

4.2.2 Performance Metrics

In addition to output accuracy, we also evaluate approximators based on their execution performance, both
in terms of compilation time and runtime speed. For the runtime measure, in addition to timing-based evalu-
ation, we use Valgrind’s “callgrind” tool to count dynamic instruction executions while calling approximated



functions. We chose this tool rather than using llvin’s interpreter for profiling as it also captures instructions
executed in external libraries used by the approximators in addition to instructions directly generated from
the approximator source.

5 Results

For each of the LIN, SOG, and MDP problem types, the approximators were trained on a set of 50 function
input/output pairs and their quality was evaluated on a separate set of 50 test pairs. The output grids were
of size 30 x 30 for LIN, SOG, and MDP problem domains and size 20 x 20 for the MED problem (the image
chunk size).

Figure 2 shows a visual comparison of the results of running the original function and the three approxima-
tors on various test inputs for each of the problems. These images demonstrate that all three approximators
generally do a good job of preserving global maxima/minima, and that neural networks and SVMs do a
better job of approximating the original than linear regression.

5.1 Accuracy

The absolute RMSE for our test suite is shown in Figure 3. All the approximators function well for the
trivial LIN problem type, while the more advanced neural network and SVM models have the advantage
over a simple linear approximator for the complex terrains generated by the sum-over-Gaussians and MDP
problem types. Hovever, even the linear approximator capable of roughly reproducing the location of the
global maximum on these inputs; its high speed might make it suitable for applications that need less
accuracy. On the median filter problem set (far right), there is no apparent gain from using these advanced
approximators over the linear model. Note that the relationship between the inputs and outputs for the
median filter problem type is different from that in the SOG and MDP problems; its input, consisting of an
image patch and kernel size parameters, is of much higher dimensionality than the latter two types.

We provide the gradient RMSE for our test suite in Figure 4. As with the absolute RMSE, all approxi-
mators handle well the trivial LIN problem type. The results on the more challenging sets are mixed, with
no clear advantage to any approximator type.

Based on visual inspection, the neural network and SVM approximators seem to show better topology
preservation than the linear approximator, but we believe that another topological metric may be necessary
to capture this apparent qualitative difference.

5.2 Performance

Figure 5 shows the time required to train each approximating function, a value which may alternatively be
considered the compilation latency. The linear approximator takes only on the order of a second, while the
neural network and SVM models require more extensive training periods.

Finally, the runtime execution and number of execution instructions are featured in 6. Note that, in some
cases, these two performance metrics diverge, indicating that dynamic instruction counts are not always
a good predictor of runtime efficiency. In particular, the linear approximator demonstrates consistently
minimal dynamic instruction counts, but this does not equate to the highest wall clock performance for the
MDP and MED problem types, where both the neural network and SVM approximators prevail.

Note also that the approximated functions only showed better runtime performance than the original
function for the MDP problem type, which is an intensive value iteration over a relatively large state space.
In all three other problem types, the approximators in fact show significant slowdowns relative to the original
function. We address this observation in Section 7.



Linear Sum of Gaussians Median Filter
(LIN) (SOG) (MED)

Original

SVM

Figure 2: Visual results comparison. The images above each contain a selection of test outputs, i.e., the
2-D output generated by a function or function approximation from an input drawn from the test set. Each
block in the image contains a grid of function output grids (8 x 6 for the first three columns, and 3 x 3 with
one missing for MED). Row 1 shows the results of running the original algorithms on typical function inputs,
and the next three rows demonstrate the answers generated by the approximations on the same inputs. As
you can see, for the linear problem, all approximations very closely resemble the original. Neural networks
and SVMs do well for the sum of Gaussians and MDP problems as well, while linear regression does poorly
but at least captures the location of the maximum. For the median filter, all three approximations generally
resemble the original, but how well they approximate the original, even with this visual aid, is difficult to
determine.
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Figure 3: Average absolute error by approximation strategy for each of our input function domains.
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Figure 5: Time required to train/compile each approximator.



Execution Time Relative to Original
100

A I linear
H C_Ineural

o |[|HElsvm
E
LR T]=
c C
5 E
4 [
el L
[
N r
=, =
o L]
2

0.10 | ! |

LIN SOG MDP MED
Problem Type
Instructions Executed Relative to Original

1000 =
2 [ EMlinear
2 100 Eneural
] £ I svm
n} L
(2] L
c 1%
o E
- L
s [ |
3 1k
= E
17} L
£ E
B 010
@ E
N E
5 L
£ 0010
R E
(=] £
-4 E

0.001 | | | |

LIN SOG MDP MED
Problem Type

Figure 6: Average function runtime (top) and number of instructions executed (bottom) by approximation
strategy (log scales).



6 Future Work

While simpler applications did not experience a speedup, more complex Al algorithms where complete accu-
racy is not essential have the potential to be sped up by being automatically replaced with an approximation
at compile time. Future work could improve the versatility of this framework by designing it in a way such
that it can handle arbitrary function signatures and C++ code. A smart compiler that can pick an appro-
priate approximation based on the results of running on some initial test inputs also has the potential to get
speedups with relatively high accuracy at runtime.

7 Project Notes & Conclusion

We implemented an approximator for fairly general grid-valued functions, including one fast and simple
method, as well as two more sophisticated methods. As expected, linear regression, the simplest method,
was the least capable of maintaining fidelity to the original function, but offered advantages in terms of both
training and execution time. Overall, it seems like a neural-net based approach might be the most generally
useful; in our results, neural nets had a slightly higher error than SVMs, but ran considerably faster, which
is much of the goal of approximate computing. Of course, it is hard to say what would end up being faster
or more energy-efficient with specialized evaluation hardware, which would be the ultimate target for this
kind of approach, as discussed below.

Note that all of our actual approximator execution times, except on the MDP problem, were much higher
than those of the original code. Specialized hardware is an important factor when it comes to execution
efficiency, and one to which we did not have access while working on this project. Esmaeilzadeh [1] used
a specially-designed ASIC to enable values in neural networks to be computed extremely quickly; since we
were limited to software solutions, our approximators were typically slower than the original code, often
significantly. However, the hope is that, for any given approximator type, it would be possible to implement
that approximator efficiently in hardware and then approximate all kinds of functions, whereas it would be
much more difficult to implement similar hardware for the original general functions.

Work distribution for this project was roughly 40% Ben, 30% Danny, 30% Yuzi.

References

[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-purpose ap-
proximate programs,” in Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, (Washington, DC, USA), pp. 449-460, IEEE Computer Society, 2012.

[2] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Quality pro-
grammable vector processors for approximate computing,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, (New York, NY, USA), pp. 1-12, ACM, 2013.

[3] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann, “Using code perforation to improve
performance, reduce energy consumption, and respond to failures,” tech. rep., MIT, 2009.

[4] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi, L. Ceze, and
D. Burger, “General-purpose code acceleration with limited-precision analog computation,” 2014.

[5] A.Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman, “EnerJ: Approximate
data types for safe and general low-power computation,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI '11, (New York, NY, USA),
pp. 164-174, ACM, 2011.

[6] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” 1989.



